
www.manaraa.com

DOCUMENT RESUME

.ED 235 779 IR 010 852

AUTHOR Bonnette, Della, Ed.
TITLE Proceedings of the NECC/5 National Educational

Computing Conference 1983 (5th, Baltimore, Maryland,
June 6-8, 1983).

REPORT NO ISBN-0-8186-0050-0
PUB DATE Jun 83
NOTE 422p.; Published by the IEEE Computer Society

Press.
AVAILABLE FROM Professor Ted Sjoerdsma, University of Iowa, Computer

Science Division, Iowa City, Iowa 52242 ($15.00).
PUB TYPE Collected Works - Conference Proceedings (021) --

Viewpoints (120) -- Reports - Descriptive (141)

EDRS PRICE MF01 Plus Postage. PC Not Available from EDRS.
DESCRIPTORS *Computer Assisted Instruction; *Computer Literacy;

Computer Managed Instruction; *Computer Programs;
*Computer Science Education; Instructional Materials;
Material Development; Programing; *Programing
Languages; Science Education; Teacher Education

IDENTIFIERS *Computer Uses in Education; LOGO Programing
Language

ABSTRACT
Recent research and current trends in the field of

computers and education are reflected in this collection of reviewed
papers, tutorials, panels, project presentations and other sessions.
More than 80 papers are grouped in the following topic areas:
administrative applications, composition and literature, computing
for the learning disabled or handicapped, computer services, computer
science curricula, computers in education, computing in the
non-curricular support role, pre-college computer science, computer
science software, LOGO, alternative approaches to providing computing
facilities, computer uses in education, science, computer literacy,
computer education for elementary school teachers, commerce, computer
science -- teaching programming, computers in science education,
computer assisted instruction, computers in education at an early
education level, computer education for secondary school teachers,
mathematical needs of computer sciences, computer-based education,.
teacher training, pre-college instructional uses of computers,
mathematics and statistics, courseware development and evaluation,
and pre-college computer services. An additional 39 papers are
included under the headings of tutorials, invited sessions, and
special sessions. (LMM)

*********************************************************************
Reproductions supplied by EDRS are the best that can be made

from the original document.
***********************************************************************



www.manaraa.com

U.S. DEPARTMENT OF EDUCATION
NATIONAL INSTITUTE OF EDUCATION

EDUCATIONAL RESOURCES INFORMATION
CENTER (ERIC)

111, This document has been reproduced as
received from the person or organization
migaiMingin
Minor changes have been made to improve
reproduction quality.

Points of view or opinions stated in this docu-
ment do not necessarily represent official NIE
position, or policy.

Proceedings of NECC/5
National Educational Computing Conference 1983

CONFERENCE: June 6-8, 1983, Baltimore, Maryland
HOST: Towson State University, Baltimore, Maryland

EDITED BY

Della Bonnette
University of Southwestern Louisiana
Lafayette, Louisiana

ISBN 0-8186-0050-0
EEE CATALOG NO. 83CH1888-7
LIBRARY OF CONGRESS M3.83-60814
EEE COMPUTER SOCETY NO. 490

COMPUTER
SOCMETY
PRESS Irs

"PERMISSION TO REPRODUCE THIS
MATERIAL IN MICROFICHE ONLY
HAS BEEN GRANTED BY

Ted Sjoerdsma

TO THE EDUCATIONAL RESOURCES
INFORMATION CENTER (ERIC)."



www.manaraa.com

The papers appearing in this book comprise the proceedings of the meeting mentioned on the
cover and title page. They reflect the authors' opinions and are published as presented and with-
out change, in the interests of timely dissemination. Their inclusion in this publication does not
necessarily constitute endorsement by the editors. IEEE Computer Society Press, or the Institute
of Electrical and Electronics Engineers, Inc.

Published by IEEE Computer Society Press
1109 Spring Street

Suite 300
Silver Spring, MD 20910

ISBN 0-8186-0050-0 (Paper)
ISBN 0-8186-0051-9 (Casebound)
ISBN 0-8186-0052-7 (Microfiche)

Copyright 1983: NECC

National Educational Computing Conference
June 1983

Cover designed by Madeline Windauer



www.manaraa.com

NECC STEERING COMMITTEE

Ronald Anderson Doris Lidtke
University of Minnesota Towson State University

Alfred Bork James Lubkin
University of California, Irvine Michigan State University

Nell Dale Mike Mulder
University of Texas at Austin Servio Logic Corporation

Karen Duncan Richard Pogue
Health Information Systems Medical College of Georaia

Francis Edwards Joseph Raben
Towson State University Queens College/CUNY

Gerald L. Engel Nancy Roberts
Christopher Newport College Lesley College

Mary Dee Harris Fosberg Alan L. Roecks
Loyola University San Antonio ESC

John Hamblen Jean Rogers
University of Missouri-Rolla University of Oregon

Diana Harris William Ryan
University of Iowa Swarthmore College

Harry Hedges Ted Sjoerdsma
Michigan Sate University University of Iowa

Paul Heller Dennis Speck
EDUCOM/EDUNET University of Houston

Lawrence Jehn E. M. Stanan
University of Dayton University of Missouri-Columbia

Sister Mary Kenneth Keller David Stonehill
Clarke College University of Rochester

Jesse C. Lewis Joe Turner
Jackson State University Clemson University

iii



www.manaraa.com

NECC Conference Committee

General Chairperson Doris K. Lidtke
Towson State University

Vice-Chairperson Robert Caret
Towson State University

Program Committee Joseph Turner
Clemson University

Contributed Papers Joseph Turner
Clemson University

Society Sessions and Panels Jean Rogers
University of Oregon

Project Presentations William Ryan
Swarthmore College

Special Sessions William Dorn
University of Denver

Films Lillian Cassel
Goldey Beacom College

Birds-of-a-Feather David Stonehill
University of Rochester

Session Chairpersons Patricia Powers
Goucher College

Workshops Ralph Lee
University of Missouri-Rolla

Proceedings Della Bonnette
University of Southwestern Louisiana

Publicity James Adams
Association for Computing Machinery

Exhibits Gerald Leach-Lewis
IEEE/Computer Society

Evaluation of NECC/82 Alan Roecks
Education Service Center-San Antonio

Mailings Carol Edwards
Towson State University

Local Arrangements Francis Edwards
Towson State University

Co-chairpersons Michael Haney
Towson State University

Charles Parrish
Towson State University

Information Desk Clarence Miller
Maryland State Department of Education

Continuing Education Uoits Robert Wall
Towson State University

Social Events Joyce Currie Little
Towson State University

Dick Austing
University of Maryland

Restaurants Ann Wagner
Towson State University

Student Assistants TSU ACM Student Chapter and others

Press Relations Gerald Riggleman
Towson State University

iv



www.manaraa.com

EXHIBITORS

ADDISON-WESLEY PUBL CO, READING, MASSACHUSETTS
ASSOCIATION FOR COMPUTING MACHINERY, NEW YORK
ANAHEIM PUBLISHING GO, FULLERTON, CALIFORNIA

APPLE COMPUTER, CUPERTINO, CALIFORNIA
Ase:DS, WLSRINGTON, D.C.

ATARI NC, SUNNYVALE, CALIFORNIA
POBBS-hprinra EDUC PUBL CO, INDIANAPOLIS, INDIANA.
BOYD & FgLSER PUBLISHING CO, SAN FRANCISCO, CA
C & C SOFTWARE, WICHITA, KANSAS
CHARLES E.MERRILL PUBLISHING, COLUMBUS, OHIO
CLASSROOM COMPUTER NEWS
COMMODORE BUSINESS MACHINES, WAYNE, PENNSYLVANIA
COMPUTER SCIENCE PRESS, ROCKVILLE, MARYLAND
COMPRESS-SCIENCE BOOKS INT'L, WENTWORTH, N.H.
CONDUIT(UNIV OF IOWA), IOWA CITY, IOWA
THE CONTINENTAL PRESS, ELIZABETHTOWN, PA
CORONADO PUBLISHERS, NEW YORK CITY
DEVELOPMENTAL LEARNING MATERIALS, ALLEN, TEXAS
DIGITAL EQUIPMENT CORPORATION, MAYNARD, MASS
DILITHIUM PRESS, BEAVERTON, OREGON
EDUCATIONAL TESTING SERVICE, PRINCETON, N.J.
EDUCOM/EDUNET, PRINCETON, NEW JERSEY

EDWARD ARNOLD, BALTIMORE, MARYLAND
ENTELEK, PORTSMOUTH, NEW HAMPSHIRE
EPIE -EDUCATIONAL PRODUCTS, NEW YORK CITY, N.Y.

FOLLETT LIBRARY BOOK CO, CRYSTAL LAKE, ILLINOIS
GAMCO INDUSTRIES,tNC, BIG SPRING, TEXAS
GLOUCESTER COMPUTER,INC, GLOUCESTER, MASS
GOUCHER COLLEGE, TOWSON, MARYLAND
GREGG/McGRAW-HILL, NEW YORK CITY, N.Y.
HARPER & ROW PUBLISHERS,INC, NEW YORK CITY, N.Y.
HARTLEY COURSEWARE,INC, DIMONDALE, MICHIGAN
HOLT,RINEHART & WINSTON, NEW YORK CITY, N.Y.
HOUGHTON MIFFLIN CO, BOSTON, MASSACHUSETTS
IBM CORPORATION, BETHESDA, MARYLAND
INFORMATION SYNERGY,TNC, PRINCETON, NEW JERSEY

J.L.HAMMETT COMPANY, BRAINTREE, MASSACHUSETTS
JOURNAL OF COMPUTERS IN MATHS & SCIENCE,
K-12 MICROMEDIA, WOODCLIFF LAKE, N.J.
LAWRENCEVILLE PRESS, LAWRENCEVILLE, N.J.
LITTLE, BROWN & CO, BOSTON, MASSACHUSETTS
BROOKS/COLE PUBLISHING CO, MONTEREY, CALIFORNIA
McGRAW -HILL PUBLISHING CO, NEW YORK CITY
MILLIKEN PUBLISHING CO, ST.LOUIS, MISSOURI
MONROE SYSTEMS FOR BUSINESS, MORRIS PLAINS, N.J.
RADIO SHACK, FORT WORTH, TEXAS
RANDOM HOUSE, NEW YORK CITY
RESTON PUBLISHING COMPANY, RESTON, VIRGINIA

SCOTT INSTRUMENTS, DENTON. TEXAS
SCHOLASTIC,INC, NEW YORK CITY, N.Y.
SPRINGER-VERLAG,N.Y. NEW YORK CITY
STERLING SWIFT PUBLISHING, AUSTIN, TEXAS
SUNBURST COMMUNICATIONS, PLEASANTVILLE, N.Y.
SYNTAURI CORPORATION, PALO ALTO, CALIFORNIA
SYSTEMS DESIGN ASSOCIATES, CHARLESTON, W.VA
TECHNICO,INC, BALTIMORE, MARYLAND
TERRAPIN,INC CAMBRIDGE, MASSACHUSETTS
WADSWORTH PUBLISHING CO, BELMONT, CALIFORNIA
WADSWORTH PUBLISHING CO (INT'L DIVISION)
WEST PUBLISHING CO, SANTA CLARA, CALIFORNIA
WEBSTER/McGRAW -HILL, NEW YORK CITY, N.Y.
JOHN WILEY & SONS, INC, NEW YORK CITY, N.Y.

QUEUE,INC, FAIRFIELD, CONNECTICUT
ZERO PAGE,INC, COLORADO SPRINGS, COLORADO

V



www.manaraa.com

COOPERATIN' SOCIETIES

The Conference is hosted by Towson State University in cooperation with:

American Association for Medical Systems and Informatics

Association for Computing Machinery Special Interest Groups on:
Computers and Society (SIGCAS)
Computer Science Education (SIGCSE)
Computer Uses in Education (SIGCUE)
University and College Computing Services (SIGUCCS)

Association for Education Data Systems (AEDS)

American Educational Research Association/Special Interest Group on:
Computer Applications in Instruction (AERA/SIGCAI)

ARIPS Education Committee

Association for Computers and the Humanities (ACH)

Association for Small Computer Users in Education (ASCUE)

American Society for Engineering Education/Computers in Education Division
(ASEE/CoED)

Conference on Computers in Undergraduate Curricula (CCUC)

Educational Computing in Minority Institutions (ECMI)

Health Education Network (HEN)

International Council for Computers in Education (ICCE)

EDUNET/EDUCOM

IEEE Computer Society

Society for Computer Simulation

vi



www.manaraa.com

FOREWORD

This volume of proceedings of the Fifth National Educational Computing Conference
(NECC/83), accurately reflects recent research and current trends in the field of
computers and education. It embodies the critical thinking of a vast number of experts on
topics that are both crucial to the whole society and especially relevant at the present
time. The conference shows an excellent balance of reviewed papers, tutorials, panels,
project presentations, and other sessions covering the broad spectrum of computers in
education. The ideas expressed in these proceedings and in the sessions are a

manifestation of the vitality of this field and provide attendees an opportunity to expand
their expertise and increase their appreciation of computers in education. We believe
that this conference will be beneficial to all participants and that these proceedings
will serve as a valuable reference in the future.

The conference and these proceedings are the culmination of a great deal of effort by
many individuals. Particular thanks are due to

- the National Educational Computing Conference Steering Committee for guidance
and support, especially those who advised and encouraged the conference
committee;

- all authors who submitted papers for review;
- the referees for their considerp.ble efforts in reviewing the papers and for
making the frequently difficult iie.:isions of whether to accept or reject papers;

- the organizer of panel and tutorial sessions;
- A. J. (Joe) Turner (Clemson University), who so ably chaired the Program
Committee and had the awesome task of coordinating the review of papers;

- Jean Rogers (University of Oregon), who with diligence and skill coordinated
society sessions, tutorials and suggested sessions;

- William Ryan (Swarthmore College), who organized the project presentation
sessions;

- William Dorn (University of Denver), who with discriminating sense (flair)
organized the invited sessions;

- James Adams (Association for Computing Machinery), who with energy and
imagination handled the publicity for the conference;
Gerald Leach-Lewis (IEEE Computer Society), who worked creatively to expand the
quantity and quality of the exhibits;

- Alan L. Roecks (San Antonio, ESC), whose superb evaluation of NECC/82 gave us
excellent ideas for this years conference;
Ralph Lee (University of Missouri, Rolla), who organized a splendid array of
pre-conference workshops;
Francis Edwards (Towson State University), who worked effectively on the broad
range of local arrangement tasks;

- David Stonehill (University of Rochester), who organized the Birds of a Feather
sessions;

- Robert Caret (Towson State University), who was always willing to assist and
support the activities of the conference;

- Carol Edwards (Towson State University), who with good humor coordinated the
processing of nearly 100,000 pieces of mail;
Iva Thommen (Towson State University), who handled all secretarial tasks
cheerfully and expeditiously;

- Donna Feldmann (Towson State University), who as the student assistant for NECC
intuitively saw what needed to be done and efficiently did it;

- All attendees who made the efforts worthwhile;
- Della Bonnette (University of Southwestern Louisiana), who made this volume of
proceedings possible, through her skills as an editor, her patience in dealing
with the authors, and her ability to accomplish it all on schedule.

Doris K. Lidtke
General Chairperson, NECC/83

Towson State University
Baltimore, 'Maryland 21204

vi i



www.manaraa.com

TABLE OF CONTENTS

INVITED SESSION
1 The Role of Language in Teaching Programming

Stephen Garland, Chair

SPECIAL SESSION
2 Approaches to Requiring Microcomputers of Undergraduate Students

Jane Caviness, Chair
3 Accreditation in the Computing Sciences

John Dalphin, Chair

INVITED LESSION

SPECIAL SESSION

ADMINISTRATIVE APPLICATIONS PAPER SESSION

4 Networking for Microcomputer Management
Kenneth Forman, Carl Steinhoff

7 Spread Sheet Simulation Modeling (SSSM) for Training and Instruction in Resource

Allocation
Ronald Lindahl, Brent Wholeben

12 Development and Validation of Computerized Adaptive Screening Test (CAST) for use in

Army Recruiting
Herbert Baker, Bernard Rafacz, William Sands

COMPOSITION AND LITERATURE PAPER SESSION

18 Word Processing in the Classroom
Karen Piper

22 The Computer in the Writing Class: Problems and Potential
C. Daiute, P. O'Brien, A. Shields, S. Liff, P Wright, S. Mazur, W. Jawitz

27 A Hybrid Humanities Application Course
Rudy Spraycar

TUTORIAL
31 The DISC Project

Shelley Rose, Carol Klenow

TUTORIAL

COMPUTING FOR THE LEARNING DISABLED OR HANDICAPPED PROJECT SESSION

32 Using LOGO with` Learning Disabled Students
Rita Horan

32 Project CAISH Second Year Update
Warren Brown

33 Project S.O.S.
Mary Russo, Nancy Jones

33 Relative Effect of Microcomputer Instruction an:; Teacher Directed Instruction on the
Performance of Hearing Impaired and Normal Hearing Students

Sharon Smaldino, Patrick Schloss

COMPUTER SERVICES PAPER SESSION

35 A Guide for the Purchase of Computer Systems for a Two-Year Campus
Laurena Burk

42 Extensive Computer Grading of ID-Individualized Homework Problems
M. J. Maron

48 Automatic Syllabus Generator (ASG)
Asad Khailany, Marc Schubiner, A.M. VanderMolen

SPECIAL SESSION SPECIAL SESSION

54 How Schools Use Microcomputers: Findings from the Johns Hopkins University National
Survey of Computer-Using Teachers

Clarence Miller, Chair
55 CAI in Foreign Language Instruction

Carl Adamson, Chair

viii 9



www.manaraa.com

COMPUTER SCIENCE CURRICULA PAPER SESSION
56 What Computer Curriculum is Right for the Small College

William Mitchell
64 A New Source of Computer Science Teachers: Faculty Members from Other nepartments

Keith Harrow
68 Hobby Robots as Teaching/Learning Tools

Michael Moshell, Charles Hughes, Carl Gregory, Lee Wittenberg

COMPUTERS IN EDUCATION PAPER SESSION
75 Ending the Isolation: Deaf-Blind and Microcomputers

Dan Zuckerm'n
80 Plato Stayweli: A Microcomputer-Based Program of Health Behavior Changes that

Improves With Use
Murray Naditch

85 The Neuroscience Software Project
Terry Mikiten, Ronald Pyka

COMPUTING IN THE NON-CURRICULAR SUPPORT ROLE PROJECT SESSION
90 A Microcomputer Based Vocational Placement add Follow-up System

Spicer Bell, Alonzo Peters
90 Individualized Grade Reports: Motivational Aid and Teaching Tool

Linda Royster
90 Using a Microcomputer for a Test Question Storage Bank

Robert Jackson
91 How Easy to Use Can a Grade Management Program Be?

Richard Cornelius
91 An Analysis of Academic Grades at the US Naval Academy

Randall Spoeri, Malcolm Fordham

PRE-COLLEGE COMPUTER SCIENCE PAPER SESSION
92 Experimenting with a Computer Literacy Program for Elementary School Gifted

and Talented Students
W. Starnes, J. Muntner

99 Introductory Computer Programming for All College Bound High School Students
Ken Jones, Dennis Simms

103 A Programming Environment for Preliterate Children
Charles Hughes, Michael Moshell

SPECIAL SESSION SPECIAL SESSION
107 Teacher Training in Computer Education

William Wagner, Chair
108 Instituting Computer Programs within a School District

John Cheyer, Chair
109 Voice Input/Output: New Directions in Instructional Technologies

Carin Horn, Chair
110 Educational Use of Microcomputers by Special Needs Students

Joan Davies, Chair
111 Needs and Opportunities for Educational Software in Grades K-12

Edward Esty, Chair

COMPUTER SCIENCE - SOFTWARE PAPER SESSION
112 Program Maintenance ... The Forgotten Topic

Frank Connelly
115 An Environment to Develop and Validate Program Complexity Measures

Enrique Oviedo, Anthony Ralston
122 Teaching a Software Engineering Class Using an IBM Personal Computer(tm)

Ronald Frank

PRE-COLLEGE COMPUTER SCIENCE
126 Crisis in Programming or History Does Repeat Itself

Jacques LaFrance
132 An Evaluation of a LOGO Training Program

M. Elizabeth Badger
138 Educational Computing Post Haste: A Case Study

Deborah Blank

ix

PAPER SESSION



www.manaraa.com

LOGO PROJECT SESSION
141 LOGO A Three Year Sequence, Grades 4-5-;

Carolyn Markuson, Joyce Tobias
141 Development of a Program Designed to Use LOGO and a Floor Turtle in a Nursery School

Environment
Martin Saltz, James Gottlieb, Bobbie Gibson, Roy Moxley

141 LOGO Instructional Development Project
S.Tipps, H.Evans, G.Bull, T.Schwartz, M.King, S.Taylor, S. Walker, P.Davidson

142 The Programming Styles of Fifth Graders in LOGO
Leah Rampy, Rochelle Swensson

142 Modifying Papert's Vision: LOGO Lessons
Barbara Hilberg

ALTERNATIVE APPROACHES TO PROVIDING COMPUTING FACILITIES PROJECT SESSION
143 CompuShare: A School-Community Project

Mary Sennett
143 The Central Illinois Computing Consortium

Richard Murdach
143 A Relocatable Computer Laboratory

Pat Kelly
144 CALL: A Multipurpose Educational Computer Facility

Richard Evans
144 Cost Effective Implementation of a Microcomputer Program in Elementary School

Mary DeBoer

INVITED SESSION
146 Distance Teaching of Software Engineering

Darrel Ince, W. S. Matheson

INVITED SESSION

SPECIAL SESSION SPECIAL SESSION
147 District Planning For Computer Use In K-11

Glenn Fisher, Chair
148 Information Technology and Its Impact on the United States - Overview and

Implications
Linda Garcia, Chair

COMPUTER USES IN EDUCATION PAPER SESSION
149 The Electronic Blackboard using a Microcomputer and Large-Screen Television as a

Lecture Aid
James Clark

152 Results and Lessons From a Survey of Readers' Control of Rate of Text Presentation
on Computer Screens

Werner Feibel
157 An Experimental Comparison of. Discovery and Didactic Computerized Instructional

Strategies in the Learning of Computer Programming
Brian McLaughlin

SCIENCE PAPER SESSION
163 Checking Lab Calculations

William Pelham
167 Teaching Undergraduates to Theorize Through the Use of a Computer Simulation of

Kidney Function
David Wilcox

174 Microcomputer-Based Data Acquisition for Neurobiology
Richard Olivo

COMPUTER LITERACY PROJECT SESSION
180 Algebra, Basic, and Computers: The ABC's for Non-Science Majors

Margaret Christensen
180 Computer Literacy in the Two-Year College Curriculum

Carla Thompson, Joyce Friske
180 The Vassar College Computer Literacy Program

William Pritchard, Donald Spicer
181 A Microcomputer Literacy Program

Ronald Bearwald
181 Machine Language in Computer Literacy: Strategy and Supporting Software

David Lewis

x

1



www.manaraa.com

COMPUTER EDUCATION FOR ELEMENTARY SCHOOL TEACHERS PROJECT SESSION

183 Computer Literacy for Elementary and Middle School Teachers
Joyce Currie Little, Robert Wall

183 Microcomputer Simulation: An Aid in Training Elementary School Teachers
Harold Strang, Ann Loper

184 Toward Curriculum Development: A Case Study in Computer In-Service Training

Alice Ann Winner
184 Incorporating the Microcomputer into the Department of Mathematics Program for

Prospective Elementary School Teachers
Muriel Wright, Helen Coulson

COMPUTERS IN EDUCATION PROJECT SESSION

186 Real-Time Microcomputer Programs for Teaching Statistics
C. Michael Levy

186 High Schdol Science Microcomputer Project
John Pancella, John Entwistle, Carol Muscara

187 The Function Game: Using Microcomputers to Improve. Grading Skills
Edward Zeidman

188 Computer Chronicon Project
Melvin Wolf

INVITED SESSION INVITED SESSION

189 Where We Are Going in the Use of Computers in Public Education
Sylvia Charp

SPECIAL SESSION SPECIAL SESSION

190 Computers in the Undergraduate Mathematics Curriculum
Sheldon P. Gordon, Chair

191 Simulation: A Teaching Strategy X.-College
Beverly Hunter, Chair

192 Considering the Lack of Instructional Computing in Higher Education - Why?

Lincoln Fletcher, Chair

TUTORIAL TUTORIAL

193 The Funding Game: Playing to Win
John T. Thompson

COMMERCE PAPER SESSION

194 Designing a Programming Course for MBA Students
David Cossey, David Rossien

200 A Curriculum for a Master's Program in Computerized Materials Management
Daniel Shimsak, Dean Saluti

204 Information Literacy Course: A Recommended Approach
Eileen Trauth

COMPUTER SCIENCE - TEACHING PROGRAMMING
208 A System for the Automatic Grading of Programming Style

Patricia Van Verth, Anthony Ralston
214 Teach Top-Down Programming While You Teach BASIC

Michael Streibel
220 Using Computer Simulated Models to Teach Programming Languages

Bogdan Czejdo

PAPER SESSION

COMPUTERS IN SCIENCE EDUCATION PROJECT SESSION

224 The Use of an Apple/Corvus Networking System in an Elementary Physics Course
Raymond Bigliani

224 Program Development by a Biology User's Group for Microcomputer-Assisted Instruction
L. Dove, S. Bryant, H. Edwards, K. Kendell, P. Nielsen, G. White

225 A Scientific Instrument Trainer
Robert Henkins

225 Concentrated Physics Concepts: A Comprehensive Package of Tutorial Problem Solving
David Alexander.

INVITED SESSION
226 Courseware Development from a Publisher's Perspective

M. D. Roblyer, Chair

xi

INVITED SESSION



www.manaraa.com

SPECIAL SESSION
227 Trends in Interactive Data An?lysis

Jon Christopherson
229 Science Education and the Growth of the U. S. Computer Industry

Dorothy Derringer, Chair
230 Computing Curricula Prepared by the Professional Societies

Joyce Currie Little, Chair

SPECIAL SESSION

COMPUTER SCIENCE - TEACHING PROGRAMMING PAPER SESSION
231 Augmenting Self-Study Materials with Microcomputer-Based Lessons

Ernest Giangrande, William Sregar
239 Bridging from Non Programmers to Programming

Jeffrey Sonar, Elliot Soloway
244 Predicting Student Successs in an Introductory Programming Course

Terry Hostetler

CAI PROJECT SESSION
249 Computer-Assisted Sentence Combining

Michael Southwell, Carolyn Kirkpatrick, Mary Epes
249 Writing Computer-Assisted Instructional Programs to Support a Textbook

J. Kenneth Sieben
250 Project Better Chance; A Comprehensive Approach to Basic Skills Improvement

Ellen Leahy
250 Appropriate Technology for Computer Education

R. K. Wiersba

COMPUTERS IN EDUCATION AT AN EARLY EDUCATION LEVEL PROJECT SESSION
252 The Magic Crayon

Carol L. Clark
252 Effectiveness of Computer Usage on Achievement of Specific Readiness Skills of

Preschoolers
Elizabeth Legenhausen

253 The Oak Street Interns: An Experiment
Stewart Denenberg

253 Wily Computer Education in the Elementary School? A Model for Maximum Use
Marilyn Pollock

COMPUTER EDUCATION FOR SECONDARY SCHOOL TEACHERS PROJECT SESSION
254 Infusion of Microcomputer Training into the Existing School of Education

Undergraduate and Graduate Curriculum
Susan Zgliczynski

255 Certification of High School Computer Science Teachers
Harriet Taylor

255 Introduction of Computers and Educational Computing - A CAI Approach
Dale Johnson, Carla Thompson

255 planning and Training for Effective Use of Computers
Sandra Crowther, Linda Hyler, Michel Eltschinger

MATHEMATICAL NEEDS OF COMPUTER SCIENTISTS INVITED SESSION
256 An Overview of the Mathematical Needs of Computer Scientists

Anthony Ralston
258 Mathematics in Computer Science and the Applications Programmer

A. T. Berztiss
261 MatSematics Service Courses for the Computer Science Student

Martha Siegel
263 Stirrings in the Mathematics Curriculum: Changes Mathematicians are Thinking of

Making
Stephen Maurer

SPECIAL SESSION
266 Using a Large Screen Computer' System to Improve Teaching

David Lundstrom
267 Educational Software Copyright Issues

Ronald Anderson, Chair
268 Teaching Structured Programming in the Secondary School

Jean Rogers, Chair
270 Nationwide Computer Literacy Project

Daniel Updegrove, Steveb Gilbert

SPECIAL SESSION



www.manaraa.com

TUTORIAL
272 Using the Microcomputer Creatively with Young Students

Marilyn Church, June Wright

TUTORIAL

COMPUTER-BASED EDUCATION PAPER SESSION
273 Huntington III:. Microcomputer Courseware Development Project

Thomas Liao
279 A Universal Compute:: Aided Instruction System

Henry Dietz, Ronald Juels
283 A Study of Student-Computer Interactivity

David Trowbridge, Robin Durnin

TEACHER TRAINING PAPER SESSION
290 The Implementation of Technology and the Concerns-Based Adoption Model

Cheryl Anderson
294 Elementary Teacher Education: Including LOGO in Teaching Informal Geometry

M. Moore, W. Burger
298 A Computer Literacy Curriculum for Preservice Teacher Education Candidates

Brent Wholeben

PRE-COLLEGE INSTRUCTIONAL USE OF COMPUTERS PAPER SESSION
302 Dynamics of Learning and Mis-Learning in a Simulated Micro-World

Andrea Petitto, James Levin
308 Observation and Inference - A Computer Based Learning Module

Alfred Bork, David Trowbridge, Arnold Arons
311 Does Use of Microcomputers in Junior High School Increase Problem Solving Skills?

Barbara Kurshan, Joyce Williams, Nancy Healy

INVITED SESSION INVITED SESSION
316 Divergent Answers to the Question, "Where Should Computer Education Dollars Be

Spent?"
Arthur Luehrmann, Eric Burtis, Beverly Hunter

SPECIAL SESSION SPECIAL SESSION
317 An Evolving Model for Providing Computer Education for Gifted Children

Mary Crist, Chair
318 Training University Faculty in the Use of Computer Graphics

Richard McGinnis
320 Recommendations for Programs in Computing at Small Colleges

John Beidler, Chair

COMPUTERS IN EDUCATION PAPER SESSION
321 Computers and Quantitative Methods; Healthy for the Humanities?

Rudy Spraycar
326 A Personal Computer for Every College Student

David Bray
330 Computer Assisted Simulation in Politics of Reapportionment/Redistricting (CASPOP)

Jerry Bolick, James 0. Icenhour

MATHEMATICS AND STATISTICS
336 Integrating Computing Packages and Statistics Instruction

William Schafer, C. Mitchell Dayton
342 A Computer Based Tutorial on Mathematical Induction

J. Mack Adams, Marvin Landis
345 Implicit Functions and Computer Graphics

Sheldon Gordon

COMPUTER SCIENCE - MISCELLANEOUS
350 Interrupt Drive I/O Projects in an ACM '78 CS4 Course

Greg Starling
355 Assembly Language on the APPLE: A Thorough Introduction

W. D. Maurer
360 Student-Down System Design

Robert Geist

PAPER SESSION

PAPER SESSION



www.manaraa.com

COURSEWARE DEVELOPMEMNT AND EVALUATION PROJECT SESSION
364 Computer Literacy and the Liberal Arts

L. Carl Leinbach
364 Courseware Evaluation Techniques

Barbara C. Garris
365 The California Courseware Clearinghouse

Ann Lathrop
365 Let's Write Usable Courseware: The City College Algebra Project

Jon C. Miller

SPECIAL SESSION SPECIAL SESSION
366 Request for Equipment Proposals

Joseph Wolfsheimer
367 Courseware on Social Issues of Computers

Ronald Anderson, Chair
368 Word Processors in the Composition Classroom

Mary Dee Harris Fosberg, David Ross, Chairs
369 Interactive Computer Graphics and Computer Animated Films in Education

Maria Mezzina, Chair
370 Teaching Ada Via Computer

George Poonen, Chair
371 Electronic Main and Computer Conferencing

Paul Heller, Chair

COMPUTERS IN EDUCATION PAPER SESSION
372 Sex Difference in Microcomputer Literacy

Marlaine Lockheed, Antonia 'lielsen, Meridith Stone
377 Computers: Less Apprehension, more Enthusiasm

Janet Parker, Constance Widu...r
381 The Microcomputer as a Tool in Educational Research: A Case in Point

Scott Brown, Daniel Kaye

PRE-COLLEGE COMPUTER SERVICES PAPER SESSION
385 Strategic Concerns in Establishing and Elementary School Microcomputer Instructional

System
Ronald Bearwald, Theodore Bargmann

391 Evaluation of Microcomputer Software: How Valid are the Criteria Procedures?
Robert Caldwell

394 Micro-Networking - Some Practical Applications
David Rieger

SPECIAL SESSION SPECIAL SESSION
403 Computers in the Elementary and Secondary Mathematics Curriculum

Sheldon P. Gordon, Chair

xiv



www.manaraa.com

THE ROLE OF LMGUAGE IN TEACHING PROGRAMMING

Stephen J. Garland
Dept. of Mathematics and Computer Science

Dartmouth College

ABSTRACT
When teaching students how to write, we

must teach them how to write in a specific
language such as English or French. When
teaching them how to program, we must teach
them how to program in a specific language
such as Basic or Pascal. In both cases, a
language is the vehicle, not the object, of
instruction.

Teaching a language involves instruction
in vocabulary, spelling, grammar, and
punctuation. Teaching writing or

programming, on the other hand, also
involves instruction in logic,
organization, expression, and style.

The reason language becomes an issue in
teaching programming is simply that we have
a choice. Students have learned their
native tongue much before they learn to
write, but generally they must learn a
programming language when they learn to
program.

A good programming language should
enhance our ability to teach programming,
not distract our attention from that task.
It should:

be easy to learn, so that we can devote
time to teaching programming and not
just to teaching the language;

1

enable us to say what we want naturally
and easily, so that we can write
programs to fit problems, not to fit the
language;

help us organize and convey our
thoughts, so that we can understand and
be understood;

be used in a uniform manner by many
programmers, so that we and they can
share our knowledge.

No programming language is perfect by these
criteria. Basic is easy to learn, but most
of its common dialects cause programmers to
obscure, rather than illuminate, the
structure of their programs. Pascal has
fewer divergent dialects, and it allows us
to express many constructs quite nicely;
yet it can make other constructs extremely
awkward.

The best teaching strategy is to turn
this lack of perfection into an asset.
Teaching the limitations of a language
along with its virtues illustrates
dramatically that programming transcends
language.



www.manaraa.com

APPROACHES. TO REQUIRING MICROCOMPUTERS OF UNDERGRADUATES

Chaired Dy: Jane Caviness
University of Delaware

ABSTRACT: Approaches to Requiring Microcomputers

of Undergraduates

The use of microcomputers is growing rapidly,
while the age of the users and the cost of the
microcomputers have been decreasing. Secondary
schools are discovering that many of their students
have acquired microcomputers and desire some
general computing instruction. Colleges and
universities are discovering that many entering
students already have computing experience, most
often with microcomputers, and they wish to
continue using microcomputers. This presents a
challenge to those involved in Computing Services,
since they are accustomed to providing services
through the use of timesharing on medium to large
scale machines. How are they to deal with the
change in the type of demand for computing
services?

Answers to this challenge cover the spectrum
from ingoring the problem totally, to turning it
around and requiring undergraduates to have their
own microcomputers. The panel members are all from
institutions that have taken, the latter approach.
They will discuss many aspects of such an action:
the decision to do so, the planning involved, the
choice of hardware, the costs involved, the
expected benefits, the difficulties of
implementation, student reactions, and perceptions
of first experiences. Discussion and questions
from the floor are encouraged.

M. Peter Jurkat
Stevens Institute of Technology

Robb Russell
Drexel University

Wilson Dillaway
Rennselaer Polytechnic Institute

Doug Van Houweling
CarnegieMellon University

David Bray
Clarkson College



www.manaraa.com

Accreditation in she Computing Sciences

John F. Dalphin, Moderator
Purdue University

ABSTRACT
A joint task force of the ACM and IEEE

Computer Society is meeting regularly to
discuss issues relating to accreditation or
approval in the computing sciences. In
addition to considering various mechanisms
to implement the important qualitative
review and certification, the Joint
Committee is developing a preliminary set
of Computer Science Program requirements.

Increasing requests are being made to
the professional societies to provide
guidance in computer science programs.
While certain guidance and evaluation
mechanisms exist, and agencies to

PANELISTS:

Michael C. Mulder
Servio Logic Corporation

Tom Cain
University of Pittsburgh

George Davida
University of Wisconsin - Milwaukee

Gerald L. Engel
Christopher Newport College

Terry J. Frederick
University of Central Florida

Norman E. Gibbs
Arizona State University

Harvey Garner
University of Pennsylvania

SPONSORS: IEEE and ACM

3

administer them, these tend to be directed
to specialized programs and the field is so
broad that a wider view must be taken. It
is estimated that as many as 500 programs
not presently served by existing mechanisms
and agencies would benefit from such
guidance.

This panel will discuss some of the
issues relating to implementation of
accreditation or approval as well as
quantitative criteria for computer science
programs that provide competency in the
profession. Audience participation and
discussion will be encouraged.



www.manaraa.com

NETWORKING FOR MICROOOMPUIER lama :maw

Kenneth Forman
Carl Steinhoff

Community School District 27
New York University

A network of several microcomputers
connected to a common hard disk storage system
provides several administrative functions for
effective management.

Community School District 27 is one of the
32 public school districts within the City of

New York with approximately 27,000 pupils in

grades K-9 and 1,400 employees. Early in 1980,

we began to investigate the feasibility of

using computers for evaluative and management

purposes. This investigation was a
collaborative effort with our evaluation
consultant, New York University, under the
leadership of Dr. Carl Steinhoff. We
determined that microcanputers would most
effectively manage all the various applications
we desired to implement for fiscal, information

and evaluative reporting.

Several microcomputer systems were in-
vestigated including: Apple, Atari, Bell and
Howell, Commodore/Pet, Radio Shack, etc. Upon

reviewing the literature, we came upon the
successful experiences of NBC (Minnesota
Educational Computing Consortium) with Apple
microcomputers. The Apple microcomputer offered
numerous applications in the areas of business,
financial reporting, personnel and information
management, as well as its ability to interface
with larger systems. Therefore, we decided not
to "reinvent the wheel", but to improve on the
applicability of Apple microcomputer systems.
Our plan involved creating a microcomputer
network for administrative and fiscal reporting.

With the support of our Community School
Board and District Superintendent,
Marvin R. Aaron, we were ready to implement our
microcomputer network design (see Appendix).

Networking refers to connecting several
microcomputers together through a common
transmission line and central source so as to
allow the sharing of information and peripheral
devices (mass storage, printer, modem).

Devices connected to a network have been
termed "nodes" by network users Currently,
nodes must be intelligent. They must not be
individual microcomputers orb intelligent

peripherals (printerhaXlen)1,

Current research defines three basic types
of nerks: Star, Daisy Chain and Dlp Line

is) ' , A microcomputer network constructed
JliStar configuration, consists of a central
intelligent microcomputer, termed the host, with
other devices connected in a radial or starlike

pattern. All devices are directly connected to

the host. If one device becomes inoperative,
other devices still function. A Daisy Chain
configurated network consists of a single host
with all other devices wired in series to the

host. If one device becomes inoperative, all
devices past the inoperative device cease to

function. The third network type, a Drop Line
or Bus configuration, consists of a host with

a single cable. All devices are connected in
parallel to the main cable via junction boxes
so that failure of any one device will leave

the remainder of the system operative.

Our investigation of types of networks
available for use with microcomputers led us3to
select the "Omninet" of Corvus Systems, Inc.
Cmninet is constructed essentially in a Drop
Line configuration, with each intelligent
device connected to a hard disk storage system
via an easily installed piece of hardware
termed a "transporter". The advantage of this
type of network is obvious, if a problem arises
in one intelligent device, all other devices
remain functioning. All intelligent devices
Share the resources of hard disk system. In

addition, a primary intelligent device or host
can control access of other users through a

user defined security system, giving users (up

to 64) different levels of access to information;

read only, read and write and manager level
access for security purposes.

Therefore, our initial microcomputer network
design consisted of the following equipment:
5 Apple II Plus (48k) Microcomputers with
Language Cards, 5 Disk Drives with Controllers,
5 Zenith Data Monitors, 1 Qume 5 Printer,
1 Corvus 10 Megabyte Hard Disk System, 1 Corvus
Disk Server, 8 Corvus Transporters, Panasonic
Video Cassette Recorder (NV 8200) and D.C. Hayes
Micranodem (see Appendix for approximate costs).

Our financial commitment toward developing



www.manaraa.com

a microcomputer management network for district
use was. further supported through creating a
district position of "Computer Specialist", that
is, a person to provide support in implementing
this network design.

To allow for rapid implementation of our
management network, we chose to use commercially
developed software packages developed for hard
disk systrms rather than have our Computer
Specialist develop customized management soft-
ware (which would have delayed implementation
over several months). These packages include
DB Master (a data base management package),
Word Handler (a word processing program) and
Visicalc (a numerical data manipulation program).
DB Master was selected for our data base
management for several reasons, same of which
include: automatic data compaction upon
storage, sophisticated report generation and
password protection system.

Let's take another step back and discuss
methods of data base management. Data base
management can be viewed as a pyramid structure.
In a tap/bottom structure, all information is
collected by a central authority for creation
of a data base. Subsequently, information is
reported to collection sites for verification.
In a bottom/tap structured data base, each
site manages its own data base. We used the
floppy disk version of DB Master, which is, of
course, compatible with the district hard disk
version used for data base management. In a
bottom /top configuration, each site shares its
data base with the district producing a more
accurate data base. Each site has a vested
interest in management of its own information.
District supports each site and a cooperative
working partnership has developed.

Each site manages its data base using the
following equipment: Apple II Plus (48K)
Microcomputer with dual disk drives, Zenith Data
Monitor, Epson MX 80 Printer and DB Master
(floppy version). Recently, we have provided
selected sites with DC Hayes Micramodems for
eventual telephone hookups. Furthermore, for
more efficient use of information management,
sites are also adopting word processing using
Word Handler (floppy version) which is inter-
active with our data base management program.

Our microcomputer management network functions
to support the instructional process through
various management applications, which include:

word processing
. information storage and retrieval

inventory
mailing lists/labels
vendor reports

. personnel records
student records
ad hoc reporting fran larger data files

Individual microcomputers within the network
can function independently, and with a small

5

hardware attachment, can also function as a
remote intelligent terminal with the Central
Board of Education's IBM mainframe computer.

Recently, we have begun to experiment with
an optical scanning device, the Scantron 2700,
for mass entry of information into our data base.
Eventually this device will minimize data entry
time permitting immediate use of a data base at
each participating site as well as facilitating
creation of a master district data base.

Additional software applications for our
network will be forthcoming; for example, we
are investigating general accounting software
(accounts payable, receivable, general ledger)
which will be interactive with other programs.
As an additional support to participating sites,
we are investigating student attendance and
scheduling programs that would be interactive
with our student data base.

Lastly, one must consider confidentiality of
information, security precautions and levels of
access to information within a network. We have
structured Omninet with four levels of security
protection to authorize only approved users
access to the network. First, Omninet only
recognizes authorized users by an individual
"name" assigned to each user; illegal users are
denied access to the network by Omninet. Once
the network recognizes the user's "name", the
user must then enter an identification code for
further access to the network. Then, authorized
users must place the DB Master Management Disk
into the disk drive to access the data base
management program stored within the hard disk
system. Finally, the user must enter another
password to gain access to data files. Once
within the network, Clarinet is structured to
permit differentiated levels of access, that is,
read, read and write, and manager level access
to information.

If networking will best suit your management
needs, then consider the following questions :

1. What is the greatest distance from one end
of the network to the other?

2. What is the maximum number of microcomputers
to be networked?

3. How much mass storage is required?

4. Which network offers capability for
expanding or upgrading?

5. Are there current users that I can speak
with?

6. What kind of service and support are
available?

7. Is the manufacturer reliable?

8. Is the product supported by on-going
development?



www.manaraa.com

9. What is the cost of installation?

10. Can microcomputers of different
manufacturers and/or peripherals be
connected within the network?

REFERENCES

1. Minnesota Educational Computing Consortium
(AECC), "Spotlight on Local Networking
with the Apple II Ccmputar",
September 1982.

2. Charp, Sylvia, "Trends - Time Sharing,
Microcomputers - Networking",
T.H.E. Journal, November, 1981.

3. Corvus Systems, "Winchester Disk Systems
for the Apple II and Apple II
Personal.COmputers", Corvus Systems,

San Jose, California, 1982.

Connell, Cassie, "Networking" What are
the Alternative Systems",
T.H.E. Journal, September 1982.

Crnninet Hardware Costs

5 Apple II Plus (48K)
Microcomputers
1146 X 5

5 Apple Disk Drives/
Controllers
483 X 5

$5730.

2415.

5 Apple Language Cards 730.

146 X 5

5 Zenith Data Monitors 675.

135 X 5

1 cone 5 Printer (with
cable/interface)

2245.

1 Corvus 10 Megabyte Hard 3495.

Disk System

1 Corvus Disk Server 990.

8 Transporters
(1895/4 units)

(1895 X 2)

3790.

1 Panasonic V.C.R. 1000.

(NV - 8200)

Wiring/Installation 1000.

TOTAL $22070.

APPENDDC

441C12001)44P1JI TIP Network
!District 27

OISTSICT LLSNI SCHOOLS



www.manaraa.com

SPREAD SHEET SIMULATION MODELING (SSSM) FOR TRAINING AND INSTRUCTION IN RESOURCE ALLOCATION

Ronald A. Lindahl, Assistant Professor
Brent E. Wholeben, Associate Professor

Department of Educational Administration and Supervision
The University of Texas at El Paso (El Paso, Texas 79968)

With the emergence of microcomputer technology
over the past decade, managers in all fields have
found powerful new tools at their disposal to

assist them in decision-making. One of the most
utilitarian and universally accepted of these new
resources has been the electronic spread sheet.
However, only recently have the programs respon-
sible for the initial preparation and continued
development of such managers have only recently
begun to appreciate and explore the value of

incorporating spread sheet simulation modeling
(SSSM) into their instructional programs. The
very same features of flexibility, adaptability,
and facility of operation which mark the use-

fulness of electronic spread sheets for managers
are equally relevant to their value as an instruc-
tional device.

Spread Sheet Simulation Modeling

Electronic spread sheets have tremendously
expanded the manager's capabilities beyond tradi-
tional paper, pencil, and calculator worksheet
methodology. Prior to the advent of microcomputer
technology and the development of appropriate
software, spread sheets were common managerial
tools for preparing and managing budgets, making
financial projections, forecasting sales and pro-
fits, and controlling inventories, etc. These
spread sheets were basically a grid of columns and
rows, organized in such a manner as to allow the
manager to view both horizontal and vertical
interrelationships between cell components of the
grid.

More sophisticated applications called for the
master grid to be divided into various semi-

independent sub-matrices. Under such an arrange-
ment, the manager could perform all calculations
in one sub-matrix, record a table of figures
(e.g., a tax table, amortization table, or depre-
ciation index) in another sub-matrix and maintain
a third sub-matrix as the primary exhibit of tran-
sactions.

Consequently, today's manager has the ability
to be able to make virtually limitless changes in
the worksheet in order to witness instantaneously
the sensitivity of related components to these

7

modifications. Where entering a new value onto a
traditional "paper and pencil" worksheet might
require the recalculation, erasure, and re-entry
of numerous interrelated figures, the electronic
spread sheet requires only a re-entry of the ini-
tial figures; all subsequent impacts would be

reflected automatically.

This apparently simple technological advance
has dramatically altered the manager's perspec-
tives for simulation modeling and sensitivity
testing. No longer faced with, hours of tedious
recalculations and revisions for each desired

change, and the inherent potential for clerical
error, the manager now has access to a spread

sheet which facilitates and encourages manipula-
tion and creative experimentation, without sacri-
ficing its integrity as a tool for data registra-
tion and analysis.

SSSM as an Instructional Resource

However significant a tool SSSM may be for
today's managers, it proves to be of even greater
worth as an instructional aid in the preparation
and development of these managers.

One of the key features of the electronic
spread sheet is its relative simplicity, a charac-
teristic also of prime importance in considering
SSSM for instructional purposes. It is not

surprising that a significant proportion of the
existing managerial labor force has not yet had
the opportunity to become "computer literate."
However, it should also be noted that a signifi-
cant proportion of the professors, instructors,

trainers, and consultants engaged in the prepara-
tion and development of managers is similarly
unacquainted with this new technology. Conse-
quently, for SSSM to be incorporated successfully
into instructional programs, both instructors and
students must be able to grasp its basic tech-
nological aspects with a minimal investment of
time and effort. While most major producers of
software offer their own version of the electronic
spread sheet, many share common features; and most
are structured and documented well enough that
novices can readily master the rudiments of their
operation. Obviously, some of the more sophisti-
cated features may require in-depth study and



www.manaraa.com

hands-on experimentation; however, their use

would be optional and need not be a deterrent to
the introduction of SSSM as an instructional

approach.

Another feature of electronic spread sheets
which has facilitated their acceptance among mana-
gers is that of versatility. Managers have exhi-
bited considerable creativity in developing new

ways to use electronic spread sheets in solving
problems and making decisions. Rather than

learning the intricacies of several different,

dedicated software programs to address specific
applications, managers have found the spread sheet
to be versatile and adaptable to a wide variety of
situations. The savings, in terms of time and

energy required to master the rudiments of the
program and make it operational, have been signi-
ficant.

Obviously, this feature is also of prime

importance for instructional applications. Having
mastered the rudiments of the electronic spread
sheet, the instructor can successfully employ it
for a variety of simulations without having to
invest further time on the operational aspects.
At the same time, students who have familiarized
themselves with the basics of the spread sheet can
better concentrate on the content aspects of all
subsequent simulations. In view of the time

constraints and need for instructional efficiency
which characterize most managerial science
programs, this is a highly significant feature.

The Value of Simulation Modeling

In his book, Computer Modeling and Simulation,
Francis Martin defines simulation modeling as "a
logical-mathematical representation of a concept,
system, or operation programmed for solution on a
high-speed computer." In Computer Simulation
Applications, Julian Reitman describes simulation
as "a practical, application oriented procedure"
in which "one must construct an abstraction of the
problem, transfer the problem to a foreign device,
the, computer, and then obtain indications per-

taining only to the representation of the system."
Both authors then dedicate considerable discussion
to the problem of identifying those conditions
under which simulation modeling can effectively be
employed.

Simulation modeling enables the manager, pro-
fessor, or student to: (1) examine a complex
situation; (2) state the problem in a simplified,
understandable form; (3) define the rules and

relationships which govern the situation; (4) and
experiment with operating and manipulating the

system. As Reitman points out, this affords

several significant benefits, including: "aid in
problem definition; help in relating numerous fac-
tors with their influences on the design; insight
into the sensitivity of the design to wide ranges
of parameters; support for selecting the final

design from among the alternatives uncovered; and
guidance in predicting system performance."

8

Basic SSSM: Cohort Survival Analysis

As discussed earlier, the spread sheet may be
configured as a single, master matrix or, for more
complex situations, as a composite of several

interrelated sub-matrices. For less complex
models, the single matrix format facilitates an

understanding of the whole, while still allowing
the student to perceive and follow the interac-
tions.

One example of the successful utilization of a
single matrix in the instruction of resource allo-
cation is in the teaching of cohort survival ana-
lysis. Cohort survival analysis is a forecasting
technique in which the survival, attrition, and

new membership rates of certain specific popula-
tion groups are examined over successive time

periods. By extrapolating this data, and assuming
a continuity of past trends, projections can be
made regarding the future population (membership)
of the group.

The cohort analysis technique has been effec-
tively employed in the forecasting of school

enrollments in those districts which have achieved
some consistency or stability of population growth
or decline. The matrix consists of both histori-
cal and extrapolated data, with the columns being
defined as the years under consideration and the
rows being configured as the grade levels being
examined. The individual cells contain the actual
class membership figures for past years and for-
mulae to predict a weighted average for future
years. The computer then automatically calculates
the projected enrollment for future years, either
by linear extrapolation of past trends or by

systematically weighting the most recent trends
more heavily than earlier performance of the

system. Figures 1 through 3 illustrate the three
major phases of this SSSM process: (1) entering

background data; (2) derivation of survival

ratios; (3) and projection of future enrollments.

At the same time, it is extremely simple for
students to construct a matrix which would allow
them to change this formula, enter in their own
survival ratio predictions, and test the sen-

sitivity of the projected enrollment to such

variations. Figure 4 illustrates a simplified
version of such a learner-manipulated matrix.

Although the above example serves to

illustrate the utility of the SSSM in its most
simple form, it by no means exhausts the capabi-
lity of this tool in helping students understand
cohort survival analysis. For example, it is a
relatively simple matter for the professor to set
up the matrix as an interrelated series of sub-
matrices, which the student can study indepen-
dently to better understand the various components
of the cohort survival analysis process. One such

sub-matrix which has not yet been demonstrated,
but which would be of great value in training stu-
dents to utilize this resource allocation tool,
would be that of multi-year forecasts. Figure 5
presents such an extended projection, based on the
assumption that the trends upon which the single-



www.manaraa.com

Figure 1.
Background Data

;111111111Mulaff"----:1-

;

Figure 2.
Survival Ratios

Figure 3.
Enrollment Projections

Figure 4.
learner-Manipulated Survival Ratios

Figure 5.
Multi-year Enrollment Projections

9



www.manaraa.com

year projection were based would continue in a

linear pattern throughout the total period being
considered.

Extended SSSM: State Allocation Formula

In light of the flexibility and capacity of
such multiple sub-matrix models, there are a

myriad of instructional uses which can be served
by SSSM, especially in the area of resource allo-
cation. For example, students at The University
of Texas at El Paso have responded very positively
to the use of this tool in investigating the pre-
dicted effects of changes in State legislation on
the allocations of operating funds to local school
districts.

In this application, the electronic spread

sheet is configured as an inter-related composite
of sub-matrices. The principle sub-matrix presents
a summary of the major components of the State

allocation formula, including the:

- flat grant stipend for each unit of average

daily attendance;

- State contribution to personnel costs, based on

the maximum allowed number of weighted personnel
units and the State minimum foundation salary
scale;

- special program supplemental funds, for such

areas as special education and vocational

education;

- transportation allotments, again differentiating

between regular and special program costs;

- State compensatory funds, providing program

enrichment for children of low-income families;

- cost-adjustment allocations for small and/or

sparsely populated districts; and,

- State minimum foundation program funds for

district operation and maintenance expenses.

By limiting this principal matrix to a flow-
through listing of the total allocations available
from each of these components, the student is

better able to view the formula from the systems
perspective. Concomitantly, a separate sub-matrix
would be extablished for each component, so that
the student might clearly understand how the allo-
cation is generated. This sub-matrix system also

facilitates the sensitivity testing of minor

changes in any given component which might be pro-
posed by the Legislature. For example, one sub-

matrix would consist of data on average daily

attendance at the various grade levels identified
in the State formula.

Calculations would be shown in this matrix to

illustrate how these figures are converted into

weighted personnel units. On those microcomputer

systems which would afford sufficient memory to
accommodate a matrix of sufficient size, e.g.

10

greater than 64K, the State minimum salary matrix
can be entered as a separate sub-matrix. This, in

turn, can then be referenced directly from the
sub-matrix created to reflect the staffing pattern
selected by the district. Another sub-matrix
would be designed to record the participation of
students in special programs; the calculations
employed in this matrix would then feed into the
principal matrix to indicate funding for classroom
units, additional weighted personnel units, etc..

Such a SSSM structure allows the students to
manipulate any of the variables of the formula
alone or concomitantly and to test the sensitivity
of the overall allocation to such modifications.
For examples, students can compare the several
proposals which will be considered for adoption at
the next Legislative session and determine the

effects of each on local district allocations. At

the same time, they can examine the financial

implications of varying the district's staffing
pattern, test the sensitivity of the allocations
to various enrollment projections, or make inter-
district comparisons, all with great ease.

Figures 6 through 8 illustrate typical screen
formats from a simplified version of this applica-
tion.

SSSM: Instructional Transition to Application

One of the most significant benefits of

employing SSSM for instructional purposes is the
high degree of transferability of knowledge,

allowing the learner to make the transition from
the academic environment to managerial decision-
making reality.

The relatively low cost of microcomputer hard-
ware, coupled with the almost universal availabi-
lity of electronic spread sheets for all major

configurations of this hardware, suggests that it
would not be unreasonable to expect that a high
proportion of today's managers would have access
to this technology within their normal work

environments. Previous ugemlrations" of learners

were faced with tremendous di'ficulties in

attempting to transfer their exP iences on the
mainframe equipment utilized in the instructional
environment to often radically different con-

figurations of equipment within their professional
work environments. With the accessability of

microcomputers in virtually all professional set-
tings, and with the high degree of transferability
of knowledge between the various electronic spread
sheet/microcomputer hardware configurations,
today's students' time investment in learning the

basics of SSSM may well be translated into

increased productivity upon entry into or return
to the work situation.

As such, the manager can Orsonally configure
electronic spread sheets to address specific real

decisions. At this point, the learning tool is

transformed into a decision-making aid, allowing
the manager to combine professional expertise with
the data analysis capabilities of the SSSM to



www.manaraa.com

11

simulate the situation in question under a variety
of assumptions and hypotheses. The cycle, in

turn, becomes complete when the learning and

discoveries gained through these practical appli-
cations of SSSM are brought back into the instruc-
tional setting to enhance the education and

re-cycling of other managers.

Summary

In conclusion, educators responsible for the
training and instruction of topics related to the
area of resource allocation will find Spread Sheet
Simulation Modeling to be a versatile, effective
instructional technology. In addition to its ver-
satility and applicability to a wide range of

managerial decisions, SSSM offers the instructor
the desirable characteristics of being relatively
simple to learn, even for the non-computer-
literate, and of promoting interaction between the
learner and the technology.

At the same time, students who become familiar
with this technology in the classroom setting will
actually reap a double benefit; not only will they
have the opportunity to better understand the con-
tent area being presented, but they can also

become conversant with a powerful decision-making
tool which can be of invaluable assistance to them
throughout their managerial careers.

Bibliography and Related Readings

1. Francis F. Martin, Computer Modelin and

Simulation. (New York: John Wi ey & Sons,
Inc., 1968).

2. Julian Reitman, Computer Simulation Applica-
tions. (New York: John Wiley & Sons, Inc.,
1971).

3. Brent E. Wholeben, "Operational Network
Displays" in Communication Strategies in

Evaluation (Nick L. Smith, Ed., Beverly Hills,
California: SAGE Publications, 1982).

4. Brent E. Wholeben, The Design, Implementation
and Evaluation of Mathematical Modeling
Procedures for Decisioning Among Educational
Alternatives. (Lanham, Mary and: University
Press of America, Inc., 1980).



www.manaraa.com

DEVELOPMENT AND VALIDATION OF A CU211TERIZED ADAPTIVE SCREENING TEST (CAST)

FOR USE IN ARMY RECRUITING

Herbert George Baker, PhD, Bernard A. Rafacz, and William A. Sands

Navy Personnel Research and Development Center
San Diego, CA 92152

619-225-2408
competition for available personnel among
colleges and the several armed forces is
probable, a competition that will
increase the difficulty of recruiting.
The best available candidates for

enlistment must be located, enlisted, and
optimally assigned; neither fiscal nor
personnel resources can be wasted; and
those mundane tasks of the recruiter,
which detract from the primary mission of
locating propects and "selling the
service," must be reduced.

Abstract

NAVPERSRANDCEN designed and developed
a Computerized Adaptive Screening Test
(CAST) that predicts an applicant's score
on a selection test. CAST is capable of
operating on a stand-alone microcomputer
in Army recruiting stations, and
correlates at .866 with the criterion.
Further data collection and validation
efforts are currently in progress. This
development suggests that a shorter,
adaptive test is feasible for use by
organizations employing an aptitude test
in the selection processes.

Introduction

The Navy Personnel Research and
Development Center (NAVPERSRANDCEN),
through an agreement with the U. S. Army
Research Institute for the Behavioral and
Social Sciences, is conducting research
and development in support of the Joint
Optical Information Network (JOIN) System
being implemented nationwide at all
levels by the U. S. Army Recruiting
Command (USAREC). Army enlisted
applicants will directly interact with
this system in the course of recruiting
and accessioning. The objective of this
effort was to design and develop the
Computerized Adaptive Screening Test
(CAST) that could: (1) operate on a
stand-alone microcomputer system in
recruiting stations as part of the JOIN
system, (2) reduce recruiters'
administrative burden, and (3) predict
Army applicants' scores on the ASVAB more
efficiently than the paper-and-pencil
Enlistment Screening Test (EST) used at
present.

Armed services recruiting faces
serious challenges in the future, due t9
a shrinking pool of military eligibles. i

The All-Volunteer Force (AVE) concept has
led to vastly increased expenditures in
recruiting. A fierce and costly

*The views expressed herein are those of
the authors and do not necessarily
reflect those of the U. S. Navy.

12

The screening of applicants for
enlistment, which takes place near the
end of the recruiting process, includes
as a major element the Armed Services
Vocational Aptitude Battery (ASVAB), a
10-part test given to all armed services
applicants. To be eligible for
enlistment, an applicant must achieve a
minimum qualifying score on the Armed
Forces Qualifying Test (AFQT), which is a
linear composite of the scores obtained
on four ASVAB subtests. The ASVAB is
given either through the Department of
Defense High School Testing Program, or
to service applicants at a Military
Entrance Processing Station (MEPS) or
Mobile Examining Test (MET) site.

Applicants who have no previous
qualifying AFQT scores must be sent to
the MEPS/MET for ASVAB testing. For
those who must be transported from a
recruiting station to a MEPS/MET site,
costs are entailed for transportation,
and in many cases for meals and lodging.
Costs are also incurred for personnel
time at' the recruiting station. If
applicants are sent to the MEPS/MET site
and subsequently fail the ASVAB, there is
a significant waste of money.
Conversely, if applicants who would have
passed are erroneously denied ASVAB
testing, their talents are lost to the
se:v recruiting quotas are not met,
and costs- accrue to the
applic!,1'

Currently, all armed services use the
Enlistment Screening Test (EST) at
recruiting stations to predict applicant
AFQT scores. This test is composed of 3
subtests of 15 items each, with a total



www.manaraa.com

time limit of 45 minutes. It was

developed by the Air Force Human
Resources Labopatory in 1976,' and

revised in 1981.

Pure measurement error does not seem
to be a problem; it appears that the
newer forms of the test (81a and 81b)
measure quite well throughout the score
range where most selection and
classification decisions are made, aid it
correlates at .83 with the AFQT. The
EST, however, does share in the problems
of adverse psychological effects. The
EST is a conventionally administered
paper-and-pencil test, which has been
shown to increase guessing, ;rwstration,
and boredom in subjects. In its
customary delivery mode in the recruiting
station, the EST actually combines the
worst features of an individually
administered test (i.e., it is heavily
dependent upon variables associated with
the examiner or the examiner-examinee
relationship) and the group test (i.e.,
item arrangement, item setA answer sheet
effects, and imprecision). ° It is scored
on a pass/fail basis. The EST, being a
timed test, also exerts differential
pressure on the examinee (i.e., results
are based partly upon the reaction of the
individual to time constraints.?

Major concern focuses on
administrative error and clerical burden.
The EST requires approximately 45 minutes
to administer, as well as time to score
and interpret results (by a recruiter
already investing many hours in the
potential enlistee). To this must be
added the time required to manage the
test supplies. At pre.ent, besides
storing, filing, retrieving, and ordering
replacements, the recruiter is required
to take frequent inventory, make numerous
checks and corrections for unauthorized
markings in the test booklets, and
safeguard used answer sheets. The ESP is
thus highly labor intensive, consuming
the time of a senior noncommissioned
officer in quasi-clerical tasks.

Only two forms of the EST are in use,
a situation that offers the failing
subject hope of eventually passing the
test by repeated testing and item
memorization. Furthermore, the recurrent
problem of "malicious error" appears,
involving recruiter malpractice.
Recruiter influence through pretest
coaching is a simple way to manipulate
results. Initial and replacement costs
and short materials life associated with
paper-and-pencil tests; poor impression
created by dilapidated materials; and
security, custody, and control
difficulties. In short, there is a

critical need for both a more efficient
predictive instrument and a screening

13

method less burdensome in its
administration, to reduce the recruiter's
task load.

Computerized adaptive testing
combines recent developments in latent
trait theory with the ever-increasing
power and efficiency of computers. The
result is a return to individualized
testing without the loss of
administration efficiencies gained
through group testing, combining advances
in computer technology with those in
psychometrics.

Only a limited subset of test items
is needed to establish an aptitude
estimate. In adaptive testing, each
subject receives only those questions
appropriate to his or her ability level.
The result is an individualized test,
"tailored" or "adapted," and actually
constructed for each examinee. While
there are several "branching" strategies
available, in tailored testing the
selection of each question is based on
the subject's response to the previous
question. Typically, a correct response
is followed by a more difficult item; an
incorrect response is followed by an item
of less difficulty. Therefore, the
difficulty level of an adaptive test is
dynamically tailored to the ability of
each subject. And, because each subject
receives a tailored subset of items, the
chances of test compromise through
copying, memorization, or coaching are
considerably lessened.

With adaptive testing, shorter tests
may be used wi0out loss of reliability
or validity.9,7 Adaptive tests are

untimed, reducing pressure on the
subject, without hindrance to the

proctor.1° Adaptive testing reduces
boredom and frustration,7 guessing,9 real
or perceived proctor-subject bias,11 acq
culturally specific racial bias.

Adaptive testing is more motivating,
thereby eliciting "best results" from
subjects.° and more 4qcurately reflecting
subject competence.

Computerized testing has its own

merits. Interactive dialogue provides
immediate results without manual

scoring. Immediate knowledge of results
has been shown to b motivator to
better performance;13,i4,1

a,

0 Computerized
testing lessens test bias through item
selection and increases test fairness by

the nature of the test itself and the
test's administration modality.15 The
computer makes it possible to eliminate
printed test materials and

associated logistical, security, an

administrative problems,
facilitating item replacement, whole test
construction, and the capturing of data

d



www.manaraa.com

for validation purposes.

Stated simply, the computer can
administer a test item, accept a

response, score that response, and keep a
record of the subject's response
history. After each question, the
computer can use the response information
to update the ability estimate and then
use the new estimate of ability to select
the next item. With each successive
response, the ability estimate gains
reliability. The process can continue
until some stopping rule is satisfied
(e.g., a fixed number of questions
administered, or a prespecified level of
reliability). Computerized adaptive
testing can effectively shorten testing
time without effectiVeness loss as well
as eliminate scoring an0 recording errors
due to clerical error.I1

CAST Design and Development

Designing and developing CAST
required parallel work in psychometrics
and computer programming. All design
work was accomplished on an Applied
Computer Systems (ACS) microcomputer with
a Perkin-Elmer Data Systems 1200 video
display terminal (VDT). The effort
proceeded in the following steps:

Test Construction

CAST was envisioned as incorporating
three subtests that would correspond to
three of the four ASVAB subtests used to
calculate the AFQT composite score: Word
Knowledge (WK), Arithmetic Reasoning
(AR), and Paragraph Comprehension (PC).
These subtests were determined to be the
best predictors of AFQT score. Item
banks for each subtest were assembled
under a contract with the University of
Minnesota. These item banks included 78
WK items, 247 AR items, and 25 PC items,
together with the estimates of three
parameters (discrimination, difficulty,
and guessing) for each item. A Bayesian
ability enimation procedure described by
Jensema'° was chosen for scoring and
determining the selection and
presentation sequence of test items.

Computer Software

CAST computer programs were written
to provide interactive, user-friendly
software that presumed no previous
computer experience on the part of either
recruiter or applicant. In addition, VDT
screen text displays were written to
conform to readability (reading grade
level) standards.

14

Test Administration

In each CAST subtest, a provisional
ability estimate is made, a test itemability

to that ability level is
presented, and then the ability estimate
is updated based on the response to the
test item. The computer program for this
iterative ability estimation process
starts by associating each examinee with
an ability level of the information
matrix. Selection of a test item starts
from the top (highest information value
within a level) and searches for the
first item not yet presented. The item
that results from this search is then
presented. Based on the examinee's
correct or incorrect response, the
ability estimate is updated. This
associates the examinee with a new
ability level of the information matrix,
(potentially) from which a new test item
is selected for presentation. This
process continues until the limit
established by the stopping rule is

reached.

To facilitate user acceptance, the
time between item response and
presentation of the next item was
established as less than or equal to
three seconds. Software documentation
for presentation of CAST on the ACS
microcomputer system was completed..
Subsequently, the program was converted
to operate on the JOIN developmental
system, an Apple II-Plus microcomputer,
with two disk drives, and a VDT.

Test Validation

Concurrent NAVPERSRANDCEN research to
assess the relationship between
paper-and-pencil ASVAB tests and an
experimental battery of three
computerized adaptive subtests (WK, AR,
and PC) provided the opportunity to

conduct a pilot test of CAST. The three
CAST subtests were administered during a
90-day period late in 1981 to 356 male
Marine Corps recruits at the Marine Corps
Recruit Depot, San Diego. Each recruit
had taken the ASVAB before enlistment and
had been retested on a parallel form of
ASVAB during recruit processing. After
eliminating subjects with missing scores
on any test and those who had been
administered obsolete forms of ASVAB, the
remaining sample was 270.17

In the CAST pilot test, each subtest
was administered with a fixed length: 15
items each for WK and AR, and 10 items
for PC. All, examinees began with the
same item, which was of medium
difficulty. While the paper-and pencil
ASVAB is a timed test, the adaptive tests
were conducted without time limit.
Preliminary introduction to the testing



www.manaraa.com

situation was delivered orally by the
proctor, while all other instructions,
including use of the terminal and
procedures for answer entry and answer
changes were delivered on the terminal
screen. Practice preceded each subtest;
the successful response to these items
was a condition of beginning the subtest.
The test was administered by computer, on
four terminals in a specially designated
testing room. The terminals were on-line
with the Hewlett-Packard 21 MX computer
at the University of Minnesota, through a
data communications line.

There were several differences
between CAST as it was designed to be
given and the subtest administration
during the pilot test described herein.
A true backspace key was not available on
the terminal, requiring the recruit
subjects to use the "Rubout" key" to make
corrections. In the PC subtest, the
stimulus paragraphs did not remain on the
screen while the response alternatives
were displayed. The pilot test was
administered on terminals communicating
with a host computer, while CAST is
designed for use on a stand-alone
microcomputer with attached disk drives.
Finally, because of restriction in range,
the Marine Corps recruit test subjects
are not representative of an unselected
applicant population.

After test scores were collected, the
relationship between CAST subtests AR,
WK, and PC and their paper-and-pencil
counterparts was evaluated through
correlational analysis. The ability of
the CAST subtests to predict AFQT
composite (AR, WK, PC, + 1/2 Numerical
Operations) scores was assessed using
multiple regression analysis.

Results.mar
Each CAST subtest correlated as well

with its ASVAB counterpart as did the
parallel form ASVAB retest score.
Multiple regression analysis to evaluate
the relationship of the CAST subtests
with AFQT score indicated a multiple
correlation of .866

Notwithstanding the differences
mentioned previously between CAST
administration as originally designed and
as carried out in the pilot test, the
results of the pilot test are
significant. It was clearly demonstrated
that military recruits, and by
implication, military applicants, could
be tested by computer terminal with
minimal intervention by a proctor. The
CAST subtests measured the same abilities
as the corresponding ASVAB subtests, but
with abov4 half the number of
questions.

15

Work in Progress

Data analyses are now underway to
evaluate the validity of CAST with its
intended population. The CAST was
administered to 364 Army applicants at
the Los Angeles MEPS between 29 November
1982 and 7 January 1983, using Apple II
Plus microcomputers operating under CPM,
with two disk drives and a VDT. Results
are pending completion of analyses.

Discussion

A complete microcomputer-based CAST
demonstration system is now in operation,
with complete documentation for all
software. The test item bank for AR has
been reduced in size to 225 items. The
WK and PC item banks remain at 78 and 25
items respectively. User-friendly,
interactive software provides full screen
display, clearing the screen after each
display. Respoose time is three seconds
or less. An easily used backspace key,
feedback to the user after each answer,
and an error-trapping capability that
ensures recruiter assistance after
repeated procedural errors by the
applicant have been added to the system.

Remaining research and development in
adaptive testing involves evaluating the
interactive screen dialogues for
readability and user friendliness with
actual applicants or recruits, and field
testing the CAST system in a recruiting
station. Capitalizing on the results of
the pilot testing of the subtests, it
appears entirely feasible to eliminate
the PC subtest from CAST, without a
significant decrement in the correlation
between the CAST linear composite and
AFQT (see Table 1).17 Examination of the
data suggests that the length for the AR
and WK subtests could be set at 7 and 15
items respectively, without appreciable
loss in predictive validity. Were both
procedures to be implemented, the
correlation between AFQT and CAST would
drop only to .865 (from .866), still
comparing very favorably to that of the
current EST (.83). The result would be a
CAST of only two subtests, requiring an
average of 16 minutes for complete
administration, scoring, and
interpretation, as opposed to 45 minutes
for the EST administration alone, a
savings of approximately 65%.

Conclusions

CAST can be regarded as successfully
developed, requ,iring only minor
refinements in both psychometrics and
programming. It is superior to the EST
in terms of administration and management
and about equal in predictive power.
CAST eliminates the need for traditional
test materials, thereby saving storage



www.manaraa.com

space, replacement costs, and recruiter
time formerly used for administering the
tests and controlling and maintaining
test materials. With CAST, test loss,
theft, and compromise would be all but
eliminated. Security would be maintained
by a built-in user password or

identification. Rather than serving as a
test proctor-scorer, the recruiter simply
would manage a computer-subject dialogue,
with a self-scoring test for which
results are immediately available and may
be automatically stored for later use.

Cost effectiveness would result from
eliminating traditional test materials
and from reducing recruiter time spent in
testing. In short, CAST will decrease
negative psychological effects, decrease
administrative error, and increase test
security. CAST is important for its
present economizing service, but
important, too, for its enabling
functions. Implementina CAST will allow
the Army to be highly responsive to
advances in psychometrics and managerial
science, as well as enable it to
implement further applications rapidly
when they are needed. Computerized
ability testing systems are predicted to
find their optimal use in organizations
serving populations of wide-ranging
ability,18 and with CASP, the Army will
be in the forefront of Computerized
Adaptive Testing (CAT) implementation.

In today's recruiting climate, where
increased screening capabilities assume
ever greater importance, the Army will
have the technological base upon which to
mount other screening instruments-for
both selection and classification. These
might includei

1. 9

pMytors of tenure and
effectiveness; I I assessment of
expectations, intentions, job
perceptions, and attitudes; 22 and
screening for specific placement.
Screening could be significantly improved
by expanding the array of measures to
include special abilities and, even
biodata,23 since the administration and
motivational problems associated with
lengthy testing and examinee fatigue
would be reduced by automation.

Tangentially, future test development
costs and intrusion on operating systems
will be reduced because experimental test
items can be introduced within CAST, in a
manner that is transparent to the field
user. This will facilitate the
development and evaluation of new items.
Test administration will be standardized,
fairer to all applicants, and far more
efficient in scoring and recording
methods.

Importantly, CAST demonstrates that
any organization using an aptitude test

16

battery in a selection environment may
profit from development of a shorter,
adaptive test to predict success on the
battery. There is nothing inherently
military about the ASVAB or the CAST.
This research may therefore be
generalized in large measvre t.o analogous
situations. References11.11=1.11111.

1. Congressional Budget Office. Costs of
manninatheactivadty_military (Staff
working paper). Was6ington, DC: Author,
May 1980.

2. Office of Naval Research, Psychological
Sciences Division. 1979 programs
(450-11). Arlington, VA: Author,
November 1979.

3. Joint Chiefs of Staff. United States
military. posture for FY 83. WaShington,
DC: Author, 1982.

4. Jensen, H. E., & Valentine, L. D.
Development of the Enlistment Screening.
Tes-,.....(EST) forms.-.5 and 6 (Tech. Rep.
76-42).

-
Brooks Air Force Base, TX: Air

Force Human Research Laboratory, May
1976.

5. Mathews, J. J., & Ree, M. J.

Enlistment screenina_test_forms_81a_and
81b: Development and calibration
(AFHRL-TR-81-54). Brooks Air Force Base,
TX: Manpower and Personnel Division, Air
Force Human Resources Laboratory, March
1982.

6. Vale, C. D., & Weiss, D. J. A study of
computer-administered stradae.t.ive abilit
testing (Res. Rep. 75-4). Minneapolis:
University of Minnesota, October 1975.

7. Weiss, D. J. Strate.gies of adaptive
abilitymeasurement (Res. lkep.
Minneapolis: University of Minnesota,
Dept. of Psychology, December 1974.

8. Weiss, D. J., & Betz, N. E. Ability
measurement: Conventional or adaptive?
(Res. Rep. 7S -1). Minneapolig:
University of Minnesota, February 1973.

9. Betz, N. E., & Weiss, D. J. Empirical
and simulation studies of fIgxfie7gf
abiliEy. testing. Minneapolis:
University of Minnesota, July 1975.

10. Weiss, D. J. Final report:
Computerized ability.....testina, 1972-1975.
Minneapolis: University of Minnesota,
April 1976.

11. Gorman, S. Computerized adaptive
testing with a military population. In

D. J. Weiss (Ed.), Proceedings of the
1977 Computerized Adaptive Testing_

Conference. Minneapolis: University of

Minnesota, September 1977.



www.manaraa.com

12. Pine, S. M. Reduction of test bias by
adaptive testing. In D. J. Weiss, (Ed.),
Proceedings of' the 1977 Computerized
Adaptive Testing Conference.
Minneapolis: University of Minnesota,
September 1977.

13. Betz, N. E., & Weiss, D. J.

Psychological effects of immediate
knowledge of results and adaptive ability

testin.g._. Minneapolis: University of

Minnesota, 1976.

14. Prestwood, J. S. Effects of knowledge
of results and varying proportion correct
on ability test performance and
psychological variables. In D. J. Weiss,
(Ed.), Proceedings of the 1977

.....

Computerized Adaptive Testing
Conference. Minneapolis University of
Minnesota, September 1977.

15. Pine, S. M., Church, A. T., Gialluca,
K. A., & Weiss, D. J. Effects of

comeuterized adaetive testinaonViick
and white students. Minneapolis:
University of Minnesota, March 1979.

16. Jensema, C. J. Bayesian tailored
testing and the influence of item bank
characteristics. In Applied
Psychological Measurement. Minneapolis,

17. Moreno, K., Wetzel, C. D., McBride, J.
R., & Weiss, D. J. Relationship of the
Armed Services voal-i-onaf Aptitude
Batter to three computerized adaptive
subtests (Tech. Rep.). San Diego: Navy
Personnel Research and Development
Center. (In preparation).

18. DeWitt, L. J., & Weiss, D. J. A
computer software system for adaptive-
ability measurement. Minneapolis:

University of Minnesota, January 1974.

19. Sands, W. A. Development of a revised
odds_ _for effectiveness (OFE) table for
screening male applicants for Nag
enlistment (Tech. Note 7-6=5). San
Diego: Navy Personnel Research and
Development Center, April ]976.

20. Sands, W. A. Screening male ajplicants
for Nau enlistment (Tech. Rep. 77-34).
San Diego: Navy Personnel Research and
Development Center, June 1977. (AD-A040
534)

21. Sands, W. A. Enlisted personnel
selection for the U.S. Navy. A Journal
of _Applied Research, Spring, 1978, 31(1),

17

22. Horner, S. u., Mobley, W. H., &

Meglino, B. M. An____expeOmental
evaluation of effects of a reafistic to
preview on Marine recruit affect,
intentions, and behavior. Columbia:
University of South Carolina, September
1979.

23. Swanson, L., & Rimland, B. A--
preliminary evaluation of brief Navy
enlistment classification tests (Tech.
Bul. TrSi. San Diego: Navy Personnel
Training Research Laboratory, January
1970.



www.manaraa.com

WORD PROCESSING IN THE CLASSROOM: USING MICROCOMPUTER -
DELIVERED SENTENCE COMBINING EXERCISES WITH ELEMENTARY STUDENTS

by Karen Piper

Texas Tech University
Texas Instrwents Incorporated

Lubbock, Texas

Abstract
This article investigates the feasibility

of using the microcomputer to deliver sentence
combining instruction to upper elementary stu-
dents. Background research on traditional sen-
tence combining instruction is reported, and
the use of the microcomputer in writing in-
struction is discussed. The author describes
recent research in a small elementary school,
which yielded positive results for microcom-
puter-delivered instruction in sentence com-
bining and expansion activities. Positive re-
sults were evident in the areas of writing,
revisions, attitude toward composition, attitude
toward sentence combining instruction using
the microcomputer, and student ability to ef-
fectively use word processing programs.

Introduction
As the microcomputer becomes more common

in classrooms, language arts teachers will be
less enchanted with it solely as a drill and
practice delivery system. They will desire
other uses for it that will increase its ap-
plicability to the total curricular program.
One direction for the expansion of microcom-
puter use is in the area of structured wri-
ting instruction such as sentence combining.

Recent improvements in the quality and
user-friendliness of word processing programs
have already stirred an interest in the micro-
computer as a tool for writing instruction.
Yet the studies that examine the role of the
microcomputer in writing most often deal with
open, creative writing, not structured in-
struction in writing technique. Sentence com-
bining instruction which uses the monitor as
paper and the keyboard as pen can aid students
in several areas, some of which include lin-
guistic development and structure, comprehen-
sion of complex structures, and motivation to
write and revise.

Research in the Classroom
In order to investigate some of the effects

of microcomouter-delivered instruction in sen-
tence combining, the author and Dr. Michael
Angelotti, of Texas Tech University, designed

18

a study using sentence combining treatments
presented on the microcomputer to fifth gra-
ders in Abernathy Elementary School. Of par-
ticular interest to the researchers was the
effect of using the microcomputer as a wri -.
ting tool on the areas of writing motivation
and syntactic maturity. Growth in syntactic
maturity, a basis for writing ability and rea-
ding comprehension, might also foster gains in
these important areas. To date, results from
this study exceed expectations, especially in
the areas of motivation to write and revise
and writing improvement.

Sentence combining is usually presented
in a large group, followed by oral work in
small groups, and finally, with the student
writing out his combinations. Using the micro-
computer in this scheme has many benefits. Ef-
fectively used, the microcomputer should en-
hance teacher abilities to provide high qual-
ity instruction in sentence combining. Areas
particularly affected by this treatment.include
writing motivation and syntactic maturity as
evidenced by growth in writing ability snd
reading comprehension. The use of microcompu-
ters as a delivery system in this task should:
1) allow for individualization of instruction
with student self pacing, 2) enhance student
motivation and interest, 3) enhance student
awareness of the manipulative quality of len,
guage, 4) provide students with immediate
feedback through print-outs end spontaneous
interaction with video display, 5) motivate
students to write, and 6) provide students
with a record of student processing abilities.

The major goal of sentence combining in-
struction is an increase in syntactic matur-
ity. Based on research in traditional sentence
combining, this desired increase in syntactic
maturity might result in an increase in read-
ing comprehension. Word processing systems
should be useful in teaching sentence combi-
ning because of the ease of text manipulation
and print-out capabilities. However, this has
not been previously investigated in regards to
the feasibility of such instruction, the ease
of implementation, the motivational aspect,
and the' overall effect of such instruction on
student abilities and attitudes. The major
goals of this research included determining

33



www.manaraa.com

the feasibility and examining the total effect
of this instruction on writing growth, reading
comprehension, and attitudes toward writing.
In order to provide necessary background for
the use of sentence combining activities de-
livered by the microcomputer, the results of
traditional sentence combining techniques will
be reported. This information will be followed
by a brief description of the study conducted
by the researchers during the spring of 1983
and a discussion of some of the implications
of this exciting technique.

Traditional Sentence Combining
Research in sentence combining supports it

as an effective way to improve student writing
and although the evidence is inconclusive,
sentence combining also seems to enhance read-
ing comprehension. Sentence combining theory
features the use of embedding techniques to
form more complex sentences. These techniques
encourage students to embed modifiers, make
deletions, and perform various transformations
(0'Hare,1973; Strong,1976; Combs,1977). Sen-
tence combining activities force students to
use their linguistic knowledge to manipulate
language. An additional benefit of sentence
combining is that students are asked to embed
kernel sentences, which forces them to keep
longer discourse in their heads. This activi-
ty promotes chunking, a memory technique which
can lead to improved organization and enhanced
cognitive maturity (O'Hare,1973; Sternglass,
1980).

Due to the interrelationships among the
language arts, sentence combining may improve
reading comprehension as well as writing abil-
lity (Combs,1977). Encoding written language
is not simply the process of writing down oral
language. Written language is more grammati-
cally complex, reflecting more embeddings. In
addition, written language requires specific
rules (i.e., punctuation and spelling) for
correct implementation. Decoding written lan-
guage (reading comprehension) is equally com-
plex, involving student experiential, intel-
lectual, and linguistic resources in relation
to content, vocabulary, and sentence struc-
ture. A common denominator in these language
processes is syntactic maturity. Researchers
were initially interested in establishing a
relationship between syntactic maturity and
writing ability (Hunt,1965). Once established,
they directed their attention to the relation-
ship between syntactic maturity and.more ef-
ficient reading comprehension. Some research-
ers felt that sentence combining might also
foster reading syntactic maturity as evidenced
by comprehension (Stotsky,1975; Ney,1980;
White,1980).

Research by Evanecko, 011ila, and Armstrong
(1975) indicated that two language competen-
cies, fluency and control of syntactic com-
plexity, underlie reading comprehension profi-
ciency. They suggested that building these two
competencies would improve reading comprehen-

19

sion. Stotsky (1975; 1982) reviewed studies
that attempted to show that enhanced syntactic
skills through writing activities improved
reading comprehension. She confirmed that an
increase in syntactic skills does effect read-
ing comprehension (1977). The overall effects
of sentence combining practices on reading are
still inconclusive, and several researchers
urge further investigation (White,1980;
Stotsky,1982).

Sentence Combining with Microcomputers
Little research has been found that speci-

fically addresses the use of microcomputers to
deliver instruction in sentence combining for
the purpose of enhancing the syntactic maturi-
ty and reading comprehension of school aged
populations. Most of the research focuses on
either college populations, or is restricted
to creative writing. Results of microcomputer
use in creative writing, however, provide a
necessary foundation for the extension of
writing instruction to sentence combining ac-
tivities . For example, Schwartz (1982) stated
that the use of a computer-based text editor
encouraged greater manipulation of written ma-
terial. Bradley (1982) reported positive re-
sults when students used word processing sys-
tems for creative writing. In addition, she
compared student ability to use various word
processing systems. Seymour Papert in
Mindstorms (1980), reported that children at
his MIT Computer Lab often went from "total
rejection of writing to an intense involvement
accompanied by rapid improvement of quality
within a few weeks of beginning to write with
a computer." Schwartz (1982) spoke of the pos-
itive effect of the microcomputer on student
revisions. Educators and researchers are be-
ginning to examine the feasibility of using
the microcomputer in writing instruction and
to suggest it as a possible delivery system
for sentence combining instruction (Bradley,
1982; Cronnell, 1981).

The manipulative characteristics of compo-
sing with word processors, coupled with the
motivational value of such a tool has great
potential to tempt students to write more, re-
vise more often, combine and embed language
elements, and to increase in syntactical ma-
turity as evidenced by writing ability. It
seems plausible that as students are trained
to deal with more complex written syntactical
units, an increase in reading comprehension
might occur. The microcomputer seems to be a
reasonable delivery system for instruction of
this sort, and can help teachers more ade-
quately incorporate instruction in sentence
combining into their classrooms. One way sen-
tence combining instruction delivered by the
microcomputer can be implemented is the method
used in this study. Use of this technique or a
related procedure can help the teacher expand
the microcomputer from simply an instructional
tool to an instructional medium which holds
great promise in the area of structured writ-
ing technique.

3 _Li



www.manaraa.com

The Research Technique
The purpose of this research was to sift

through several notions concerning the feasi-
bility of sentence combining exercises and
sentence expansion activities delivered by the
microcomputer. Of specific interest were
growth in syntactic maturity in the writing
and reading comprehension realms, the motiva-
tional quality of sentence combining instruc-
tion delivered by microcomputer, and student
attitudes toward the technique.

Due to funding constraints, microcomputer
availability, and a desire to investigate the

feasibility of large-scale implementation of
this technique, a series of case studies (N of
1 design) was chosen. Several case studies of
students representing different ability lev-
els were needed to help determine the overall
effect of these sentence combining exercises.
Fifth grade students comprised the population.
Student scores on the Comprehensive Test of
Basic Skills (CTBS), language and reading sub-
tests, and ethnicity were used in drawing a
random sample of matched pairs (names were
masked). The control and experimental pairs
were chosen to reflect four students who were
above grade level in their scores and four
students who were below grade level in their
scores. Student pairs were then randomly as-
signed to either the control or experimental
group, so that each group was composed of two
above average and two below average students.

Pretesting and posttesting consisted of a
timed writing sample, a cloze-type reading
comprehension test, and a semantic differen-
tial attitudinal measure designed to reflect
attitudes toward: school, writing assignments,
writing revisions, reading, and the use of mi-
crocomputers for instruction.

The Treatment
Sentence combining lessons and exercises

were presented in forty-five ninute segments
twice weekly by the researcher. As a group,
students discussed each new technique with the
researcher and later with a student rertner.
Each student was asked to do the lesson on an
Apple II Plus (48K) microcomputer; using the
Apple Writer word processing pr:-.!gram. Strong's
method of open-style cluster rresentation was
used. His text, Sentence Combining and Para-
graph Building (1981) served as a methodologi-
cal model for the exercises. After the
students had completed each combination and
typed in "writeouts" (combinations), they were
asked to expand the group of writeouts into a
story.

The second lesson of each week served as a
review of the =sentence combining technique
presented earlier and a chance for revision of
student stories. Each student received a
print-out o his combinations and resulting
story. Student editing teams (a low ability
student paired with a high ability student)
read and edited each other's work. Each author

made his own revisions on the microcomputer.
Final print-outs were obtained and shared with

. the group. Sharing written stories was a spe-
cial time, and the pride of student achieve-
ment was evident.

Conclusions
Due to the nature of small group or case

study research, few statistical measures were
employed, and the reader is cautioned against
generalizing the results of this study. How-
ever, general conclusions can be drawn rela-
tive to this study and graphs of individual
student achievement will be presented at NECC.

While further research in this area is
needed, it appears that this method of wri-
ting instruction can be used successfully
with upper elementary students. Although six
weeks of sporadic treatment may not be long
enough to draw final conclusions, initial re-
sults look positive. Fifth grade students in
this study were able to quickly learn both the
word processing system chosen and the sentence
combining techniques. Students in the group
that used microcomputers tended to show a
gradual increase in semantic maturity as meas-
ured by T-units, or units of the "shortest
grammatically allowable sentences into which
written language can be segmented (Hunt,

1965)." In addition, students in the experi-
mental group were observed using structures
not sec.,n in the writing of the control group
(i.e., appositives, many complex sentences,
and items a series). Each of these struc-
tures had been presented in sentence combining
exercises. A final analysis of the results of
reading comprehension growth is pending and
will be presented at NECC.

Perhaps the most notable change for the
experimental group and the greatest differ-
ence between the groups was in the attitudinal

realm. Attitudes toward writing and writing
revision using the microcomputer were very
positive. Teachers visiting the computer cen-
ter were often surprised by the intent with
which the students tackled the sentence com-
bining activities. Even the two students pre-
viously lableled as "below average" showed
great enthusiasm for the project and were mo-
tivated not only to complete the sentence com-
bining activities, but also to revise and ex-
pand what they had previously written. Another
indication of the positive responses to the
sessions was that students revised all aspects
of their work, including content, punctuation,
grammar, and even spelling. Student interest
was high, and they were extremely reluctant
to leave the sessions. This group viewed with
disdain the sessions at which both groups
(control and experimental) were asked to give
written samples using pen and paper. In other
words, they vigorously preferred using the mi-
crocomputer as a writing tool over pen and pa-
per. An investigation of attitudinal ratings

toward school, writing instruction, writing



www.manaraa.com

revision, using the microcomputer, ease of
use of the word processing system, and sen-
tence combining' exercises was very encourag-
ing.

It appears that not only is sentence com-
bining delivered by microcomputer effective,
but it is also a popular form of instruction.
This added incentive encouraged students to
write, revise, and read what they and others
had written, making them particularly open to
instruction. The researchers feel that the
conclusions of this study and the related im-
plications of these findings can be very im-
pactful on language arts instruction and fu-
ture research.

Implications
Although final results are pending, this

research indicates several positive effects
of the use of microcomputers for sentence com-
bining instruction. The motivational aspect in
and of itself might prove highly useful in
countering the negative feelings many students
hold toward writing ,and revisions. Students
who wrote with the microcomputer tended to
view the instruction and the writing positive-
ly. Their stories were generally more complex
than their matched pair in the control group.
They enjoyed the sentence combining activi-
ties, and by the end of the second treatment
phase they were able to use fairly advanced
combinations without prompts from the re-
searcher. Other positive side effects were ev-
ident. Absenteeism was non-existent throughout
the study. Students became more cognizant of
how to dissect and read complex structures be-
cause they knew how to 'build' them. Profi-
ciency with the word processing system in-
creased quickly and the students became much
more efficient in their use of microcomputer.
time. At this point they were able to concen-
trate more intently on their writing.

While enthusiastic about these results and
the implications they hold for language arts
education, the researchers recognize that they
have simply scratched the surface. The possi-
bilities for the expanded use of microcompu-
ter instruction in reading and writing are
exciting and ever increasing. Word processing
in the classroom is not a panacea, but it does
offer opportunities for growth in the language
arts processes. The expansion of the pilot
study described here that is planned for the
fall will help lay the groundwork in this in-
vestigation, and far-reaching results are an-
ticipated. However, these studies can only
serve to provide a knowledge base and spur in-
terest in this area. Further research needs to
be done so that we may fully investigate the
use of word processing microcomputers as tools
for structured writing and reading instruc-
tion. Teachers and researchers must be tempted
to explore the applications of such an in-
structional program so that students might
more fully realize the vast educational pos-
sibilities offered by the word processing mi-
crocomputer in the language arts classroom.

21

REFERENCES

BRADLEY, Virginia. Improving students' writing
with microcomputers. Language Arts, 1982,

(October),59,7.

COMBS, Warren. Some further effects and impli-
cations of sentence-combining exercises for
the secondary language arts curriculum. Un-
published doctoral dissertation,University
of Minnesota, 1975.

COMBS, Warren. Sentence-combining practice

aids reading comprehension. Journal of

Reading, 1977, 21,1,18-24.

CRONNELL, Bruce, ,et.al. Using microcomputers
for composition instruction. Paper presen-
ted at the Conference on College Composi-
tion and Communication (Dallas, Tx., March,

1981).

EVANECKO, Peter, et.al. An investigation of

the relationships between children's per-
formance in written language and their rea-

ding ability. Research in the Teaching of

English (1975),8, 3, 315-326.

HUNT, Kellogg. Grammatical Structures Written
at Three Grade-levels. National Council of

Teachers of English, Urbana,Illinois, 1965.

NEY, James W. A short history of sentence-com-

bining: Its limitations and use. English
Education, 1980, 11, 3, 169-177.

O'HARE, Frank. Sentence-combining: Improving
Students' Writing Without Formal Grammar
Instruction. Research Report No. 15,
National Council of Teachers of English,
Urbana, Illinois, 1973.

PAPERT, Seymour. Mindstorms. Basic Books,
Inc.: New York, New York, 1980.

SCHWARTZ, Mimi. Computers and the teaching of
writing. Educational Technology, 1982,
(November), pp. 27-29.

STERNGLASS, Marilyn. Sentence-combining and
the reading of sentences. College Composi-
tion and Communication, 1980, 31, 3, pp.
325-328.

STOTSKY, Sandra. The role of writing in devel-
opmental reading. Journal of Reading, 1982,

25,4,pp. 330-340.

STOTSKY, S.L. Sentence-combining as a curricu-
lar activity: Its effect on written lan-
guage development and reading comprehen-
sion. Research in the Training of English,
1975, 9, pp. 30-71.

STRONG, William. Close-up: Sentence-combining.
Back to basics and beyond. English Journal,
1976, 65, 2, pp. 56-64.

WHITE, Regine, et.al. Reading, writing, and
sentence-combining: The track record.
Reading Improvement, 1980, 17, 3, pp. 226-

232.

3



www.manaraa.com

THE COMPUTER IN THE WRITING CLASS: PROBLEMS AND POTENTIALS

C. Daiute, P. O'Brien, A. Shield, S. Liff, P. Wright, S. Mazur, W. Jawitz

Teachers College, Columbia University

Writing teachers have recently become
enthusiastic about the use of word processing
for improving their students' writing. This
paper offers guidelines for introducing
computers in the writing class. We note pre-
liminary results of our research on the effects
of computers for developing writing skills, but
our focus is on the important practical consi-
derations that make the computer a useful
writing tool rather than a problem.

Draft

Janie

This may sound pretty weird and sad
but sometimes I dream that the whole
world would blow up. Another person
and I would be the only survivcrs
and we together would start the
world all over again. The other
person and me would rule the world.
We would learn all the technology
we need to know, how to fly and
airplanes, and all that stuff. We
would also learn to care for each-
other. I think I would rule the
world better than the president
rules the United States of America,
I hate to say it but its what I
think.

Revision

This may sound weird but I dream
that the whole world would blow up.
Another person and I would be the
only survivors. We would start the
world all over again. We would rule
the world together. We would also
care for eachother a great deal. We

22

would learn the technology we need
to know, how to fly airplanes, and
all that stuff. I think I would rule
the world better than president Regan
rules the United States. I hate to
say it but its what I feel.

Janie to improve drafts of her texts

when she !rot: the compu- Unlike most
eleven yer c who have , has Axe
tice revising their writing, Janie - quite
few significant as well as superficial changes in
the piece above. Janie did not simply read her
text. She saw it more objectively than when she
had first written it and read it over thinking "it
was fine." She deleted words, moved sections,
changed words, and added details, such as the
President's name. She formed a new, more focused
piece.

Revising behaviors like Janie's are not typi-
cal of most children. Using computers can stimu-
late children's revising activities, which many
writing teachers feel are extremely important.
Nevertheless, using computers is not as easy as
using other writing instruments in the classroom.

The authors of this paper are all working on
the Computers and Writing Project at Teachers
College, Columbia University, but we have varied
backgrounds and varied roles. We are researchers,
teachers, and students who have used computers for
our own writing. Our research has taken place in
three school settings in Manhattan: at J.H.S. 118,
the United Nations International School,. and
Teachers College in the Department of Communica-
tion, Computing, and Technology in Education.

Our overall goal of the research is to find
ways to make writing easier for children and adults
alike. Our specific goals differ. The researchers
on the project are focusing on the ways in which
computers relieve physical and cognitive burdens
that affect young writers as they compose and
revise. The teachers, however, are more interested
in methods of implementing computers in their
writing classes to free student writers to express
their ideas more easily than they can with tradi-
tional writing tools.

The purpose of this paper is to suggest why
computers may be valuable tools to use in the

3



www.manaraa.com

writing class and to offer specific suggestions on
implementing them as writing tools. Using compu-
ters in the writing class takes money, time, and
patience, so we would like to offer guidelines.
In addition to presenting the researchers' and
teachers' reasons for using computers, we dis-
cuss the logistical problems involved; we offer
solutions to these problems by presenting our
methods for overcoming them. Finally, we discuss
preliminary results of the effects computers have
on the writing of school children.

Research Goals

Our research goals have been to explore the
cognitive causes of writing difficulties, espe-
cially revising. The computer seemed the ideal
writing instrument to use because it offers the
possibility to reduce certain physical and cogni-
tive burdens that make revising difficult.
Computer word processing programs allow writers
to type text into the computer, and make small or
large changes by giving commands rather than by
recopying. The program automatically incorpor-
ates each change into an updated, neatly-formatted
version of the text. Thus, the dread of recopying
does not discourage children from revising.

Word processing programs are also useful
tools for stimulating revising because they -an
be augmented with automatically-presented comments
that can guide writers in self-questioning stra-
tegies, modeled on those that students have with
teachers and peers. Conferencing -- discussing
texts with student writers -- has been found an
effective method of instruction (Calkins, in
press). We thought some form of conferencing on
the computer would be helpful because the writer
would initiate it and would thus be in charge of
the self-monitoring and rewriting processes. We
were, in short, using the computer to show
children how writers talk to themselves to improve
their texts. The program we developed to present
young writers with prompts to stimulate revising
is called Catch.

At any time during or after writers compose
with the word processing program, they can give a
command to see a list of analyses and prompts

Catch gives to guide writers as
they revise. If a writer, for example, selects
the "empty word" option, the program identifies
unnecessary words such as "sort of" and "well."
As these words are highlighted on the monitor, a
prompt appears at the bottom of the screen. The
prompt that appears with "empty words" is "The
highlighted words may not be necessary. Can you
make changes?" The writer can immediately make
changes if he or she wishes. Writers using the
program are aware that it may identify words that
are empty in some contexts such as "well" in "Well,
I will begin with my childhood," but not in others,
such as "My first memories are of throwing pennies
into a wishing well."

23

Getting Started

Teachers have expected that the dynamism and
precision of writing on the computer would encour-
age their students to reconsider the purpose and
style of their papers when they revise because
they would not have to recopy, as well as to pay
closer attention to details of spelling and gram-
matical mechanics. The following quote by Peggy
O'Brien of the United Nations International School
expresses some of teachers' expectations.

As soon as I felt my own response to
using the computer as a writing tool
...I was on the look out for a way to
mo computers in my English classes.
When I discovered that you could do
word processing with micros, I made
every effort to get hold of one. The
big "pay off" I expected was the re-
inforcement of all English skills. I

theorized that there woald be no
stopping the kids who already liked
writing and kids whose slowness or
lack of coordination kept them away
from expressing the fantastic ideas
they had, or who hated the messy page
they always ended up with, would par-
ticularly benefit from using compu-
ters. I also suspected that intro-
ducing the students to the range of
options available from rcformatting
would dramatically affect their
written work.

Ms. O'Brien initiated the process on her own:
Right from the beginning, I received
strong encouragement, support and
involvement in future planning from
the Dean of Studies at the school.
I knew we had machines in the school
which were underutilized. By a cer-
tain amount of conspiring and begging,
I managed to get the TRS-80 for use in
my classes and persuaded the school to
buy Scripsit and a trolly to make the
thing mobile. That got us started.
We used the machine without a printer
for several months, putting pressure
on all the people we could to help us
to get a printer. In the meantime, I
was encouraged by the Dean of Studies
to write a proposal for an Apple II
plus with disk drives, printers, and
monitors. I proposed teaching a
course in language enrichment (making
a grademagazine) for the new academic
year which entailed the use of all
the technology available in the school,
and so managed to get my hands on the
Pets temporarily. Funding has been
done from the school's overall budget.

On the other hand, school administrators often
present the impetus for encouraging teachers to be
part of the technological age. Arthur Shield of
J.H.S. 118 describes the process:



www.manaraa.com

The principal of my school asked me
to teach a word processing course.
The principal informed me that
through the Division of Curriculum
and Instruction of the New York City
Board of Education, our school would
acquire five micro-computer systems,
to be specifically utilized for the
improvement of writing skills. These

systems would be purchased with New
York State Umbrella Funds. The
Principal was concerned about the
poor writing ability of students
and the traditional writing course
had not been successful. Initially,

I was against teaching such a course
for two reasons. First, I recog-

nized that for me change is diffi-
cult and adjusting to a different
set of conditions would be quite
arduous. Secondly, I felt intimi-
dated by computers. I had no pre-
vious experience with computers and
further realized that within a
bureaucracy there would be little
opportunity for me to adequately
learn the intricacies of the hard-
ware, let alone the software for
word processing. On the other
hand, I was ready and even anxious
to undertake new teaching objectives.

Logistical Problems and Solutions

Managing Computers and the Writing Class

Managing the computers, human and intellectual
energies, and curriculum in the classroom is a
major job. Arthur Shield has five Apple II plus
machines with disk drives and one printer. His

comments highlight the major problems and suggest
ways around them.

One must be extremely organized in
order to be successful with the pro-
gram and having only five computers
and approximately twenty-five stu-
dents in the classroom has created
various problems. There is never

enough preparation time. I have to
prepare lessons so that those stu-
dents who are not on the computers
are actively involved in a motivating
activity. Since the majority of the
students had had absolutely no expo-
sure to computers, I had to teach the

basics. A typical class period in-
volves my running back and forth
within the classroom to deal with
questions, bugs, etc., that continu-
ally arise. I have had to interrupt
several lessons at crucial points in
order to answer'a question of the
students working on computers. You

also have to make sure that you have
adequate supplies, such as printer
paper and diskettes, essential ingre-
dients for any word processing program.

If .

24

The teacher also has to have con-
tingency plans for times when one of
the machines does not function. In

order to expedite the process of ser-
vicing the microcomputers, I had to
learn whom to contact within the
company when problems arise.

Finally, knowledge of the hardware
is absolutely necessary. Often

times, I had to determine which
piece of hardware was malfunctioning
and needed servicing. When dealing
with computers, the guiding precept
is to become as knowledgeable as
possible, which in turn tends to
avoid the waste of time. Students

have been learning to become inde-
pendent when using the computers.
The goal is to have the students
depend less upon the teacher when
dealing with the practical matters
relating to the computer.

I strongly recommend that a teacher
who undertakes computer instruction
be well-prepared and well-versed re-
garding the programs that are selec-
ted for the word processing course.
Access to a computer on a regular
basis is fundamental in order to
master the available software.
Registering for college courses
dealing specifically with computers,
particularly those related to the
field, is vigorously recommended.

Training Teachers

Teachers must be comfortable with all the
tools their students use in the classroom. We

have found that the teachers who use word proces-
sing programs for their own writing before they
introduce them in the classroom travel the smoo-
thest road. First, adults and children have
different styles of approaching and mastering
computing tools, so they should probably not have
their first experiences at the same time (Daiute,
1983). Second, teachers who use word processors
themselves understand the benefits and drawbacks
and often dream up'innovative applications to
their writing curriculum as well. Finally,

teachers who have used programs extensively, know
the quirks, bugs, and ways around them - which
occur in many programs at this early stage in the

state of the art. Teachers who intend to use

computers in their writing classes should thus
spend several months training and practicing.

Training Students

In this project, research assistants
helped to prepare materials and to train

the students in using the editor. Research
assistants helped in copying the required number
of diskettes, preparing and copying necessary
writing material, and helping the teacher to orga-
nize a large number of students onto the limited

3,r)



www.manaraa.com

number of machines. For example, it was important
that the assistants work in conjunction with the
teacher to ensure that two students in the same
class were not using the same diskette.

The research assistants also helped train the
students to use the word processing program. They
were available to answer any questions that the
students might have, and to deal with any system
crashes that might otherwise have frustrated a .lew

learner.

Of course, classroom teachers do not have
college or graduate students available to assist
them. This need not present a problem, for the
students themselves act as assistants. We noted
from our training session that students who were
familiar with a word processing program, or who
had had previous experience on computers, were
very anxious and willing to help their fellow
classmates who were having problems. A typing
tutor program was developed to familiarize stu-
dents with the keyboard. Students were encouraged
to develop their typing skills since this would
facilitate their writing on the computer. Stu-
dents were exposed to the typing program for
several weeks before being introduced to the
word processing program, and although students
did not learn to touch type, most students felt
comfortable with the keyboard when the word pro-
cessing program was introduced. Students who
were not comfortable with typing were encouraged
to continue using the typing tutor program.

A text containing errors in spelling, word
repetition, word omissions, and organization was
copied onto the students' diskettes. A step-by-
step worksheet was created to lead the students
through several stages from simple machine opera-
tion to word processing commands. The worksheet
introduced commands which ranged from the deletion
of one character to the more complex movement of a
block of text.

Effectiveness

Students worked in groups of 3-5 at each
computer for a 35 minute session. This apprach

1109 MEHRtinth thh rreedom to exper-
iment within a structured framework, We used one
practice assignment to introduce the students to
the word processing commands. Our training
methods appeared to be more effective for the
higher grade levels (i.e. 8th and 9th) than for
the lower grade (i.e., 7th). This seemed to
occur because the lower grades had larger classes,
resulting in less computer time for each student.
There was also a noticeable difference in computer
-student interaction. The lower grade students
often executed commands mechanically without
regard to function and they rarely watched the
screen when correcting errors.

Groups were selected at random and asked to
work together on the lesson. At first, students
were dependent upon the teacher or assistants for
a quick solution to any difficulties that arose,
such as forgetting what key to press for a deletion.

25

However, if the instructors were not available,
the students would refer to their worksheets and
find their own solutions.

Eventually, students called upon other mem-
bers of the group to collaborate and work toward
their own solutions. More group interaction was
observed among students in the higher grade levels,
again perhaps due to the smaller group size. It

is important to provide each student sufficient
time to work on the computer.

Using the Computer
for Meaningful Writing Activities

Children need meaningful topics and composing
strategies so they can benefit from the physical
and cognitive aids offered by the computer writing
tools. It is always important to present children
with good writing topics to enhance the develop-
ment of writing skills. It is especially true
when they are learning to write on the computer.
It is particularly important to present a topic
that is intrinsically motivating because writing
on the computer is difficult at first. There are
many new things to keep in mind, and if the child
must dwell on an uncomfortable topic or style, the
writing task easily becomes overwhelming.

The child who is interested in the topic is
much more likely to stick at it longer, produce
more, and master the technique. Good topics seem
to be those that have the child write in an infor-
mal style about something he or she feels strongly
about. Opinion essays such as "Why I like/dislike
New York City" are good. This kind of topic seems
to provide enough structure, still allowing each
child choices about content and style.

Other writing tasks that work well are
autobiographies or stories about the child's group
of friends. Most children will write comfortably
on those two, but for some children they are too
personal. When a child shows signs of such dis-
comfort, allowing him to invent a fictional char-
acter or characters usually solves the problem.

Effects of Computers on Writing:
Preliminary Results

Our preliminary findings about the effects
of computers on the children's writing skills are
based on classroom observations and analyses of
the children's texts. An observer asks a student
for permission to watch while the student works on
the computer. Occassionally, a student declines
the request to be observed, but most are clearly
happy to display their work. The observer has a
list of observation points from the student's
overall enthusiasm, to his or her typing skills,
and from the types of revisions made, to the over-
all quality of the text.

Our preliminary observations confirm three
crucial elements in bringing children and computers
together. First, and in a sense most importantly,
the students have an overall positive attitude
about the computer. They like the idea of having



www.manaraa.com

computers in their classroom, and they are excited
about using them. For whatever reason, their
excitement serves to diminish the more frustrating
aspects of working on the computer. Namely, the

sheer mechanics of using a computer presents
some problems for children. For example, we

found that the students who type better (regard-
less of method), seem to be more generally enthu-
siastic about writing on the computer. Also,

actually starting the writing process can be
tricky because of preliminary steps required
to create and maintain a file, such as finding,
writing, saving, and transferring text from the

diskette.

It is also clear that at least in the early
stages of writing on the computer, students favor
the less abstract word processing commands over
the more abstract and powerful commands. For

instance, though they are aware of commands that
move the cursor by a line, sentence, or even a
paragraph at a time, the large majority of stu-
dents move the cursor a character at a time for
sixty or seventy strokes to get to a word they want.

to correct in the previous sentence or paragraph.

However, it is important to remember during this
first and often frustrating stage, that as stu-
dents become more familiar with the keyboard,
hardware, and editing commands, they more fre-
quently experiment, and become comfortable with
the higher editing commands.

Our preliminary experimental results suggest
that the word processing program and Catch gen-
erally stimulated children to revise.

Most of the children did more revising with
pen after they had used Catch for about four

weeks. Janie, however, was one of the children
who did more revising with the computer, but did
not do as much when she used pen after having used

the computer and Catch as a guide.

We have several interpretations of these

results. Weak writers like Janie may find the new
tool makes writing more comfortable. Often weak

writers simply have not read or written very much,
so they have not developed a style and do not have

text models to imitate. Children with strong
writing skills, on the other hand, who have writ-
ten extensively have developed a sense about

writing. Such writers have also become comfor-
table with a traditional writing instrument,
usually the pencil or pen. The computer may offer
them less relief as a writing instrument until
they are as comfortable using it as they are with
pencil or pen -- the instrument they had been
using all along. Thus, initially the computer may
help them less than it does children who had not
become comfortable with other writing instruments,
and it takes longer for experienced young writers
to benefit greatly from its capacities. Similarly,

good writers bring composing and revising strate-
gies to their first use of the computer, so
prompts like those in Catch may at first have less
impact.

26

Effects of the computer depend on the

writer's abilities. Even though the most skilled
young writers approach the computer with excite-
ment, they find the mechanics of word processing
somewhat frustrating. They sometimes feel that
writing with pen and paper is easier and more
reliable. Usually, enough of the advantages of
word processing are apparent to help them pass
this phase. Once they master the skills of
interacting with the computer, the tool helps
them write and revise efficiently.

Less skilled writers tend to come to the
computer with the view that writing is a laborious
process. Their attitude towards writing is
generally negative and the computer does much

to improve it. They also approach the computer
with excitement and their intitial excitement
never seems to wane.

In contrast to the majority of students, many
teachers approach computers with fear. They feel

that many of their students already know more
about computers than they do. They learn to use

the machines and decide how they will be most
beneficial to their students' education. But,

when they start with the computers in the class-
room, they often find the extra logistic chores
overwhelming. Nevertheless, once the major class-
room management problem is solved, they become
excited about the fact that their students find
writing to be fun.

References

Calkins, L M Ltaaana ExaktLChild: QM till

Teaching and Learning of Writing. Forthcoming.

Daiute, C. Computers and writing. Reading,Mass.:
Addison-Wesley Publishing Co" in press.



www.manaraa.com

A HYBRID HUMANITIES APPLICATIONS COURSE: "THE COMPUTER IN LITERATURE" AND
"LITERATURE IN THE COMPUTER"

by Rudy S. Spraycar

Data Processing Department
United States Fidelity and Guaranty Company

Baltimore, Maryland 21203

Abstract

This paper reviews the development of an inter-
disciplinary course whose aims were threefold: 1)

to use science fiction and non-fiction as vehicles
for discussion of the computer's impact upon society
and societal attitudes toward the computer; 2) after
reviewing programming, to teach computer-aided tech-
niques of literary analysis; and 3) to require the
class to undertake team projects in analyzing lan-
guage or literature with the computer; most teams
included students both a) familiar with the computer
but innocent of literary analysis and b) familiar
with literature but naive about the computer.

Introduction

A curriculum task force report prepared on the
Louisiana State University campus a few years ago
noted the growing need for disciplines besides
engineering and computer science to offer courses
about the computer. In particular, the social
impact of the computer needs to be addressed from a
variety of disciplinary perspectives. Having taught
an English department course in science fiction at
L.S.U. for some years, I had noticed how effective
science fiction is in stimulating class discussion
about the man-machine interface in general, and
about man's relations with the robot and the
computer in particular. Thus it seemed to me that
an English department course in computing ought to
include a unit of readings in science fiction and
selected non-fiction works that examine 1) the
computer's impact on society and 2) the panoply of
current attitudes toward computers. This portion of
the experimental course that I deN,sloped and taught
at L.S.U. in the fall of 1981 was entitled "The
Computer in Literature."

On the other hand, there has been great
interest in the application of the computer to the
development of traditional tools for literary
research, such as concordances, indices, and
bibliographies. At first, however, only a few
pioneers recognized the machine's potential to
extend radically the application of quantitative and
statistical research methods to problems of
authorship and attribution and to fundamental
research into the character of literary style. In
many respects, this field is now approaching
maturity and is a suitable subject for graduate and

27

undergraduate instruction. The segment of this
course entitled "Literature in the Computer"
surveyed current applications of the computer in
literary analysis and the preparation of literary
research tools; the course culminated in student
team projects in this area.

Background

The gradual acceptance over the past decade or
two of science fiction as legitimate English
curriculum content needs no rehearsal here. I would
only note that the originality of this course
consisted largely in its hybrid approach, stressing
1) the mutual interaction of computers and
literature, and 2) successful communication between
devotees of both literary and computing cults
within a single classroom.

Slower initially, but recently booming, has
been the recognition on the part of humanities
scholars at large of the value of instructing
students in computer methods for literary research.

To be sure, such pioneers as Robert L. Oakman
12-15

recognized as early as 1968 the need to teach such
research methods, as distinguished from the use of
the computer in computer-assisted instruction (CAI),
which has encountered less pedagogical resistance,
owing to the celebrated crisis in the teaching of
English composition.

The recent publication of textbooks in

computer-aided literary research by Oakman
16

and

Susan Hockey
10 has stimulated interest in the area.

Nevertheless, the recent third edition of Robert D.

Altick's
1
very fine and otherwise comprehensive

textbook on literary research methods devotes but
five pages exclusively to computer methods, despite
the dust jacket's promise of the book's expanded
treatment of such methods. If resistance to
interdisciplinary research methods remains among
humanists, perhaps a hybrid course like the one
described here may prove a reasonable effort to
bridge the gap of understanding.

Course Structure

The readings included two novels, several
short stories, an anthology of computer-related
fiction and non-fiction, and two textbooks on
programming and literary computing (see Course

4



www.manaraa.com

Materials, below).

The Coputer in Literature

Non-fiction and science fiction materials
used to define the man-machine relationship. The
computer's inpact on society was treated both in
terms of changes in the life of the individual and
broad social and public policy issues. Of course,
these two levels of the problem cannot, in the end,
be separated: such issues as privacy, whether jobs
are created or lost (with some reference to the
parallel issue of robotics), and military, social,
and industrial impacts are often of public
consequence precisely because of their effects upon
individuals. The non-fiction readings stressed the
present potentials and possible threats posed by
information banks, networking, and such; the science
fiction readings tended to force speculation about
the future by extrapolating one or another trend to
its logical extreme.

were

Ironically, the readings in science fiction,
often obsessed with technology, provided some of
the best examples of the paranoid view of the
computer. As is the case with robots, computers
are more threatening the more they are perceived as
human-like, for through the ages what is almost,
but not quite, human has often been regarded as
monstrous. Out of the critique of myths about
computers emerged an understanding of both the
limitations and the true potentials of the computer,
leading into a brief account of how the machine
works.

Literature in the Computer

Literary data processing was thus introduced
as an object lesson in how the computer can be used.
The course then took up in some detail the problems
in literary research that have proven most amenable
to computer assistance. Computer-aided instruction
(CAI) was treated briefly, using as an example the
course authoring and instructional system that I
designed, wrote, and tested at L.S.U., CALAIS
(Computer-Assisted Language Arts Instructional

System).
19-20

Finally, we glanced briefly at the
frontiers of both computer-assisted statistical
analysis of literary style and artificial
intelligence. Throughout the first two units of
the course, each student presented an oral report
on some aspect of either social attitudes toward
the computer or computer-aided literary research.
The students then formed research teams to define
problems in literary analysis and wrote programs to
solve them.

Synthesis

The study and discussion of two science fiction
novels about the computer (while the teams worked on
their projects) provided an opportunity to
synthesize the main themes of the course and to sort
out myth and fantasy from the issues surrounding the
relation between computer and society. In
particular, the students attemptee to decide whether
the computer is a monster, a friend, or simply a
tool.

The research projects brought together two
kinds of students: those without previous
experience with the computer helped to define the
problem, design an algorithm, and participate in
data entry when necessary; those who had suitable
prior experience developed the program, generally
receiving more credit for their participation in
the projects. The team's joint development of the
approach served two purposes: 1) it provided a
sound basis for demystifying the computer in order
to critique social myths about it; and 2) it gave
both the knowledgeable and uninitiated students an
opportunity to be a part of a "user/analyst"
relationship. The latter experience may have been
the most valuable portion of the course for the
computer science majors who enrolled.

Course Materials

Several science fiction anthologies devoted to
fiction about the computer were out of print. The

Van Tassel anthology
21

offers a wide range of
fiction and non-fiction, but it is largely out of
date. Students and instructor alike, however,
supplemented this anthology with up-to-date articles
culled from current popular magazines and newspapers;
many of these materials were-presented in the course
of the oral reports.

Particularly useful were two science fiction
stories about the survival of man and the computer
after a nuclear holocaust: Roger Zelazny's "For a

Breath I Tarry,
22

a charmingly humorous, optimistic
view, and Harlan Ellison's "I Have No Mouth, and I

Must Scream, "7 a fiendishly pessimistic vision.

A good introduction to programming and the
concept of the algorithm was provided by Richard
Conway's Programming for Poets: A Gentle

Introduction Using PL/I;
3

the book is also
available in versions using Basic, Fortran, and

Pascal.
4-6

I chose PL/I because it is a relatively
widely implemented language, especially at academic
IBM installations, and is amenable to string
processing. (However, see discussion below of
revision of the course.)

Both Oakman , s
16

and Hockey's
10

texts on
literary computing are excellent; because my
institution had an IBM system, and Oakman's book is
somewhat IBM-specific, I chose it.

Finally, many science fiction novels would
serve well for the final synthesis of the course.

I chose Heinlein's The Moon Is a Harsh Mistress
9

and Brunner's The Shockwave Rider.
2

The former at
once humanizes the computer and characterizes it as
a tool that has become a friend. The latter
dramatizes the potential hazard::: of widespread
networking, then falls back upon the conventional
moral position that the final responsibility for
man's tools and his social organizations, especially
bureaucracies, always rests with the individual;
here a brave hero saves mankind from a bureaucratic
behemoth objectified as a computer, network. Other

28

42



www.manaraa.com

science fiction novels could provide grist for
biases other than my own, of course.

Syllabus

I append a course outline; for Conway's PL/I,

one might substitute Snobo14.
8

Student Projects

One group compared samples from Robert
Heinlein's novels, written between 1939 and 1980, in
terms of twenty-two variables. Significant changes
were observed: sentence length increased over the
years, as did the proportions of the words in the
text that were enclosed within quotation marks. -

The students interpreted the latter feature as a
sign of Heinlein's improved ability or desire to
characterize through what a character said rather
than through authorial comment.

Another team drew five samples of journalistic
prose written in 1961 from the Brown University

Standard Corpus of American English;
11

each word in
the Corpus has already been labelled or tagged
grammatically. The group confirmed the professional
rule of thumb that average word length in newspapers
is about five letters (their samples ranged from 4.7
to 5.1 characters per word). The group failed to
find significant patterns in distribution of parts
of speech either between samples or within an
individual news story as a function of "pyramidal"
journalistic style.

A third group interested in computer-composed
poetry rejected a purely random approach to word
selection in favor of a program with conversational
natural - language. prompts for parameters of verse

form, theme, end-rhymes, and so forth. Finally, one
student wrote a concordance-generating program, and
another worked at debugging and refining the EYEBALL
literary analysis software package, written in

Fortran,
17-18

for local use.

Student Response

The students were asked on a questionnaire to
rank each component of the course on a scale of one
(must keep), two, three (neutral), four, and
(drop it). The results were as follows:

Table 1, Student Questionnaire.

five

Averaged Rankings of Course Materials.

Social Issues 1.57

Van Tassel 2.42

Science Fiction Short Stories 1.67

Heinlein Novel 2.33

Brunner Novel 2.90

Computer Methods. 2.33

Oakman 2.80

Conway 3.00

Oral Reports 2.73

Special Projects, 1.73

29

Most popular (indicated by the lower numbers)
were the social issues topic, the science fiction
short stories (not the novels), and the special
projects, in that order. All the other items were
ranked favorably except the Conway book, about
which the students were, on the average, neutral.

This neutrality was reflected in the students'
responses when they were asked whether they would
have preferred a standard programming text: yes,
50 percent; no, 43 percent; not sure, 7 percent.
49 percent favored substituting for PL/I a string-
manipulation language, Snobol4, while 20 percent
disagreed, and 33 percent were uncertain.

Finally, 93 percent of the respondents favored
the addition of a one-credit laboratory period for
instruction in programming and a start in hands-on
experience for those who needed it.

Revision of the Course

Unfortunately, the only course number available
in my department for such an experimental course was
at the sophomore level; of the sixteen students who
completed the course, eleven were upperclassmen. I

recommended that the course be formally instituted
at the senior level, with enrollment open to
graduate students. While most of the projects were
completed satisfactorily, the aims of the special
team projects outlined above would be better
achieved if all the students brought to the course
more special competence in either programming or
potential applications, e.g., literature, music,
etc. Students without prerequisite courses in
computer science should be required to enroll in the
one-credit laboratory that the students favored so
strongly. The assignment of science fiction readings
as an occasion for discussion of social issues should
be retained, as should the oral reports and, above
all, the special team projects.

Appendix

Course Outline: Literature and the Computer

Week Readings

I. The Computer in Literature

1 Introduction
2 Van Tassell, sections 1-4
3 Van Tassell, sections 6-9
4 Science Fiction Short Stories

II. Literature in the Computer

5 Oakman, chapters 1-2
6 Oakman, chapter 3; Conway, part I, chapters 1-2
7 Conway, part I, chapters 3-6
8 Conway, part I, chapters 7 & 9; mid-term exam.
9 Van Tassel, section 5; Conway, part II, chapter 1
10 Conway, part II, chapters 2 :2 4; Oakman, chapt. 4
11 Conway, part II, chapter 5; Oakman, chapters 5-6
12 Oakman, chapters 7-8

III. Synthesis

13 Heinlein, The Moon Is a Harsh Mistress
14 Brunner, The Shockwave Rider
15 Results of Special Projects; Conclusion



www.manaraa.com

References

1. Altick, R. D. The Art of Literary Research.
Third ed., rev. J. J. Fenstermaker. New York:

Norton, 1981.

2. Brunner, J. The Shockwave Rider. New York:
Ballantine, 1976.

3. Conway, R. Programming for Poets: A Gentle
Introduction Using PL/I. Cambridge, MA:

Winthrop, 1978. .

4. Conway, R. and Archer, J. Programming for Poets:
A Gentle Introduction Using FORTRAN, with WATFIV.
Cambridge, MA: Winthrop, 1978.

5. Conway, R. and Archer, J. Programming for Poets:
A Gentle Introduction Using BASIC. Cambridge,

MA: Winthrop, 1979.

6. Conway, R., Archer, J., and Conway, R.
Programming_ for Poets: A Gentle Introduction

Using PASCAL. Cambridge, MA: Winthrop, 1980.

7. Ellison, H. "I Have No Mouth, and I Must
Scream," in Silverberg, R., ed., The Mirror of
Infinity, New York: Harper and Row, 1973.

8. Griswold, R. E., Poage, J. F., and Polonski, I.
P. The SNOBOL4 Programming Language. Second

ed. Englewood Cliffs, NJ: Prentice-Hall, 1971.

9. Heinlein, R. The Moon Is a Harsh Mistress.
New York: Berkley, 1968.

10. Hockey, S. A Guide to Computer Applications in
the Humanities. Baltimore: Johns Hopkins, 1980.

11. KuEera, H. and Francis, W. N. Computational

Analysis of Present-Day American English.
Providence, RI: Brown University Press, 1967.

12. Oakman, R. L. "Computer Methods for Humanities
Research: An Interdisciplinary Approach at
South Carolina,"Proceedings of the IBM Symposium
on Introducing the Computer into the Humanities,
June 30-July 2, 1969, Poughkeepsie, NY:. IBM,
1969.

13. Oakman, R. L. "Computers for the Humanities,"
Humanities in the South: Newsletter of the
Southern Humanities Conference, 35 (Spring 1972),
4 & 10.

14. Oakman, R. L. "Computer Education for the

Humanities: Multiple Possibilities at the
University of South Carolina," Proceedings of a
Fourth Conference on Computers in the
Undergraduate Curricula, June 18-20, 1973,
Claremont, CA: The Claremont Colleges, 1973.

15. Oakman, R. L. "A Videotape Course for Computer
Education in the Humanities," Computers and the
Humanities, 9 (1975), 123-26.

16. Oakman, . L. Computer Methods for Literary

Research. Columbia: University of South
Carolina Press, 1980.

30

17. Ross, D. and Rasche, R. H."EYEBALL: A Computer
Program for Description of Style," Computers
and the Humanities, 6 (1972), 213-21.

18. Ross, D. and Rasche, R. H. User's Instructions

for EYEBALL. Rev. ed. Minneapolis: University
of Minnesota English Department, 1976.

19. Spraycar, R. "CALAIS/Teach: The Lesson-Writing

Component of a Computer-Assisted Language Arts
Instruction System," 1982 ASEE Annual Conference
Proceedings, 247-54.

20. Spraycar, R. "From CALAIS to DOVER: Using
Computer-Assisted Programmed Instruction to
Gather Data on Composition Deficiencies
Automatically," Proceedings of the ASIS Annual
Meeting, 19 (1982) (in press).

21. Van Tassel, D. The Compleat Computer....
Chicago and Palo Alto: Science Research

Associates, 1976.

22. Zelazny, R. "For a Breath I Tarry," in Spinrad,
N., ed., Modern Science Fiction, Garden City,
NY: Anchor Doubleday, 1974.

4J



www.manaraa.com

The DISC Project

Shelley Yorke Rose
Carol Klenow

Instructional Computing
Oakland Schools

Pontiac, MI 48054

ABSTRACT
The DISC (Documentation and Integration of
Software into the Classroom) Project,
administered by the IICD (Interactive and
Instructional Computing Department) of
Oakland Schools in Pontiac, Michigan has
produced the DISC Compendium, a collection
of 91 software evaluations and
documentation. The 565 page Compendium
contains materials for the PET, APPLE,
TRS-80, and Atari. Through DISC, 90
Oakland County educators were trained in
evaluation techniques using an adapted
MicroSift form and MECC documentation
format. Combining these tools has provided
teachers using the programs contained in
the Compendium with a means to better
implement the commercial programs towhich
they have access.

In addition to the Compendium, the DISC
Project has produced a DISC Training Manual
and Project Report which details each of
the four workshops and includes presenters'
outlines, hand-outs and transparency
masters. Suggested session outlines and
activities are include in the Training
Manual.

The Disc Project was developed by the
IICD during the 1981-1982 school year under
a Title IV-C grant for $15,000. District

31

superintendents and curriculum directors
selected potential DISC participants using
project criteria (computer literacy,
ability to load and run a program, access
to a classroom microcomputer, etc.) who,
after an orientation session, attended four
DISC workshops. DISC participants were
trained in the use of MicroSift evaluation
form and a format for the development of
classroom viable support materials which
was loosely based on MECC documentation.
Their efforts in evaluating, pilot testing
and creating support materials for selected
commercial programs were rewarded with
release time and the programs they
evaluated.

To ensure the continuing contribution of
the DISC Project to the area of commercial
software evaluation and support materials
development, the IICD is training
additional Oakland County educators using
the DISC Model. Resulting evaluations are
being gathered and published in the IICD's
newsletter "Remote Notes". Software
publishers are being contacted with DISC
results in the hopes that they will begin
incorporating teacher needs into their
documentation design.

4 6



www.manaraa.com

COMPUTING FOR THE LEARNING DISABLED OR HANDICAPPED

Rita Horan
Warren R. Brown

Mary Russo
Dr. Nancy Jones
Sharon Smaldino
Partick Schloss

ABSTRACT: Using LOGO with Learning Disabled

Students

Rita Horan, 10 Bayard La Apt 5, Princeton, NJ 08540

The Learning Disabled child has been typically
described in the literature as having poor problem
solving skills. Other descriptors of Learning
Disabled children include such terms as:
inpulsive, deficient in selective attention, an
inactive learner, and users of deficient strategies
in solving problems.

Much of the research on problem solving has
focused or whether or not such children possess the
underlying skills or abilities to solve problems.
Studies have shown that learning disabled children
have the ability to acquire and store information
but lack spontaneous access to these processes.
And furthermore they (Learning Disabled) seem to
have an inability to generalize a previously
learned problem solving strategy to a new problem.

Scientists and researchers in the data
processing discipline have been studying the
underlying processes of problem solving and refer
to the process as information processing.
Educators and researchers in the education
disciplines address problem solving as a cognitive
function which can be modified and trained to.
Cognitive modification research has provided
educators with procedures that have shown some
durable and generalizable effects for Learning
Disabled children. Specifically they have shown
success with producing behavioral changes in
hyperactive and impulsive children and children who
have difficulties attending to school tasks.

During the 1970's a group of researchers at
MIT developed a language called LOGO or Turtle

Geometry. This language was specifically desgined
to be something children could make sense of, to be
something that would resonate with their sense of
what is important: in order to learn something,
first make sense of it. Turtle Geometry is
learnable because it is syntonic. And, it is an

aid to learning other things because it encourages
the conscious, deliberate use of problem solving
and mathematical strategies. The language is
graphic oriented and users are encouraged to choose
a project (problem) and through commonly used
English commands (back, forward, left, right)
create the steps which will solve the problem or
complete the project. When the child hits a snag
he/she is encouraged to use their own knowledge of
the commands and previously learned information to
fix the snag.

32

This study proposes to use LOGO as a tool to
develop problem solving skills for Learning
Disabled children. Tasks initiated either by
student or teacher will be defined and each student
will finish the task within a certain amount of
time. Problem solving strategies based upon those
used in cognitive modification will be used as well
as LOGO.

This study will compare three groups. The

subjects will be Learning Disabled students
ramdomly assigned to the three groups. One group
will receive LOGO instruction with a strategy based
on cognitive modification techniques for problem
solving. One group will receive LOGO instruction
without problem solving strategies. The thrid
group will receive neither LOGO nor problem solving

strategies. Each group will be give a pretest
prior to instruction involving a problem solving
task and a posttest problem solving task upon
completion of instruction. A comparison will be
made of the three groups based on pretest and
posttest scores to determine whether there is a
difference between the groups' abilities to solve

problems.
The independent variable will be the method of

instruction or noninstruction. The dependent

variable will be the posttest scores.
This study hopes to answer the following

questions: Will Learning Disabled students who
receive LOGO instruction with problem solving
strategies differ from those who receive only LOGO

instruction? Will students who receive LOGO
instruction differ from those who do not receive

LOGO instruction?

ABSTRACT: Project CAISH Second Year Update

Warren R. Brown, School Board of Sarasota County,
3450 Gogio Road, Sarasota,FL 33580

Project CAISH (Computer Assisted Instruction
and Support for the Handicapped) is currently
focusing on the needs of the mentally and
emotionally handicapped population, ages 3-21.
Continuing support is being provided for
orthopedically handicapped students. The project
uses systematic methods to provide microcomputer
systems,. software and courseware, and specialized
hardware interfacing to address educational
objectives of students that are specified by the
teachers and specialists involved.

New interface devices will be demonstrated to
simulate student interaction with the

4



www.manaraa.com

microcomputers. New and modified software will be
demonstrated, to include single switch control of
LOGO graphics, drill and practice of Blissymbols,
and other MECC software modifications.

A description of a 15 station microcomputer
laboratory for mentally and emotionally handicapped
students will be given. Security, accessibility,

adaptive device needs, and software recommendations

will be discussed. Anecdotal summaries of student
uses of the microcomputer systems will also be
presented.

One of Project CAISH's goals is dissemination
of information. In this regard, both hardware and
software experience can be useful to others in the

educational community. A 46page Interim Report

will be available for distribution.

ABSTRACT: Project S.O.S.
Mary Russo, Project Coordinator, Dr. Nancy Jones,

Media Specialist, The School Committee of Boston,
75 New Dudley Street, Boston, MA 02119

Project S.O.S. (Support for Occupational

Students) at the Humphrey Occupational Resource
Center uses computerassisted instruction to help
secondary level handicapped minority students
develop the competencies in math, reading, language
a'ts and problem solving needed for their
occupational training programs. Using
minicomputers donated by Digital Equipment
Corporation and Apple microcomputers, students
learn basic skills while developing the computer
awareness needed in the increasingly computerized
world of work. With the increasing use of
microcomputers in business and industry for basic
tasks, such as storage of typing in a word
processing system or training programs for brake
repair in the automotive industry,
computerassisted instuction is a bridge between
basic skills development and occupational training.
The content of thirty instructional software
programs was aligned with a set of 104 basic skills
competencies identified as necessary for the
occupational training programs at the Center.
Students take a computerized survey test and are
scheduled for two 40 minute sessions per week based
on their performanbce and the number of sessions
required for task completion. The goal of the

Project is the placement of 240 handicapped
minority students into skills training jobs
involving computer utilization.

Students are selected for the Project based on
their scores on the Metropolitan Achievement Test:
Reading and Mathematics, the Massachusetts Test of
Basic Skills, referrals by instructors, and
selfreferrals. The course of instruction,
designed to integratethe achievement of basic
skills with occupational training, computer
awareness and employability skills, is
individualized through the use of student

contracts. Further Project development includes
the development of an item pool for computerized
assessment specifically related to occupational

training programs.

33

ABSTRACT: Relative Efect of Microcomputer
Instruction and Teacher Directed Instruction on the
Performance of Hearing Impaired and Normal Hearing
Students

Sharon E. Smaldino, Patrick J. Schloss, TriCounty
Special Education District, Dewey Building, 1000 N.
Main, Anna, IL 62906

Scope and Purpose: With the increased

interest in the use of microcomputers in the
schools and with their value as an instructional
tool still in infancy, the intent of this study was
to raise the issue of time of instruction in its
relation to performance of the student. A major
assumption supporting the use of microcomputers is
that teachers' instructional time is limited and
the use of the computer may serve to augment and
expand that instructional time. To date, this

assumption has not been empirically validated.
Comparing teacher direct instructional time with
computer instructional time with the performance of
the students as the dependent variable should
provide educators with guidance for judicial use of
microcomputers.

The unique learning and behavioral
characteristics of hearing impaired students makes
them particularly germane to the study of relative
instructional efficiency. Traditionally, the
teachers of the deaf have experienced the need to
be highly redundant in their instruction of new
material. The verbal nature of instruction makes
teaching time lengthy and student performance a
poor indication of comprehension. This study was
to examine the efficiency of time of instruction by
the teacher or the microcomputer. The performance
of the deaf students compared with the time of
instruction will support the instructional
efficiency hypothesis.

Method: The subjects of the study consisted
of students in the school who had minimal exposure
to computer assisted instruction prior to the
study. The subjects of the investigation ranged in
age between 13 and 19. There were two categories
of students, those with normal hearing and those
with hearing loss averages in their better ear
ranging from 60dB to 105dB. Six of the subjects in
the hearing impaired group were male and six were

female. The normal hearing group had no identified
loss of hearing. Four of the subjects were female
and eight were male.

The procedure was conducted over a fiveday
period with daily instructional segments of ten
minutes in length. The computer program utilized
for this instructional format was the unit "Hurkle"
from the ElementaryVolume 1 diskette developed by

the Minnesota Education Computing Consortium. An

Apple IIplus microcomputer with a green
phosphorous screen was the only equipment employed.
The teacher direct instructional material
coordinated with the material in the microcomputer
program.

Each student was seen by the same teacher for
a tenminute instructional period. The groups of
students were randomly split into those who would
receive instruction directly from the teacher and
those who only received instruction on the
computer. A total of four groups were identified:
the hearing impaired receiving teacher directed



www.manaraa.com

instruction (HITD); hearing inpaired receiving
microcomputer instruction (HI H); normal hearing
receiving teacher directed instruction (N-1D); and
normal hearing receiving microcomputer instruction
(NH). A script was used by the teacher to keep
the instructional presentation for all groups the
same throughout all conditions.

Each student was given an opportunity to learn
how to use the microcomputer by playing a hangman
game, written by Wendell Bitter. Familiar spelling
words were used. The students receiving
microcomputer instruction were instructed that they
would be learning new math material and to attend
closely to the computer's instruction. Those
students receiving the teacher directed instruction
were told that to help them better understand
material to be utilized on the computer, they would
benefit from some instruction from the teachers.

Each instructional period was timed. Both the
number of guesses and the total number of trials in
each instructional segment were tabulated. A 2x2
ANOVA technique contrasting the rate of guesses and
correct responses for the four identified groups
will be conducted.

34



www.manaraa.com

A GUIDE FOR THE PURCHASE OF A COMPUTER SYSTEM
FOR A TWO-YEAR CAMPUS

by Laurena A. Burk

Department of Systems Analysis
Miami University-Hamilton, Hamilton, Ohio 45011

ABSTRACT

The increasing number of students
in computer-intensive programs,
together with a need for various
levels of computing power in virtually
all disciplines, has forced schools to
allocate many thousands of dollars for
the purchase of computing equipment.
This paper suggests a strategy for
selecting computing equipment
appropriate to the campus' needs based
on a data processing method known as
IPO.

INTRODUCTION

Despite a general shortage of funds
for education and declining enrollments in
many college programs, there has recently
been an increase in students in technical
Associate Degree programs. Most of these
programs require moderate to heavy use of
computer equipment. At Miami
University-Hamilton, for example, the
Computer Technology program alone has
grown 30% in the last year. Students must
learn to program in four computer
languages: Fortran, Assembly, Cobol, and
PL/1. The increasing number of students
in computer-intensive programs, together
with a need for various levels of
computing power in virtually all
disciplines, has forced schools to
allocate many thousands of dollars for the
purchase of computing equipment.

Since two-year schools are frequently
diverse in their degree and course
offerings, any computing system that is to
serve the entire campus must have
extensive capabilities. At MUH, the
computing needs are expanding as those
teachina both technical and non-technical
courses discover the computer as a helpful
educational tool. As faculty recognize
the value of the computer to their
curricula, programming languages as well
as word processing, graphics, and
specialized software packages become a
must. Yet, finding and purchasing
affordable equipment that will serve
faculty and students adequately, becoming

35

an integral part of virtually every degree
program, is no easy task. The following
paper therefore suggests a strategy that
will enable a campus to make an informed
decision about purchasing computing
equipment for its specific needs.

GETTING READY

A key person or group of people
should be designated responsible for all
or for specific parts of this decision
making process. The total group, or
project team, should be computer literate
and have a vested interest in the utility
of the computer system to be purchased.
Otherwise, there is little hope that the
campus will acquire the most practical and
cost effective system. As the only
full-time instructor in the computer
technology program, I uas the project
manager and team at MUM by default. I

managed the small but extremely busy
computing facility, and my students were
the heaviest users of the facility. Thus
I became the campus computing resource
person.

Since not all team members will have
a technical background, this discussion is
aimed at the intelligent but uninformed
reader. While systems analysts have
written many highly technical papers on
computer procurement, these may be
technically sophisticated for some members
of the project team. A simple
process-oriented approach such as IPO and
a few chapters of a good data processing
text may be sufficient to focus the
involved educator's background.: These
texts are easily obtained throUgh most
libraries. A sample of appropriate texts
is listed in the bibliography..

THE OVERALL PROCESS'

The data processing method known as
Input-Process-Output(IPO) is a useful
technique for developing an orderly
decision making strategy for a computer
system purchase. Since an If0 chart
provides a clear picture of what a program
is to do, application programmers
frequently find it helpful to prepare IPO
charts when planning programming tasks.

5



www.manaraa.com

Working out the logical steps in a program
prior to actually writing and testing it
on the computer saves time and prevents
problems. If programming changes are
required, the IPO charts provide the
documentation necessary to describe the
tasks performed by the program logically,
enabling the programmer to update the
program quickly and easily. An IPO chart
divides the work into three basic
funcions: INPUT, PROCESS, and OUTPUT. The
INPUT section of the chart shows all of
the data needed to run the program. The
PROCESS section describes the manner in
which all of the inputs will be
manipulated. The OUTPUT section shows
what the result of the process will be.
This approach can be used in similar
fashion to select a computer system.

First, begin gathering the facts
governing the selection of a computer
system and organize these into a useful
format for study and comparison. The
result will be a gradual distillation of
information necessary for a practical
decision. This collecting of facts is a
continuous iterative process. The initial
input will not provide enough information
to make a final decision but will point
out what additional facts must be
gathered, studied, and organized before a
final decision can be made. The form of
an IPO chart is shown in Figure 1.

PROGRAM:

IPO CHART

PREPARED BY:
DATE:

INPUTS: OUTPUTS:

PROCESS DESCRIPTION:

An example of an abbreviated IPO chart
often used by programmers when planning a
new program. It is changed as the input
data, the output data, or the process
changes.

FIGURE 1

36

COLLECTING FACTS

I recommend beginning to gather facts
as soon as there is evidence new equ!pment
will be needed in the near future. The
following tasks should be completed before
contacting potential vendors:

1. Compile a WISH-LIST by seeking
input from all computer users,
current and potential. A simple
questionnaire can provide uniform
facts. Put no cost restrictions
on wishes.

2. Separate the list into two parts:
a MUST-HAVE list and a
NICE-TO-HAVE list.

3. Convert the WISH-LIST into a list
of functions the computer system
should be able to perform.
Separate hardware and software
functions.

4. Prioritize these functions.

A sample of questions is given in
Table 1. These questions do not need to
be extensive or statistically processed
for a small school. Faculty are less
likely to complete a lengthy questionnaire
than a brief one. Additional faculty
input can be sought as needed. If
specialized needs are indicated, the
faculty most closely associated with those
needs should begin to research them. For
example, if a faculty member foresees a
need for computer-aided-design (CAD), he
or she should begin to investigate
available options in CAD computing and
should ultimately specify the CAD
functions.

Dividing the WISH-LIST into MUST-HAVE
and NILE-TO-HAVE subcategories is
necessary to avoid buying frills with no
substance and to discourage buying
glamorous but nonessential items. A
digitizer tablet may appear to be
essential to CAD functions, for example,
but it is probably not essential for
students and faculty who create drawings
from scratch at a terminal. In fact, the
digitizer would probably be used only to
demonstrate how to enter an exising
drawing into the computer via the
digitizer. This does not mean necessarily
that a digitizer is a frill but rather
that it should have a lower priority than
a plotter in a CAD application.

The MUST-HAVE and NICE-TO-HAVE
categories should be subdivided to show
hardware and software needs. Hardware is



www.manaraa.com

SAMPLE_OF QUESTIONS

1. Do you. currently use the
computer?

a. sc. Ana.z are your
r-rojec=mA meeds over the next
tn-me -marm?

b. If mD1 what are your
-ro,sct!d interests over the
next. three years?

c. How many students in your
classes do you estimate would
be involved in using the
computer?

2. If you are not currently a user,
do you plan to use a computer in
the next three years?

a. If so, what type of computing
would you like to have access
to?

b. How many students in your
classes do you anticipate
would use the computer?

TABLE 1

the electronic and mechanical equipment
needed to support the specified functions.
Software is the set of programs which
control the hardware and enable it to
perform specified tasks. Separation of
these hardware and software functions
makes it possible to choose the best type
of hardware configuration for the campus
needs. Once the general hardware
configuration has been chosen, vendors and
appropriate software can be sought. A
sample list of hardware and software
functions, in order of priority, is shown
in Tables 2 and 3.

AVAILABLE HARDWARE OPTIONS

Two major hardware options are
available to schools purchasing computing
equipment. The first is to develop a
microcomputer lab with one or more brands
of microcomputers. The second is to
purchase a multi-user system that supports
all the major functions and to plan on
using microcomputers as remote
workstations or for special purposes. In
a school where computing supports
non-technical programs, a microcomputer
lab can be a viable hardware option. If a
computer-intensive major is part of the

MUST-HAVE LIST

HARDWARE FUNCTIONS

1. support 20 users

2. upgradeable to 60 on-line users

3. prograrmable ports

4. easy daily backup

5. output to large screen

6. dial-in capability

7. graphics terminals

8. adequate disk storage

9. 2 color plotter

10. communicate with other computers
for batch processing

television

SOFTWARE

1.

2.

FUNCTIONS

User-friendly operating system

Compilers needed:
Fortran

a. Cobol

b. PL/I

3. Ability to create graphs

4. Ability to program in interactive
Basic

5. Financial software package

TABLE 2

37

curriculum, however, more computing power
is usually needed. Thus, the hardware
option chosen for MUH was the multi-user
minicomputer system. Only minicomputer
vendors were sought. If the major
hardware option is not easily decided by
the project team, a checklist can be used,
similar to that found in Davis.*

William S. Davis, Systems
Analysis and Design A Structured
Approach (Reading, Mass.: Addison
Wesley, 1983),p 277.



www.manaraa.com

CHOOSING VENDORS

The first four tasks of the decision
making strategy are actually preparation
for approaching potential vendors. Since
fact gathering leads to meaningful
organization and study of those facts, the
organizing process produces functional
specifications useful in choosing a vendor
and in gathering important technical and
cost information from that vendor.
Comparing computer systems is easier and
more accurate when specific and detailed
information is at hand. The two most
critical steps in the decision making
process are selecting potential vendors
and choosing the right one.

Determining the practicality of
functions can be an overwhelming task.
Priorities change when specific hardware,
software, and price are considered. For
example, a CAD-oriented system may be
considered a MUST-HAVE. If projected CAD
usage is significantly lower than demand
for an application software-oriented
system, however, the CAD priority may be
infeasible as a MUST-HAVE. CAD equipment
was projected to affect only one faculty
member and twenty students at MUH, while
twenty faculty, three degree granting
programs and more than two hundred
students per semester demanded software
development capability. The CAD system
had to be moved to a NICE-TO-HAVE priority
because of high expense and lesser impact
within the school. Yet this shift in
priority was not agreed upon until after
the vendors contacted had provided
specific information . Potential vendors
can provide essential facts that will
enhance the final decision. Failure to
identify appropriate vendors and to gather
enough of these facts will hinder informed
decision making.

At first glance, the number of
vendors possibly meeting the campus' needs
may be far too great to permit reasonable
comparison. Although a total of no more
than five vendors should be sought, it is
preferable to limit your vendor choice to
three. There are six vendor
characteristics to look for before calling
any sales representatives:

1. Limit your choices to vendors
with a sales and support office
within 100 miles.

2. Check vendor support record and
reputation before contacting.

3. Verify each vendor's financial
status.

4. Choose vendors which are
technologically up-to-date.

38

5. Seek recommendations from other
institutions.

6. Contact existing users' groups
familiar with the equipment.

Once the vendors have been chosen,
ask them to provide two general
configurations. One should inlude all of
the MUST-HAVES, the other should add the
NICE-TO-HAVE hardware and software. Both
configurations should include itemized
pricing and monthly maintenance.
Supplying vendors with a form makes the
responses uniform and easier to evaluate
later. A sample list of hardware and
software items derived from the functional
specifications is given in TABLE 4.

NICE-TO-HAVE LIST

HARDARE FUNCTIONS

1. Color graphics terminals

2. 8 color plotter

3. Digitizer

4. Additional disk storage

5. Communicate with other computers
for interactive processing

6. Ability to transfer files from at
least one brand of microcomputer.

SOFTWARE FUNCTIONS

1. CAD software

2. Database software

3. Debugging software

4. Electronic mail

5. CAI packages

TABLE 3

Additional data on each vendor can be
obtained from users of that vendor's
equipment. Request lists of sites with
systems similar to the preferred
configurations and visit these at the
busiest possible times. Ask the operators
and system managers about performance,
vendor support, ease of use, and response
time. Note any problems mentioned and any
outstanding features, either positive or
negative.



www.manaraa.com

HARDWARE ITEM PURCHASE MONTHLY
PRICE MAINTAINENCE

1. Central
processor

2. Communication to
IBM 370

3. Tape drive (45
ips)

4. Disk drive (200
megabyte
minimum)

5. Terminal (with
printer port and
advance video)

6. graphics
terminal

7. line printer
(300 1pm)

8. battery backup

9. modem (1200
baud)

10. cable for 20
terminals

SOFTWARE ITEM

1. Basic

2. Cobol

3. PL/1

4. Software for
communication to
IBM 370

5. Financial
software package

TABLE 4
Preliminary form for vendors to complete
prior to bidding'

Upgrade costs should be investigated,
as well as purchase and monthly
maintenance costs, since upgrading will
inevitably be necessary at some future
time. Ask prospective vendors to include
projected upgrade costs on their
information forms. Knowing the cost per
additional workstation, including cables,
ports, and memory, is helpful in
estimating future costs and determining if
the proposed configuration is adequate.
If upgrade costs are too high, the
proposed system is probably too small.
NEVER consider a system that cannot be
upgraded.

39

Non-biased technical information can
be obtained from Datapro reports. Datapro
publishes objective technical summaries of
all classes of computer systems and polls
users of the equipment for their
opinions. 41 These user summaries are
particularly noteworthy in ease of
operation, maintenance service, and
documentation. Documentation is the
vendor provided set of manuals which give
the user the directions needed to use the
system components appropriate to the task.
Quality documentation is extremely
important in an academic environment
because of the variety of levels of
faculty and student experience. Without it
the system will be greatly under-utilized.

MEASURES OF EFFECTIVENESS: THE FINAL DECISION

After the input from users and
vendors has been collected, the project
team will has several alternative computer-
systems to choose from. Occasionally,
feature of a computer system may make it
so far superior for a particular campus'
purposes that it is the apparent choice.
Ordinarily, however, the key people
responsible for organizing and studying
will find additional prioritizing
decisions necessary before they can decide
on a vendor. Choosing between vendors,
when two or three appear to be able to
supply appropriate hardware and software
within budget constraints, requires
further careful measurement of system
capabilities. The next step in the
decision making process, therefore, is to
analyze these alternatives, using
technical, economic and operational
criteria. These criteria may be
summarized as follows:

1. Technical criteria

a. Functionality

b. Level of technology of the
hardware and software

_
Richness of available
software

d.. Security

2. Economic criteria

a. Purchase or lease cost

b. Maintenance contract costs

c. Upgrade costs

Datapro Reports. Delran, New Jersey:
Datapro Research Corporation.



www.manaraa.com

3. Operational criteria

a. Vendcr support

b. Security

c. Implementation schedule

The first technical measure is the
vendor's response to the question, "How
well does the system perform the needed
functions?". For example, two systems may
supply a Fortran compiler, but one is
Fortran '66 and the other is Fortran '80.
Thus the second system performs that
function better.

The level of technology of equipment
is another important consideration. The
quality of education an institution
provides is reflected in how up to date
its equipment is. Better computing
equipment attracts more and better
students and their skills are more
marketable upon graduation if learned on
state of the art equipment. In addition,
newer computing equipment is more reliable
and cheaper to maintain. New equipment
becomes obsolete quickly enough; saving a
few dollars on older technology is penny,
wise and pound foolish.

The richness of software available on
the market should be considered at the
time of purchase. As more faculty and
staff learn to use the computing resources
at hand, and as the variety of
applications software increases,
additional software purchases will become
cost effective investments. Our new
computer system has not yet been
delivered; yet those who expressed special
needs are already searching for additional
software.

Cost is the first economic measure.
The number and quality4of functions
performed within budget limitations must
be considered, as well as additional costs
such as maintenance and upgrade. Further
cost-related consideration is the
availability of compatible equipment.
Frequently, compatible equipment such as
terminals or printers, can be obtained
more cheaply through a distributor. This
can be factored into cost of upgrade.

Smooth daily operation of a computer
system depends heavily on vendor support.
The vendor's support record, both
technical and maintenance, is a good
indication of how much the system will be
used. If technical problems can be ironed
out easily, minimizing machine repair
time, more people will use the machine.
Software updates are a must and should be
included in software maintenance since a

40

system becomes unneccessarily obsolete
without them. Documentation too falls
under technical support. Verify that all
manuals are readable.

Although the type of computer system
security needed in an academic environment
should be readily available on most
multi-user systems, the question of
adequate security merits careful scrutiny.
Passwords and the ability to prevent
students from accessing each others
programs are absolute minimums. Bemire
the proposed system offers appropriate
security. Examining security procedures
within another school Anvironment may give
additional insight into methods your
institution can adopt.

The third operational criteria is the
implementation schedule. The neccesary
equipment should be installed in
sufficient time to give faculty members
adequate preparation for classroom use.
Those faculty already familiar with
computers will need one semester to
adapt to a new computing environment.
Introducing unfamiliar faculty to the
computer as an educational tool will
follow. If curriculum objectives are
affected by the availability of a computer
system, then the implementation schedule
should be a criteria in evaluating the
vendor proposals.

Once it is apparent that two or three
of the vendors meet the campus' needs and
measure up fairly well, request formal
bids. Although this may delay delivery by
a few weeks, it will most assuredly reduce
the price or, bring a few of the
unaffordables within reach. When
requesting these bids be sure to demand a
complete installed system price. This
includes delivery, installation, and
bringing the system on-line . At this
point, price can be the final, dadding
factor. Let the vendors know that' it is
not the only criteria for final selection.
The results of the bidding process can be
surprising. At MUM, the three vendors
that were asked to bid were IBM,
Hewlett-Packard, and Digital Equipment
Corporation (DEC). Only Hewlett-Packard
and DEC submitted bids. Both vendors
measured up well, DEC's richness of
software and newer technology winning the
purchase contract. Hewlett-Packard is
currently offering free software to
educational institutions, whiola makes them
extremely competitive.

The decision making process does not
end when the equipment is purchased and
installed. Instead, as long as computing
is seen as an integral part of the
educational process, the effectiveness of
the system must be maintained through



www.manaraa.com

continuous reassessment. This means
project teams keep abreast of changes in
campus' needs and new developments in the
industry which can better meet those
needs. Here again, the IPO process
facilitates efficient decision making,
building on existing knowlege to achieve
consistent effectiveness.

BIBLIOGRAPHY

Davis, William S. Systems Analysis and
Design. Reading, Mass.: Addison Wer:::1?.y
Publishing Co., 1983. pp. 274-279

Davis, William S. Operating Systems A
Systematic View. Reading, Mass.: Addison
Wesley Publishing Co., 1983.

Fitzgerald, Jerry; Fitzgerald, Ardra;
Stallings, Warren. Fundamentals of
Systems Analysis. New York: John Wiley and
Sons, 1951. chapter 7

Weinberg, Victor. Structured Analysis.
Englewood Cliffs, New Jersey:
Prentice-Hall, Inc., 1980.

41



www.manaraa.com

EXTENSIVE COMPUTER GRADING OF ID-INDIVIDUALIZED HOMEWORK PROBLEMS

M. J. Maron

Department of Applied Mathematics and Computer Science
University of Louisville, KY 40292*

at a desk, not at the computer terminal. It is

only after solutions are Obtained that the student
uses the grading program. A grading session con-
sists of identification, submitting answers to
some or all problems of a ringle assignment,
grading, and getting a summary (Figure 2). It

takes about 3 to 6 minutes to submit and grade
16 to 18 answers. The program does the grading
by accessing the file of student IDs and checking
Whether the submitted answers agree with the
"correct" ones calculated by an appropriate sub-
routine of the program to within a prescribed
accuracy.

Abstract

This paper describes an efficient methodology
in which a computer is used to grade ID-individual-
ized homework problems on demand while keeping
records for these homeworks. The methodology was
developed at the University of Louisville and used
there with undergraduate courses in statics and
numerical analysis. Results so far indicate that
it can be an effective pedagogical tool for any
course in which homeworks have numerical answers.

Rationale

The following feature distinguishes this
methodology from most existing schemes for cpm-
puterized grading of individualized problems':

The student does not have to go to the computer
to get individualized problems. Instead, home-
work assignments are given in the "traditional"
way, that is, on a single duplicated sheet
which is distributed to all students in the
class (Figure 1). The individualization is
imposed by the following simple device:
Problems are given in terms of A, B, C, D, E,
and F, where ABCDEF denotes a 6-digit student
ID. For example, a problem may require the
student to evaluate

(3.AB)(5.CD + 12.F - E)

A student whose ID is 123597 will calculate

(3.12)(5.35 + 12.7 - 9) = 28.236

Any other student, having a different ID,
should oet a different answer. In this way,
all students solve the same problem but no
two students should get the same answer.

The 6-digit IDs are stored when the student
files are created. Once this is done, there is
no further need to store or generate individualized
randomized numbers for each student for each
homework.

The problems are solved in the "traditional"
way, i.e., with pencil, paper, calculator, etc.,

1

*This material is based upon work supported by the
National Science Foundation under LOCI Grant No.

79-00864.

42

The student has a fixed time period (e.g. 10
days) to get the best possible mark on a given
assi-gnment. During that time he or she may con-
sult with the instructor and/or classmates to
correct and resubmit those answers that were
wrong. Such a time limit effectively eliminates
the problem of procrastinatign that generally
plagues "self-paced" schemes 4, while still giving
the student a chance to achieve proficiency on
each segment of the course.

The methodology described above ensures the
following:

Each student does his or her own work; but stu-
dents may consult with each other about how to
get correct answers. (This type of collusion is
considered as desirable.) Simply copying some-
one else's work (considered undesirable) does the
student no good whatsoever.

The grading is uniformly fair and immediate.
Rather than wait for a human grader, the student
immediately knows which answers are wrong and
can begin to correct them at once. Answers can
be re-submitted repeatedly if necessary until
either the student is satisfied with the grade on
that assignment or the time limit for that assign-
ment has expired.

The instructor can assign as much routine drill
as-deemed necessary without having to face the
tedium of grading it and recoreing the results.
Instead, human grading energy cal be expended
where it is needed, namely on projects and assign-
ments which require judgment, analysis;\comparison,
etc.

There is no major crisis when the computer goes
down because the work is done away from the termi-
TOT If necessary, a simple adjustment of the



www.manaraa.com

COURSE #1207 1
ASSIGNMENT #1 2 1 DATE ASSIGNED ; January 24,1983 + 14 1

---1!

CLASSLIST 01 ID= 1 A 1 BICIDIEIF1
1 1 1 1 1 1 1

REMINDERS: 1. Substitute digits of your ID for ABCDEF.

2. Unless otherwise indicated, use your calculator accuracy in all
intermediate steps, storing intermediate values if possible.

Q1.

3. SVJmit answers (Al, A2,...) to at least 1 5 1 significant digits.

Points

Let f(x) = z3 (50.E)x s x3 (50. )z.

Answers

Al = 6

If the Newton Raphson (NR) method is used A2 = 6

with zo = 4.2CD = 4.2 then A3 = 6

A4 = 6xi = :_,Al x2 a 1 A2 1. x3 = i, A3 1

whereas if X0 2 3.FB = 3. . then A5 = 6

A6 = 6xi = A4 1 . x2 = : A5 1, z3 = 1 A6 1

Q2. Let f(x) = z3 (50.E)x = z3 (50. )x.

If the Secant (SEC) Method is used with A7 = 6

z_i = 4.3DE = 4.3 and x0 = 4.2CD = 4.2 , A8 = 6

Ag = 6xi a 1 AT 1, x2 s 1 A8 1. 13 = 1 A9 1

whereas if it is used with z_t 2.9E 2 2.9 A10= 6

and x0 = 3.FB = 3. , All= 6

A122 6rt w 1 A10 1. x2 = 1 All 1. z3 = 1Ail !.

Q3. Let xo = 3.D = 3. , z1 = /.0 = /. , and

z2 = 0.4F = 0.4_.

If the convergence is exactly linear, than A13= 6

A14= 8iixklAxic = C1 a 1 A13 1 and x3 = 1 A14 1

If the convergence is exactly quadratic, then A15= 6

Al6= 8Axic/(&zk_1)2 = C2 : A15 1 and x3 = 11C16-1

[ Figure 1: Sample Computer Graded Assignment]

43



www.manaraa.com

HI THERE. PLEASE ENTER SECTION 4, HOMEWORK *: 1. 1

ENTER CLASSLIST NUMBER, ID: 1, 123456

ENTER LAST NAME: MARON

DO YOU WANT TO 1) SUBMIT ANSWERS OR 2) GET SUMMARY?
1 OR 2? 1

REMINDER: HIT <RETURN> KEY TO SKIP A QUESTION
CTRL/U TO REENTER AN ANSWER
CTRL/Z TO DISCONTINUE 'Am' PROMPTS.

Al- OK
A2= JK
A3= OK
A4= OK
A5= OK
A6+ OK
A7= OK
A8= OK
A9= 14.9

AlOm OK
All .4125

Al2= OK
Al3= OK
Al4= OK
Al5= 5.24448

Al6= 8.26305

Al7= 37.2045

ger( ONDe'ilt-midts COMAcarnag

sJerze r 4

renuommt.

PLEASE WAIT WHILE GRADING:

A9= 14.9000
All= 0.412500
Al5= 5.24448
A16= 8.26305
A17= 37.2045

CORRECT ANSWERS:

A9
All
Al5
Al6
All

SUMMARY FOR HOMEWORK 4 1

114 1 2 3 4 5 6 7 8 9

POINTS: 5 5 5 5 5 5 7 7 7

A4 10 11 1T 13 14 15 16 17

POINTS: 7 6 6 6 6 6 6 6

TnTAL POINTS: 100 OUT OF A POSSIBLE 100
WELL DONE!!!

ENTER ANY COMMENTS OR COMPLAINTS (THEN HIT<RETURN>).
IF NONE, JUST HIT <RETURN>

? THANKS. I NEEDED THAT

Y'ALL'COME BACK SOON.

Figure 2: Illustrative session with grading p,rograly I

44



www.manaraa.com

program files can extend the grading period for
selected homeworks.

Applicability

Homework problems and the associated subrou-
tines for grading them have been written for a
freshman level course in statics and for a junior
level course in numerical analysis. However,
the grading program can be used with any course
for which there are routine problems which have
numerical answers. This attribute characterizes
most -"core courses" in an engineering or natural
science curriculum, and most quantitative courses
in a social science or business curriculum.

Desirable Operational Features

Aside from the general benefits described in
the Rationale, the use of the computer grader in
several courses simultaneously offers the fol-
lowing operational benefits:

Student files for each course are easy to set up.
The information required for a student record
(viz. name and an ID) is precisely the rormation
provided by the registrar on alphabetical class-
lists. So this classlist information can be dumped
onto a temporary file which can then be read into
the appropriate fields of the grading program
files by a simple utility. Only minor modifica-
tions (late registrants, etc.) need be keyed in
manually.

The storage requirements are minimal. A single
grading program can serve several courses. Since
there are no randomized numbers for the computer
to generate oo store for each homework, the program
and files ay-42, quite small. Object code for the
program requires 65 blocks (about 40K) of disk
storage on a DEC 1090; the grading subroutines
are generally short and should add no more than
10-25 blocks per 3 semester hour course (Figure 3).
With the use of bit packing, all necessary infor-
mation for one student's performance on one assign-
ment is stored in a single word (which can be as
small as 32 bits). As a result, the file for a
class of 35 students who are given 25 computer-
graded assignments requires only 20 blocks (about
12K) of disk storage on a DEC-1090.

Teachers of different sections of a particular
course can assign homework independently. This
flexibility was written into the grading program
to ensure that instructors using it do not feel
that someone else's "gimmick" is being forced upon
them. Rather, each instructor can teach the
course in the same order and with the same empha-
sis that he or she would use without the computer
grader. This flexibility also makes it easy for
an instructor to modify the syllabus from semes'
to semester if desired.

Some of the time which student assistants current-
ly spend as graders can be spent programming
grading subroutines. These subroutines can be
written without any knowledge of the design of the
grading program. Indeed, a student with reason-

.

45

able programming expertise can write a subroutine
for a new problem in 20-40 minutes by merely
mimicking Figure 3. This is more challenging,
more interesting, and certainly no less of a
learning experience than grading the same prob-
lem(s) repeatedly for all students in one or more
classes.

Once the grading subroutines are written, a teacher
can choose to re-use assignments of previous
semesters without fear of students copying the
homework of the previous semester.

Results

The grading program was used intensively with
three sections of ESC 205, a freshman-level statics
course, and two sections of AMCS 207, a junior-
level numerical analysis course in the Spring 1983
semester. All sections had an initial enrollment
of about 35. Each week, two short computer-graded
homeworks (typically 1-8 answers) were assigned in
ESC 205 and one longer computer graded assignment
(typically 12-18 answers) was assigned in AMCS 207.
The grading period for these assignments varied
between ?'and 14 days. Although the final results
are not, yet available, some results are evident.

Pedagogical Effectiveness

After eight weeks, 89 students in the three
sections of ESC 205 and 68 students in the two
sections of AMCS 207 were still using the computer
grader. The grades they received on the first
15 homeworks in ESC 205 and the first 6 homeworks
in AMCS 207 are tallied in Table 1.

Grade
Range

Number
in ESC 205

Number
in AMCS 207

=100% 908 (68%) 351 (86%)
90-99% 16 ( 1%) 13 ( 3%)

80-89% 37 ( 3%) 15 ( 4%)

70-79% 47 ( 4%) 10 ( 2%)

60-69% 41 ( 3%) 7 ( 2%)

up to 59% 286 (21%) 12 ( 3%)

Table 1

Evidently, most students were motivated to get the
highest possible grade on each assignment. This
is further supported by the fact that students
used an average of about 4 to 8 grading sessions
to get these grades, and some students used more
than 15 sessions for some homeworks!

This high degree of motivation resulted in
many students coming to my office when they (and
perhaps their friends as well) ran out of,ideas
-Bout how to do problems I

de from the obvious benefits`
',,ihese encounters pointed out se,.,eal p+1!Ay crn-

ce' "r °ed problems and some shortcomings in the

graiiing subroutines.

Results of student questionnaires during an
earlier trial with only AMCS 207 indicated that
(a) the students enjoyed and believed they



www.manaraa.com

SUBROUTINE HW2
COMMON /HWK/ A, B, C, D, E, F, IPROB, ANS(9)

C
GO TO Cl, 1, 2), IPROB

C

C **** 01 AND 02 ****
1 Cl = 50. + E/10.

X0 = 4.2 +.01*C +.001*D
X00 = 4.3 +.01*D +.001*E
IF (IPROB .E0. 1) X00 = X0
CALL ROOT(IPROBy X00, X0, 3, Cl, ANS, 0)
X0 = 3. + .1*F + .01*B
X00 = 2.9 + .01*E
IF (IPROB .E0. 1) X00 = X0
CALL ROOT(IPROBy X00, X0, 3, Cl y ANS, 3)
RETURN

C
C **** 03 ****
2 X0 = 3. + D/10.

X1 = 1. + C/10.
X2 = .4 + F/100.
DXO = X1 - X0
DX1 = X2 - X1
ANS(1) = DX1 /DX(
ANS(2) = X2 + ANS(1)*DX1
ANS(3) = ANS(1) /DXO
ANS(4) = X2 + ANS(3)*DX1**2
RETURN
END

C
SUBROUTINE ROOT(Mg XPREV, X, ITER, Cl, ANS, IBUMP)
DIMENSION ANS(9)
FUNC(X) = (X*X - C1)*X
DERIV(X) = 3.*X*X - Cl

FPREV = FUNC(XPREV)
DO 50 I=1,ITER

F = FUNC(X)
IF (M .E0. 1) SLOPE = DERIV(X)
IF (M .EQ. 2) SLOPE = (FPREV - F)/(XPREV - X)
XPREV = X
X = XPREV - F/SLOPE
FPREV = F
ANS(I+IBUMP) = X

50 CONTINUE
RETURN
END

(Figure 3: Subroutine to grade assignment in Figure 1

46



www.manaraa.com

learned from the computer assignments, and 6,,
their attitude toward computers was more positive
after the course, perhaps due at least in part to
the computer gradingi.

Time Involved

The terminals used were connected to a DEC-
1090 via 300 baud lines. The average connect time
over all sections seems to be around 18 minutes
(total) per student for one assignment, or about
3 minutes per grading session. Most likely,
initial sessions took longer and later "fixup"
sessions were shorter. Grading sessions can be
made somewhat shorter by using higher speed lines.

Another factor tha will reduce the total
grading time is the removal or correction of
problems that were poorly worded, ill-conceived,
or improperly graded. (All of the ESC 205 prob-
lems and about half the AMCS 207 problems wer
written about a week before they were assigned.)
These caused many unnecessary grading sessions.

Cost Involved

At a university that already has remote ter-
minals available to a host computer and makes no
real dollar charge for instructional computer use,
the only possible major expense is for the time
spent preparing and debugging the subroutines for
grading problems for a particular course. Since
problems can be re-used effectively, and subrou-
tines to grade new problems can be written by
student assistants, this charge should be reason-
able. Even if disk storage and connect time are
billed to a real dollar account, the cost should
compare favorably to the cost of paying a student
the minimum wage to grade papers (with not nearly
the effectiveness of the computer grader).

Summary and Conclusions

This paper described an ID-individualized
methodology in which homework grading, but not
learning, is done interactively at a termini
The results so far indicate a high degree of both
pedagogical and cost effectiveness. Although more
extensive study is needed, these results suggest
that for courses in which there are routine prob-
lems having numerical answers, this methodology
may prove to be superior to both "traditional"
hand-graded schemes and more extensive CAI schemes.

Bibliography

1. "Computer Aided Assignments in Electrical
Engineering Education", W. J. Smolinski, ASEE
Educational Research Methods Journal, Vol.
10, No. 3, (Spring 1978).

2. "Does PSI Work Because it is Self-Paced?",
M. J. Maron and L. D. Tyler, Proceedings of
1976 Frontiers in Education Conference,
Tucson, AZ.

3. "The Effects of Computerized Grading on
Student Attitudes Toward Computers", m. J.

Maron (To Appear).

47

62



www.manaraa.com

AUTOMATIC SYLLABUS GENERATOR (ASG)

Asad Khailany, Marc B. Schubiner, A.M. VanderMolen

Department of Operations Research and Information Systems
Eastern Michigan University, Ypsilanti, Michigan

ABSTRACT

Many instructors are facing problems in pre-
paring syllabi for multi-section courses. Often these
are core courses, such as introduction to computer
science, information systems, mathematics, and
statistics. It is difficult for the various instructors
to be consistent in teaching required course
material established by the administration. Fre-
quently, individual instructors prepare their own
syllabus for a section, leading to many different
syllabi for the same course. Furthermore, typing the
syllabi is an added burden to the departmental sec-
retaries. The Automatic Syllabus Generator (ASG)
is a menu driven software package written to gen-
erate any type of syllabus. Such a system has a
number of economical and administrative ad-
vantages. However, it may raise some questions
with respect to academic freedom. This paper dis-
cusses the design, implementation, advantages and
disadvantages of ASG.

INTRODUCTION

In the last decade considerable emphasis has
been placed on the content and quality of syllabi.
Usually, the administration requires instructors to
prepare their syllabi in accordance to the institu-
tions' guidelines which may contain all or some of
the items in figure 1. Further, the administration
expects that instructors hand out their syllabi to
the students at the beginning of the semester. In
many institutions, the syllabus is considered to be
a contract between the instructor and the students.
It is used as the base to settle any dispute between
the instructor and students during or after the
semester period. Therefore, a syllabus is an im-
portant document not only for the student but for
the instructor as well.

48

The situation often arises in large educational
institutions where a course is taught in several
sections by different instructors. This situation lends
itself to several problems. Among these problems
are that of consistency of material taught in each
of these sections and in subsequent semesters. Also
there is an increased work load on the secretarial
staff in preparation of several different syllabi. The
difficulty that new or.p,art time instructors have in
determining exactly what should be taught in the
course is an additional problem. Another problem
is that with varying syllabi content, students may
not meet their objectives in taking the course.
Finally, problems can arise with meeting accredita-
tion standards and student preparation for sub-
sequent courses.

The system can have its drawbacks. The most
striking, in the case of the unified syllabus, is that
of academic freedom. The question arises, how
much can be dictated to the instructor as to how
the class will be taught and the exact subject
matter covered. This is a fine line and could pos-
sibly destroy a course whose reputation was built
on the personality of the instructor. Furthermore,
if the administration does not update the required
documents, the syllabus may not keep up with
new innovations and future technological changes.
It is possible that course material could become
stagnant or' ated.

A solution to some of these problems is presented
here. A computer-aided Automatic Syllabus Gen-
erator (ASG) was written to assist the instructor in
creating a course syllabus. Additionally, to insure
standardization of the syllabus, certain aspects are
fixed such as institutional policies and course goals.
Other requirements are fixed as to their inclusion
in the syllabus,/ however, their content may vary
according to the individual instructor.



www.manaraa.com

The general outline of the syllabus develops with
the appropriate body (faculty, administration, etc.)
drafting the objectives of the course and other re-
quired documentation. These results are placed in
files which are used by the ASG to automatically
generate a syllabus. Prior to creating a syllabus, the
individual instructor would include their personal
criteria and information. This includes office hours,
grading system, project, text book, etc. The resulting
syllab' can then be printed en masse by the com-
puter. Also the syllabus can be stored on the com-

MINIMUM&

puter and students could print their own copy. In
both cases, considerable secretarial time and ex-
pense can be saved.

Figure1 shows the list of parameters for the Auto-
matic Syllabus Generator (ASG). Those denoted as
fixed are parameter which are consistent through-
out all syllabi for a course. Those denoted as re-
quired are parameters which must be included in
the syllabus but the content may vary from in-
structor to instructor.

SYLLABUS OUTLINE

Name of the course

Semester

Name of the professor

Office room and hours

Telephone

Meeting time and place

* Goals and objectives

* Text book

* References

* General outline of the course

Detailed course outline

Grading system

Homework/Term project

Policies:

* Grading homework projects

* Absenteeism of exams

* Make up exams

- Class contribution

Class absenteeism

* Late homework

* Cheating

* Granting Incomplete

Figure 1: Items recommended to be included in
the syllabus

* denotes the fixed items

49



www.manaraa.com

SYSTEM DESCRIPTION THROUGH THE
DATA FLOW DIAGRAM

The Automatic Syllabus Generator (ASG) is com-
posed of five subsystems, see figure 2. These are:

1.1 The Initial Process
1.2 Create Processes
1.3 U pdate-Time-Bound-I nf ormation
1.4 Update Syllabus-Stable Information
1.5 Generate Syllabus

The Initial Process Subsystem (IPS), see figure 3,
has two components: Enter and Verify subsystems.
The IPS accepts the course-information data flow,
which is comprised of course prefix (such as MAT,
ORI, CCS, etc.), course number, course title and
credit hours, from the user. Before further proces-
sing of the data flow, the IPS displays it back to the
user for verification. After confirmation from the
user, the IPS passes the course-information data
flow to the Create Process Subsystem (CPS).

The components of the CPS are: Input, Verify
and Write subsystems. The Input subsystem ac-
cepts the time-bound-information data flow from
the user, and calls the Verify subsystem to confirm
the user's input. Next, the CPS calls the Write sub-
system to write the time-bound-information, which
consists of the semester (such as fall, winter, spring
or summer), year, instructor's academic title,
name, office location, telephone number, office
hours, course section ID, section number, class
room number, building and meeting time in the
SSYL file.

The Update-Time-Bound-Information Subsystem
utilizes three subsystems: Read, Update and Verify
subsystems. The Update-Time-Bound-Information
Subsystem is used by the instructor to modify an
already existing syllabus or to modify the time-
bound-information data flow.

The fourth subsystem, Update-Syllabus-Stable-
Information Subsystem (USSIS), utilizes three sub-
systems: Read, Edit, and Write subsystems. This

subsystem is used to update the stable-
information files.

The last subsystem of ASG, Generate Syllabus
Subsystem (GSS), utilizes two subsystems: Write
Syllabus and Print Syllabus subsystems. This sub-
system retrieves time-bound-information data flow
from the SSYL file and stable-information data flow
from the stable files and generates the actual
syllabus by writing it in the file SYLLABUS. Further,

50

the GSS prints the des..*<.c1 number of copies of the
syllabus. The source of the stable-information data
flow is the stable files.

A copy of a syllabus produced by the ASG is in
the appendix.

The following nine files make up the stable files:

TEXT file. This file contains the required and
optional text books.

GOAL file. This file contains the general and
specific goals and objectives of the
course.

REFS file. This file contains all recommended
references for the course.

DTOL file. This file contains detail course
outline.

GRSM file. This file contains grading system
and grading scale.

HMAS file. This file contains the required term
projects and homework assignments
and their due dates.

GRPL file. This file contains homework and
term project grading policies.

TERM file. This file contains the title and detail
description of the required term
paper and projects.

POLS file. This file contains policies regarding
absenteeism from exams, make up
exams, cheating, granting incom-
plete and class absenteeism.

IMPLEMENTATION

The Automatic Syllabus Generator (ASG) is
written in Fortran-10, Version 6, 'and is imple-
mented on a DECsystem-10 with a KI.10B processor.
The code follows the ANSI 1966 Fortran standards
permitting ease of transfer to different processors.
The system is totally modularized and is comprised
of 55 modules. On the DECsystem-10, each block
is 128 words or 640 characters and the processor
has 36 bits. The ASG source code requires 120K or
186 blocks of storage on the DECsystem-10. The
ASG in relocatable form uses 90K or 140 blocks and
the execution form occupies 50K or 80 blocks.
The compilation time is approximately 10 seconds.

6



www.manaraa.com

USER

1,1 1 1 1.2

.6u

1.4

TEXT

D3OAL

D4 REFS

05 DTOL

D6 GRSM

D7 HMAS

08 GRPL

D9 TERM

0 POLS

D111 SYLLABUS

Figure 2: The data flow diagram of the ASC.

1. Automatic Syllabus Generator

1.1 Initial Process

1.2 Create Process

1.3 UpdateimeBound.Information

1.4 UpdateSyllabusStableInformation

1.5 Generate Syllabus



www.manaraa.com

IPS

USER

/111...10N eMMI111.,

1 ENTER I VERIFY

CPS

4411410.1 2

USER

01 SSYL

USER

F

UPDATE

2

VERIFY

2

pne=,

INPUT

WRITE

2
VERIFY

11551$

GSS

USER

WRITE

4

PRINT

1 -. Course Information

A -- Course Prefix

B -- Course Number

C -. Course Title

im111

D -- Credit Hours

2 .- Time Bound InformationTENT

A -- Semester03 COAL

IHD4IREFS B -- Year

1- C -- Title
OS DTOL

D -- Name
D6 GRA

NM.

E -- Office Room

D7 1111AS1.1.1
F -- Building

GRPL

D91 TERM

Dli POLS

4 ---
)111 SYLLABUS

Figure The detailed data flow diagram of the ASG,

-- Telephone

H -- Office Hours

I -- Hours By Appointment

J -- Section ID

K -- Section Number

L -- Class Room

M -- Building

N -- Meeting Time

3 .. Stable Information

4 -- Syllabus Information



www.manaraa.com

A BRIEF DESCRIPTION FOR THE USER

The user begins the Automatic Syllabus Gen-
erator(ASG) process by entering the course-
information. The course-information consists of the
course prefix, course number, course title and
credit hours. Next the user has the choice of:

1 creating a new syllabus,
2 updating the time-bound-information (TBI),
3 updating the syllabus-stable-information

(SSI),
4 writing the syllabus on the disk and printing

it on the line printer,
5 print multiple copies of a syllabus.

The TBI consists of the file SSYL, the file has the
following elements: semester, year, academic title
and name, office,roon-1 number and building, tele-
phone number, office hours, hours by appoint-
ment, section ID and number, class room number
and building, and meeting time. The. SSI consists
of the following files: TEXT, GOAL, REFS, DTOL,
GRSM, HMAS, GRPL, TERM,and POLS. The Sylla-
bus consists of the file containing the TB!, and all
the files containing the SSI.

Creating a new syllabus option is chosen if the
user has never generated a syllabus for the course.
The ASG stores the TBI, input by the user, into the
SSYL file. Next, the ASG generates a copy of the
syllabus on the disk and the lineprinter. This sylla-
bus is considered a temporary copy for the users
inspection. After receiving verification from the
user, the ASG generates a permanent copy.

Option 2, updating the time-bound-information
option, is chosen if the user wants to update an
existing syllabus and needs to change the TBI. The

53

user can update each element of the SSYL file in-
dividually with the new value written into the SSYL
file. The ASG generates a new temporary copy of
the syllabus if no update is required in the SSI files.
However, the user must continue on to the next
option if SSI requires updating.

Updating the syllabus-stable-information option
is chosen if the user needs to update the SSI in the
SSI files. The user can edit each file separately and
when updating is completed a new temporary
copy can be generated.

Option 4, writing to the disk and the lineprinter,
is chosen whenever the user wants to generate a
temporary copy for inspection.

Printing multiple copies option is chosen when
the user is satisfied with the syllabus created, up-
dated, edited and written by the Automatic Sylla-
bus Generator.

CONCLUSION

The Automatic Syllabus Generator (ASG) can be
very helpful to instructors preparing class syllabi.
It can be used by a new instructor to create a sylla-
bus containing consistent course material with
what is being taught in other sections and in pre-
vious semesters. Instructors who have been teach-
ing the course for several semesters who need to
update their syllabi can also benefit. Although the
ASG has some drawbacks, such as restricting
academic freedom of the instructor, it should be
noted that an instructor can still use the system
and dictate most of the parameters. This can allow
the instructor to take advantage of the time and
economic savings produced by the ASG.



www.manaraa.com

How Schools Use Microcomputers:
Findings from the Johns Hopkins University
National Survey of Computer-Using Teachers

Clarence Miller, Chair
Maryland State Department of Education

Baltimore, MD 21201

ABSTRACT
This symposium discusses the major findings and the implications for schools of a

national survey of how schools are currently using microcomputers in their instructional
programs. The survey, a national probability sample of 2,259 public, private, and

parochial elementary and secondary schools, including about 1,400 with a microcomputer,
was undertaken between December, 1982 and February, 1983. Respondents included the

principal at each school and the primary computer using teacher in those schools with a

microcomputer. The symposium consists of a presentation of some of the major statistical
findings from the survey, and a discussion of the implications of these results for
schools planning their future involvement with computers.

The paper presents a variety of data from the survey. The principal focus is how

schools in different locations, having different types of student bodies, in different

financial situations, and enjoying different degrees of district and administrative

support have had correspondingly different histories of involvement with microcomputers,
possess different types and quantities of microcomputer equipment, and use this equipment

in different ways.
The paper also shows how schools that have had a microcomputer for over a year have

changed their approach to using the computer and how these changes are related to factors

in their environment.
The discussion which follows the paper presentation will present the reactions of two

knowledgeable people in the field of educational computing - reflecting academic,

governidental, and commercial perspectives. The discussants will focus on some

implications of this national survey data for schools planning new or further investments
in microcomputer technology in the services of their instructional goals.

PRESENTER

Henry Jay Becker, Project Director
The Johns Hopkins University
Baltimore, MD 21218

DISCUSSANTS

Arthur Melmed
U.S. Department of Educaton
Washington, DC 20208

Charles Blaschke
Educaton Turnkey Systems/MEAN
Falls Church, VA 22046



www.manaraa.com

CAI in Foreign Language Instruction

Carl Adamson, Chair
Wichita State University

Wichita, KS 67208

Michael Bush
USAF Academy

USAF Academy, CO 80804

ABSTRACT
The mirocomputer offers foreign language educators a unique and powerful opportunity to

enhance their language learning programs. Their interactive qualities provide students
with feedback, evaluation and above all controlled stimulus-response learning which, when
coupled with their impressive audio and graphic capabilities, may well make them an even
more effective laboratory too) than audio tape. The first presentation offers a brief
look at some of this potential with respect specifically to the Atari 800/400/3200
computers. After a brief discussion of some factors relevant for language laboratory
implementation, the unique capabilities of the Atari will be presented. Features such as
a modifiable character set, more than a dozen graphic/text modes, 256 color flexibility,
graphics indirection through an easily modifiable display list, simultaneous audio,
processing, and di ?lay, all lend themselves well to the highly interactive methodology of
foreign language acquisition. In addition, the low cost and relative programming
friendliness of the microcomputer rake it particularly attractive for language learning
applications.

The second presentctich will discuss microcomputer based interactive videodisc in basic
French instruction. The videodisc is the densest storage medium available for use on
computers of any size. This new technology is being combined with the control
capabilities of the microcomputer for the presentation of audiovisual material in basic
language instruction. a

Using a methodology developed by an agency of the French Government during the past
three decades, the Department of Foreign Languages at USAFA is studying how the "old" can
be combined with the "new" to create an exciting environment for foreign language
instruction. The random access capabilities of the intelligent videodisc system will be
used to good advantage in the presentation of new material to beginning language students.

It is anticipated that by using this approach, students will individually accomplish
the initial phases of leerning new material, this freeing time presently being spent in
the classroom on these more rote aspects of instruction With the technology being used
in the manner for which it is best suited, the classroom experience will be enriched for
instructors and students alike and in ways possible only through the added human
interaction that results from such use.

55



www.manaraa.com

What Compcter Curriculum Is Right For The Small College?

Dr. William Mitchell

The Univerity of Evansville
Evansville, Indiana

ABSTRACT

There are nearly 2000 colleges in the

United States which enroll 5000 or fewer

students. The majority of these colleges are

liberal arts colleges with less than 2000

students. Most of these schools have acquired
computer facilities and roost offer one or more
courses in which the computer is used. Many
w,,ald like to ma%e a computer-related major or
minor available to their students. There are

at least four nationaly published curricula
which these school might consider but none of
these curricula were formulated with the small
college environment in mind. This paper will

discuss the reasons why most small colleges
cannot adopt any of the present curricula, and
will offer a compromise curriculum which is a
practical alternative.

Introduction

It is increasingly evident that computer
applications will dominate our society during
the close of the 20th century. Because of the

perv- iveress of the computer phenomena, a
field which is barely 30 years old is already
fragmenting, ruptured by the stresses of
compelling applications. As the academic
community tries to understand what is cohesive
and fundamental about computing and how to

organize it for study, the various users of
computing demand that greater emphasis be

placed on those features of the subject which
are immediately relevant to their individual

needs. The economics of computing justify
tremendous inefficiences in software and

systems design because the hardware is so
powerful that the resulting output is not only
acceptable, it is significantly better than
what can be achieved without computers. In a

"results now" environment, there is little

tolerance for abstractions and no motivation
to take a little more time and do it right.

In a rapidly changing technological

environment, it is difficult to identify

fundamentals. The computing field is surely

unique, for it is an experimental field whose
subject changes faster than it can be

formalizuJ. Just as we begin to understand
sequential algorithms and automata, we find

ourselves in the age of parallel processing.

The academic approach to computing

reflects the diversity and fluidity of the
field. The field is too young to have
.produced many great generalizers, so it lacks
the unity provided by "schools of thought"

which characterize other disciplines. There
are no fundamental problems which challenge
computer scholars (only an endless list of

interesting or presssing ones), no widely
accepted paradigms which guide their work
[14,16], and consequently, little breadth to

computer research. Like today's computer
applications, the academic study of computing

is particularized.

Little wonder, then, that so many
definitions abound for undergraduate computing
curricula. In the past five years the

Association for Computing Machinery has

published five different and discrete

computing curricula, and these have been
augmented by the recommendations of dozens of

other professional societies and individuals,
frequently t/ith rogard .f)r any of the

previous wax. Asidc. from broadcasting the
views of each constituency, the plethora of
curriclum recommendations have begun, by their
intersection, to describe what is desirable
for undergraduate computing studies.

56

In this paper the author concentrates on

four diverse curricula which have received
national publicity in the professional
literature. From these are drawn implications
which guide the construction of a model

curriculum for a small college. The method
used to derive the model is as important as

the actual curriculum derived. Each suggested
curriculum represents a viewpoint, and from

each's viewpoint, its curriculum is rational
and the competitors' curricula are invalid.

Thus, the derived small college curriculum
will be viewed as sensible by those who accept
the premises of the model's derivation, and
will be viewed as inadequate by those who do

not. If, however, the method for building the
model is hel .!:111, each may build his own ideal
(for him) .-mputing curriculum. This is not
to say that computing curricula are arbitrary,
but to emphasize the present lack of accepted
generalizations.



www.manaraa.com

The author can claim both knowledge and
experience in the process of curriclum design
[8,9], and a special expertise in the area of
small college computing curricula [17]. Many
of the ideas presented here have emerged from
a graduate course on computing curricula
taught to small colllege computer educators.
The curriculum derivation process has been
employed by dozens of colleges in the past:

five years.

The Curricula

The major undergraduate curriculum models
for computing education have been proposed by
professional groups, each with its own bias.
Three curricula are proposed by the
Association for Computing Machinery:
Curriculum '78 in Computer Science [2] (see
figure I), the 1982 Information Systems
Curriculum [12] (see figure 2), and the
Two-Year College Curriculum of 1980 [8]. The
first curriculum represents computing as it
exist in the research-oriented university.
Emphasis is placed on the mathematical
analysis of algorithms, on the theory of
numerical computation and symbol processing,
and on the study of the properties of abstract
machines and languages. The second curriculum
emphasizes the application of existing
computer technology to business organizations.
Concern is evidenced for the effective use of
computer systems, which necessitates
understanding how information is used for
control and decision making within
organizations. The third curricula is focused
on the operation of computer systems in

commercial environments with the goal of
preparing students for carrying out the
activities normally required in such shops
(rather than to analyze why these activities
are desirable). Both of the later two
curricula emphasize a strong knowledge of
business as corequisite to utilizing the
technical content of the computer curriculum.
All these curricula have been devised by
academics with ±e advice and counsel, to
varing extents, of the practicing
professionals.

Two other curricula have been derived to
represent the business data processing
community. The DPMA curriculum [1] (see
figure 3) eschews theory, even the business
organizational theory emphasized by ACM, and
focuses instead on criteria for practice. The
curriculum seeks to produce a competent
employee who will be skilled in applying
existing computing technology to the
present-day business environment. The highest
goal of the curriculum is to minimize the time
it requires to assimilate the graduate into
his first position. To meet this goal the
DPMA curriculum designers were willing to
sacrifice "why" for "how" when that was
necessary. The curriculum is implemented as a
rolling five-year plan, so that each
graduating class will be state-of-the art. It

is thus deemed essential that computer
technology be highly integrated with courses

57

in business practice in order that the student
be properly oriented and motivated.

The curriculum of the Pittsburgh Large
Users Group [13] (see figure 4) has been
constructed similarly to the DPMA model,
utilizing a survey of professionals to
ascertain topics and the degree of emphasis.
In this case, the survey was limited to

large-scale corporate computer centers, so
that the result supported greater technical
depth than the DPMA survey, reflecting the
greater technical sophistication of such
centers. While encouraging the business
corequisites of the other
commercially-oriented curricula, the PLUG
curriculum does not insist on the degree of
integration espoused by DPMA. On the other
hand, while it recommends technical courses
similar in depth to the ACM Information
Systems proposals, it does not seek the
improvement of management's utilization of
computer systems. Its goals is to provide the
technically competent employee which the two
year curriculum attempted to define, except
that in this environment the four year degree
is necesary to achieve that competence.

Another nationally publicized
undergraduate computing curriculum was
proposed by the IEEE Computer Society in 1977
[4], intended to guide the offering of
computer engineering within engineering
schools. The similarity between this
curricula and Curriculum '78 has been analyzed
[3] . and found to be substantial, but this
curriculum offers little else to
non-engineering programs.

Each of the four-year curriculum models
are structured with a core of required courses
and a range of elective courses at various
levels. The Computer Science core is eight
courses intended to be pursued mostly in the

lower division. ACM's information system's
curricula has an eight course core which is
taken mostly in the upper division while the
major is completing the AACSB common body of
knowledge (out of which a statistics course
and a programming course are ,rerequisite to

the computing core). The DPI;;, curricula has a
seven course core, four lower division and
three upper division, while the Pittsburgh
curriculum has an eight course core, two lower
division and six upper divison. The DPMA
curriculum is unique in being designed with
the intention that its lower division courses
would frequently be taught in junior colleges.
The author has elsewhere analyzed the DPMA
curriculum in the context of its stated teals
[10] and the similarities of the DPMA and ACM
Information Systems models and the
dissimilarities of the DPMA and Curriculum '78
models have been noted [15,6].

The Computer Science curriculum lists ten
upper division electives and assumes that a
major will take at least four. It is also
expected that at least five mathematics
courses will be taken (to include calculus,



www.manaraa.com

Figure 1. ACM Curricula. 00111

COMMITTER

Coro Courses:
CS I. Cornpu 14.1 P11,21.1.1*0
Cl 2. Carp. ProCiran..1
CS 3. Introduction lo Convu4r Sy..
CS 4. IntroducSon to Coe Peer 0,11.MMI
C8 ff. rsoraxtion Io Fig Procoseng
CS 6. Operating Systems and Computer

Ant... 1
CS 7. Oats Sim.. and Algorithm Anahoin
CS a. Ortiontuttion d Prot/mm.2 imatmcio

Electivo COLONS:

CS 0. Compress and Socany
CS 10.. Operating SOM. and CornMo88

Antennae I
CS IL DM Bose Management Systoms Nalco
CS 12, MIAMI IntelaPenco
CS 13. Acceithrto
CS .4. Solt* era CmmOn and Threeolsnant
CS IS. Theory at POO amminp Longman
CS 18. 4.500545. Compulabety and Formal

LonPm194.
CS 17, Nmodeol Mathernalm: Analysis
CS IS Numinsi MaThernata.: Lines, Algot.

SCIENCE 11100E1. CURRICULUM
Spec., Topic. Counter
A. Mancomputer Laboratory
B. MiniconossIor Laboratory
C. Menem,. Evetuation
D. TIMA:CrniruniresionsiNatwotksit

&OMAN
E. SOLOS SmistiOn
F. Advanced Systems Progred..1
CL *tic*
K . Comb( %Meng Laboratory
L SancAurd MOMOmanital
J. ToPcs In Aulonsata Theory

M. ToPics n Comatibity
L Topes In Forme I. am7.00 TR.
M. MM.. and MOrleang

Matheinalics liegulreton(4:
MA 1. bueoenmy CODAe
MA 2. MItionlatirol AnMysts 1
MA 2A. Probate.
MA 3. Liver Algebra
MA 4. Centel. Simone*
MA 5. Matonnsticol Anelysis
MA a. probeesty and umiak*

Figure 2. ACM Information Svotems Curriculum

Information Systems
Technology

Information Systems
Process

"1

Computer
Concepts

138

IS2

Program and
Data Struc
tures

194

Data
Management

Data
Communica,
tions

593

Systems
Concepts

I85

Information
Analysis

138

PI Computer Programing is prreguisite
to 151 and 152. 157 and xas are graduate
courses.

Spasms
Design

"10
Projects

Figure 4. PLUG Curriculum

BUSINESS INFORMATION SYSTEMS CURRICULUM STRUCTURE

BASIC/
FORTRAN

Systems
Analysis

Simulation

Structured
COBOL

Programing

Advanced
COBOL

Programmin

Assembler
Language

173mpUter
Systems

Data
Communica
tions

liManagementi
nformation
Systems

Internship

EDP
Auditing
Controls

REQUIRED COURSES

PREREQUISITE

Figure 3. OPMA Computer Information System. Curriculum

0.00.
111.1a.

gar.4

C

Oma M

8.0.

OM

h ma

@Nam al

4.1.104

58



www.manaraa.com

probability, linear algebra and descrete
structures), and several courses in an
applications area, such as the physical

'r business. The Information Systems
'fits no electives. The DPMA

calls for three upper division
ul, Ives to be chosen from a list of eight,
and suggests eight corequisite business
courses in lieu of the AACSB core (including
statistics). The Pittsburgh curriculum
suggests two electives from a list of five,
two of which are lower division, and it
requires eight business courses, two business
electives and five mathematics courses
(including statistics and business calculus).

All of the curricula are characterized by
deep prerequisite chains (up to six levels)
and by the recommedation of an upper division
software project course. A major consists of
nine 3 semester hour computing courses for the
DPMA and ACM Information Systems curricula
(discounting the general education course
CIS 1 and including the prerequisite
programming course P1), ten for the PLUG
curriculum, and twelve for Curriculum '78. At
least half of the major consists of upper
division courses, and none of these are
language-oriented programming classes
(learning to program in a high level
programming language is universally considered
a lower division task, but several languages
are expected to be mastered).

The Small College Environment

The liberal arts college finds all four
curricula unimplementable for a variety of
reasons. The Computer Science curricula is

too sophisticated in its present emphasis, and
there are pressures to make it even more
abstract [11]. Curriculum '78 strives to

inscend the practical, but to do so requires
a theoretical knoWledge which is not available
to the small college. Even though most of the
computing programs in the small college will
emerge from the science or mathematics
departments, the formality and abstractness of
computer science is yet several steps removed
from where the small college mathematics or
science faculty are. Computers are relatively
new in these schools and great effort is being
expended just to gain concrete experience with
their use. This experience base is too meager
to bear the weight of a theoretical
curriculum. The average small college faculty
would be pressed to do a competent job
presenting all of the eight core courses of
Curriculum '78.

On the other hand, the three
undergraduate business curricula vary from too
narrow and vocational (presupposing an
environment which cannot be approximated at
the small college) to too narrow and
sophisticated (presupposing a computationaly
trained business faculty). Specialization,
either in the direction of computer hardware
and software (telecommunications, data base,
large scale systems) or in the direction of

operations research, the automated office, DP
law or computer auditing is beyond the
resource of the small college. The average
small college has mini- and micro-computer
syster little or no data processing
expertiL, and its computing knowledge and
business knowledge reside in separate
individuals.

In these circumstances the small college
must find a curriculum compromise between the
mathematical and the commercial, between the
abstract and the applied, which will be within
the skills of the faculty to deliver, yet will
effectively prepare its students for computing
careers. What these students will lack in

technical sophistication and state-of-the art
integration, will be balanced, the liberal
arts college believes, by a broader
perspective on humanity, society, culture and
learning. Rather than having specialization
in the environment they intend to enter, the
liberal arts student will be prepared for a
more general context of life. The thesis is

that while they will still have much to learn
about either data processing or computer
science, they will be prepared to learn
quickly, and they will organize their
knowledge within much broader perspectives,
enabling them to exercise more humane
judgement in their work.

Rather then attempt to persuade the small
college that this thesis is incorrect and that
they should seek to emulate either the
business school or the research university, we
present a rationale for a curriculm which
meets thier perceived needs.

,A Small College Curriculum.

The small college is advised to offer
courses at various levels and in various
tracks so as to satisfy the needs of its
hetrogeneous student body. The small college
must be equally concerned with the
availability of opportunities for computer
literacy, for two and three course "minors"
for students from a variety of disciplines
(principally from business and mathematics),
and for a major. The curriculum models all
take the narrow view of the specialized major,
so they give no guidance' on how to best serve
this complex goal. But since each does speak
to the introduction of the major to the field,
we can compare their approaches.

The DPMA model has the weakest
introductory course in terms of requirements,
or, if you prefer, it suggests the broadest
introductory course. The
commercially-oriented curriculums in ar-.eral
presuppose the existing rr-actice of using as
the first course in the major the
"Introduction to Data Processing" course which
was developed as a core course for all
business students. The DPMA model further
suggests that this course should cater to
non-business students who are seeking an
introduction to computing for general

59



www.manaraa.com

education. In the DMA prit;4mming
training begins in CIS 2.

The ACM Information Systems curriclum and
the PLUG curriculum assume a more rigorous,
programming-oriented first course, but still

shar with other business majors. The PLUG

currt, alum X13. hies BASIC tF first

course language, but in the ACM Information
Systems model, P1 is modeled on the first

course of Curriculum '78, and requires a

procedure-oriented language which will support
later programming experience. Curriclum '78
requires an in depth first course in a high

level programming language which stresses
methodology and algorithm development.

It is obvious that a single course in the
small college cannot meet all these thrusts.
Therefore, at the freshman level we propose an
introductory programming course, an

introductory systems analysis course and a

computer literacy course, each taught without
prerequisite. Instead of combining an

introduction to programming with a narrative
about DP, we suggest two separate courses

which will allow greater depth in each. To

meet the needs of the poorly prepared or

weakly motivated student, the literacy course
would provide opportunity to be exposed to

programming and deriving algorithms, but would
not make that aspect of computer interaction a
major feature of the course. The literacy
course might use either a Computers and

Society text or an introduction to Data
Processing text, but its focus is

fundamentally non-major. Ideally it should

incorporate extensive interaction with
computers as media for entertainment, for CAI,
for word processing, for library use, for data
base query, and for packaged functions like
statistical analysis or spreadsheet modeling.

The sophomore courses, roughly following

the three tracks of the PLUG curriculum and
the ACM Information Systems model, should be a
computer systems course, a second programming
course, and some elective language courses
(taught as second languages). The goal here is
to provide both the necessary development of

the major and second courses for various types
of minors. The business minor, after une
systems course (with or without the literacy
course), would take the first programming
course and then a business language course
(COBOL). The mathematics major, on the other

hand, might move from the first programming
course to the second, or to FORTRAN or some
applied mathematics course without ever taking
the systems course.

The junior level courses should include a
data and file structures course, the second
systems course, and a topics course which

would be a proving ground for new courses.
The second programming course would be the

prerequisite for both these courses, and one
or both of the systems courses might be
prerequisite to the topics course. One of the

second languages courses, which, like the

60

topics course, should alter', 'e content each
:jolt, might be taken simult .2ously with the

topics course. It is possible, therefore, for
a student to break the locklock ;t.fi= of the

schedule if necessary.

The senior level courses will include a

data base course, a simulation course and an
app,.'-,lion project course, and, if possible,

a sec_nd upper division elective. Both the
simulation course and the data base course

make extensive use of the data structures
course, and more than casual use of the

computer systems material. The resulting
curriculum bears greatest similarity to the

ACM Information Systems requirements, but in
spirit it is closest to the PLUG curriculum.
Elective courses might be developed to provide
the Curriculum '78 software and hardware

topics which have been squeezed into the

computer systems course (course content is

discussed below) but the presumption is that
most small colleges will never be able to

offer the number of courses reauired by
Curriculum '78 and still have the ti--.Aware and
faculty resources to meet the computing
education needs of the nonmajors. It is also

presumed that students will not choose the
small college with the intention of becoming a
designer of operating systems or the builder
of pipeline processors. More likely, the

student will be content to pursue the details
of computer science in graduate school, or

will be intending to apply his computer

knowledge vocationally immediately upon

graduation.

The core of the small college major would
consist of Programming I and II, Systems
Analysis I and II, Computer Systems, Data and

File Structures, and the senior level project
course. A major would require, in addition, a
lower division elective and two upper

divisions electives. In the following
paragraphs we discuss each course and its role
in the curriculum,. The reader is directed to

the appendix to see the course descriptions of
the courses referenced from the four models.

pourse Descriptions-

Programming I and II should be taught in

a block-structured procedure - oriented, language

and should be a "no nonsense" programming

course akin to the Curriculum '78 courses CS1
and CS2. The first course will introduce

decision structures, looping structures

(nesting), data types, lists, tables, and

subroutines. Standard file processing

activities should be illustrated (such as

contol break processing and sequential

update). Proper techniques for documenting
software and for developing programs should be
taught and consideration given to matters of

style and group programming.

The second programming course should

systematize and extend the experience of the
first course in the same language. The

student is introduced to more sophisticated



www.manaraa.com

use of data structures and information coding
techniques. The emphasis is on the

variability of data, complex data
organization, and interrelationships between
data structures. Preview linked lists, trees,
graphs and recursion. Expose the student to
the analysis of algorithm efficiency,
demonstration of correctness (assertions and
testing methodology), and searching and

sorting prnciples. Do a large group project
r0ouires module design and interfacing,

an ,iss decomposition of problems and

topic.: .roc .uctures.

The programming sequPnce is intentionally
experience-oriented, building experience
within a language and experience in problem
solving. The programming exercises should
dominate the students course requirements and

should be rigorous enough to discourage those
who resist practicing the tools being
presented to manage complexity. High
standards of internal and external
documentation and user friendliness should be
required of all software products.

Since this sequence must meet the needs
of both scientific and commercial
programmer/analysts, it should focus on good,

coding practices and illustrate the broadest
range of techniques. It should not be taught
in FORTRAN, BASIC or COBOL if possible, though
BASIC could be utilized if extreme care were
taken to simulate structured control
sequences. (BASIC, like PL/1, has gained
adherents in both the scientific and
commercial fields, hence is justifable 1J) some
extent in terms of the generality of its
potential utility). Students emerging from the
sequence will understand the practical process
of software development and will know one
language very we'.1. Only the first course in
the sequence is required before electing to

study computer systems or a second language.

The systems analysis series begins with a
survey course which touches, lightly on

computer hardware technology but treats in

depth the coftware life cycle, the
organization and interaction of data
processing with users, and the role and tools
of the systems analyst. This course could
serve as an elective for business-oriented
students. Because of the great amount of

overlap between CIS 4 and CIS 1 in the DPMA
curriculum, this first systems course could
cover the topics of CIS 4 from their
introduction in CIS 1, but not reach as high a
level of skill development as is published for
CIS 4. The second systems course would be
modeled on CIS 5.

The Computer Systems course could be

modeled on the Pittsburgh course with that
title, or on the Information Systems
curriculum's IS1, or on DPMA's CIS 8, but
should include a software project in the same
language used in Programming I. This course,
along with the programming sequence is

prequisite to Data and File Structures. The

61

Information Systems course IS2 provides an

adequate topic outline for the Data and File
Structures course. The course should
introduce a file oriented language if a

language such as ADA or PL/I is not already in
use. The programming exercises should
illustrate sophisticated applications of file
strures and lay a firm foundation for the
data base course.

The data !ease course would be a notch
above IS4 and several notches above 6 or

the Pittsburgh model's BIS 401. Previous
exposure to the data structures and file
structures of DBMS packages will permit
greater attention to both the ' pory of data
base architectures and to the ,,ct in which

they are used. It is unlike: the small
college will have access to IM uL ,.1,mS, but
inexpensive network and relational-like data
base packages exist for micros and most minis,
such as HP and DEC. Thus a blend of

theoretical exposure and practical experience
could reasonably be achieved in this senior
level elective. In some environments CS 11
would be an appropriate guide, but it is
oriented toward the writing of a DBMS rather
than toward its use in solving applications.

The simulation elective could be modeled
on BIS 410 of the Pittsburgh curriculum or on
IS7 of the Information Systems curriculum. As

in the case of data base, simulation languages
such as NDTRAN,or SLAM are readily available
on mini-computers. Without prejudice to

either major, the data base course might be
more attractive to the commercial
programmer/analyst, and the more mathmatically
.-'ented simulation course could interest the
scientific programmer. Hopefully both groups
would see the relevance of both electives.

The lower division elective courses would
normally be second languages, and would
provide intensive syntax-focused introductions
to the problem demains appropriate to the
language. Thus the COBOL syntax covered in
DPMA's CIS 2 and CIS 3 would easily be covered
in a single sophomore level course after
experiencing Programming I. Likewise a FORTRAN
course oriented about numerical methods could
be offered, or a comprehensive BASIC course,
or RPGII or assembler, etc. The upper
division topics course would deal as
appropriate with comparative computer
languages, with a second "advanced
programming" course in COBOL, with data
communications, with computer architecture, or
with Management Information Systems.

The capstone course for the major is the
senior level application project course which
should require that the spectrum of analysis,
design, coding, and documentation activities
be applied to a realistic problem and usually
be carried out by a small team. This course
will test the graduate's preparation to

perform in the area of software development.
CIS 7 or ISIO are appropriate models.



www.manaraa.com

Some colleges are experimenting with an

upper division social issues course which is
open to either majors or nonmajors. Such a

course could have as prerequisite as little as
the freshman literacy course, or as much as

both of the first courses in programming and
systems. CS 9 could be helpful, though it

envisions a still more sophisticated audience.

Assuming that the normal faculty loal is

four courses a semester, this curriculum could
be offered by one full-time computer faculty
member (teaching the core) supported by a
part-time business faculty and a part-time
mathematics or science faculty member (or

several adjuncts) for a total of 2 FTEs (see

figure 5). Such a load is not desirable, and
sections would have to be kept small in order
to keep student contact hours tolerable
(computing is much more student intensive than
is mathematics or history [7]). Yet the

national faculty situation is such that
expecting every small college to have access
to two well-credentialed computing instructors
is also unrealistic.

A very respectable systems information
major is produced if the student completes the
core, elects the data base course, the lower

division COBOL course (assuming the

programming course is Pascal), the upper

division topics course in advanced COBOL
applications (with the COBOL course being

taught by the business faculty member or

adjunct), and completes a minor in the

business department. Such a student would
compare very favorably (having greater
technical skills) with a DPMA graduate who had
elected CIS 8, CIS 11, and CIS 13 or CIS 14.

Such a student would halm: programming skills
exceeding that acquired in the Informations
Systems or Pittsburgh curriculum, but would
lack exposure to data communications and to

management information systems.
Figure 5. Small College Curriculum Schedule

Fall Semester Spring Semester

freshman courses

Literacy Literacy
Systems I Programming I*

sophomore courses

Programming II* Language elective
Computer Systems*

junior courses

Data and file Structures* Topics*
Systems II*

Data Base
elective

senior courses

Simulation
Project*

*signifies a course taught by full-time
computer faculty (others may be adjuncts)

62

A students with mathematics or science
interest could also pursue the core courses,
and could achieve, with an alternate set of

electives, a competent exposure to the core
concepts of Curriculum '78, even though the
offerings would be too meager to have ventured
far outside that core.

Conclusion

Despite the obvious biases present in

each of the curriculum recommentations, it is
possible to recognize a collection of topics
which are common to those models which
emphasize computer applications. Not
surprisingly, much of this intersection is
also contained in the computer science core.
Thus the courses described for a small college
can capture a high percentage of the topics
advocated by any of the models, and do so
while emphasizing the fundamentals of
multi-lingual programming. The graduate of
the small college, regardless of the computer
equipment he trained cn, can reasonably expect
to be competitive with graduates of any of the
other curriculum models for the entry level
programming position. The liberal arts
graduate will bear the responsibility for
doing a great deal of integrating on his own,

and the obligation to learn on the job new
hardware and software details. But since
these hardware and software details are
constanty changing anyway, and since even
large universities' are unable to maintain a
computing environment commensurate with
industry, these handicaps may well prove to be
virtues. The liberal arts student is prepared
to change, and forced to imagine different
environments, where the DPMA student may well
be too specifically oriented. By
concentrating on technical fundamentals rather
than, specific business applications, the small
college faculty can educate both the
commercial and the scientifically oriented
student in the same core courses, and limit to
the elective courses the need for
multi-disciplinary expertise.

References

1. Adams, David R., and Thomas H. Athey,
DPMA MODEL CURRICULUM FOR UNDERGRADUATE
COMPUTER INFORMATION SYTEMS EDUCATION,
DPMA Education Foundation, Park Ridge,
Illinois, 1981.

2. Austing, Richard, et. al.,
"Curriculum '78, Recommendations for the
Undergraduate Program in Computer
Science," COMMUNICATIONS OF THE' ACM, v.
22, n. 3 (March 1979).

3. Engel, Gerald L., "A Comparison of the
ACM/C3S and the IEEE/CSE Model Curriculum
Subcommittee Recommendations," COMPUTER,
v. 10, n. 12 (December 1977).

4. IEEE Computer Society Education
Committee, Model Curricula Subcommittee,
A CURRICULUM IN COMPUTER SCIENCE AND
ENGINEERING, 1977.

5. Jones, Ron, and Rich Hamilton, "Computing
Education, the CPMA Model,"



www.manaraa.com

COMPUTERWORL:, v. XV, n. 38 (September
21, 1981).

6. Kroenke, David, "A Place in the Sun,"
INTERFACE, v. 3, n. 1 (Spring 1981).

7. Little, Joyce Currie, RECOMMENDATIONS AND
GUIDELINES FOR AN ASSOCIATE LEVEL DEGREE
PROGRAM IN COMPUTER PROGRAMMING, ACM
1981.

8. Mitchell, William M., THE DESIGN OF
MATHEMATICS CURRICULA FOR THE SMALL
COLLEGE, Ph.D. Dissertation, Georsa
Peabody College, 1974.

9. Mitchell, William, and Bruce Mabis,
"Implementing a Computer Science
Curriculum Merging Two Curriculum
Models," SIGCSE BULLETIN, v. 10, n. 3
(August 1978).

10. Mitchell, William, and James Westfall,
"Critique and Evaluation of the CAL
POLY/DPMA Model Curriculum for Computer
Information Systems," SIGCSE BULLETIN, v.
13, n. 1 (February 1981).

11. Mulder, M. C., et. al., "Computer
Science Program Requirements," a position
paper of the Joint ACM/IEEE Task Force
for Computer Science Program
Accreditation, February 14, 1983.

12. Nunamaker, Jay F., Jr., et. al.,

"Information Systems Curriculum
Recommendations for the 80s: Undergradute
and Graduate Programs," COMMUNICATIONS OF
THE ACM, v. 25, n. 11 (November 1982)

(summarized in COMPUTERWORLD, v. XV, n.
39 (September 28, 1981).

13. Schultz, Brad, "Model DP .Curriculum
Welcomed by Colleges," COMPUTERWORLD, v.
XV, n. 40 (October 5, 1981).

14. Traub, J. F., Editor, "Quo Vadimus:
Computer Science in a Decade,"
COMMUNICATIONS OF THE ACM, v. 24, n. 6

(June 1981) .
15. Vanecek, Michael T., and Carl Stephen

Guynes, "Business Computer Information
Systems DPMA, vs ACM: Now What?"
INTERFACE, v. 3, n. 4 (Winter 1981-82).

16 Zant, Robert, Michael Vanecek and Carl
Guynes, "Thoughts on the Maturing Process
of the Information Systems Academic
Discipline," INTERFACE, v. 4, n. 2

(Summer 1982).
17. Zientara, Marguerite; "University Summer

School Retraining College Professors to
Teach Computer Science," COMPUTERWORLD,
v. XVI, n. 18 (May 3, 1982).

63



www.manaraa.com

A New Source of Computer Science Teachers:

Faculty Members From Other Departments

Keith Harrow

Department of Computer and Information Science,

Brooklyn College, Brooklyn, N.Y. 11210

Abstract

The current shortage of computer science
faculty is well-known. This paper describes
a novel solution to the problem that has been
developed at Brooklyn College. Faculty mem-

bers from other disciplines are retrained to
teach introductory computer science courses.
In addition to fulfilling our basic need to
staff courses, this approach has a number of
interesting ramifications, both good and bad.

Introduction

In the past few years, almost all colleges
and universities have experienced a shortage of
qualified computer science faculty. Many
people have explored the implications this

problem and offered a few long-term solutions
[1, 2, 3, 5]. At the Thirteenth Annual SIGCSE
Symposium on Computer Science Education, there
were a number of papers and panel sessions on
ways to attract and retain computer science
faculty.

The Brooklyn College Problem

At Brooklyn College, we are experiencing
the same difficulties as everyone else, with a
few extra local problems. Over the past 10 to
12 years, the college enrollment first almost
doubled to 30,000 full-time students, then con-
tracted to its present level of about 15,000.
The drastic changes in the size of the student
body, plus significant shifts in enrollment
from one area to another, have left Brooklyn
College with a number of overstaffed departments.-
For example, the Chemistry Department has over
30 tenured faculty members, but relatively few
courses for them to teach. Recently, there has
been an increase in the need for teachers of
remedial courses, especially Mathematics and
English. The Computer and Information Science
(CIS) Department has experienced an explosive
growth, going from three or four computer sec-
tions in 1970 to the current total of more than
100 sections. The computer science program is
particularly rich, including introductory courses
(in PL/1 for those interested in an intensive
programming course, and in Basic for those
interested in just a brief introduction), a
large number of advanced electives and a growing

64

graduate program.

The CIS Department has 19 full-time faculty
members, which is about half the number that
would be justifiedby our enrollment asa percentage
of the total college enrollment. Even worse, many
computer science faculty members do not have a
full teaching load; most people are released from
one or more courses because of administrative
duties and/or research work. We have been rela-
tively successful in attracting new faculty, but
most of them have been research-oriented, with
very low teaching loads. These people contribute
enormously to the department in terms of grants,
publications, and prestige; but they do not con-
tribute in any significant way to our teaching
power.

Thus, computer science faculty members teach
only about forty percent of all computer science
sections, with the majority of these being gradu-
ate and advanced undergraduate courses. In the

past, we have used part-time or adjunct faculty
members to fill the gap. However,the shortage
of full-time graduate students, plus the college's
lack of money, have combined to limit our ability
to use adjunct lecturers.

To summarize, the problem that we (and any
number of other schools) face is the following:
given these constraints, how do we meet the in-
creasing demand for computer science courses?

Possible Solutions

There are a number of unattractive solutions
to this problem. One is to limit enrollment in
computer science courses (many schools have
adopted this approach). For obvious reasons, the
Brooklyn College Administration does not like the
idea of turning away hundreds of potential stu-
dents. Another idea is to use large lecture sec-
tions in the introductory PL/I course. We have
tried this method and found it inferior to our
current format (approximately 25 sections with
25-45 students per section).

A third idea has gradually evolved over the
past few years. This solution solves the immedi-
ate problems of relieving the overstaffed depart-
ments and Covering computer science courses. It

also raises a number of provocative questions for
the future.



www.manaraa.com

The solution that we have developed uses fac-
ulty members from other depa-..-cments to teach com
puter science courses. To some degree, this cross-
over from one department to another is not new.
For example, a chemist might teach a course in an
area of specialization (e.g., real-time systems);
a mathematician might teach a course in numerical'
analysis; a linguist might teach a course in formal
language theory. Most computer science departments
probably have such informal arrangements with other
departments. However, our use of outside staff is
much more extensive.

In the Fall 1982 semester, 13 faculty members
from other departments were teaching one or more
computer science courses. More than half the sec-
tions of the introductory programming course in
PL/I (plus a few intermediate electives) were
taught by these people, with adjunct faculty teach-
ing most of the remaining sections (mostly at night
and on the weekends). Currently, we have faculty
members from the Departments of Chemistry, Educa-
tional Services, English, Mathematics, Physics, .

and Psychology teaching computer science courses.
Approximately one fifth of all computer science
courses are taught by full-time faculty members
frim other departments. It is important to note
rnat these people maintain their positions within
their own departments, but teach computer science
courses to fill out their teaching loads.

Faculty Development Program

Of course, we are unwilling to accept just
any faculty member from another department. The
Brooklyn College Administration has agreed to give
the CIS Department Appointments Committee the right
to interview and approve all such candidates. Nat-
urally, we are reluctant to accept a faculty mem-
ber's self-assessment of his or her competence to

teach computer science. Therefore, we have made a
major effort to certify some of these people.

For the past three summers, the CIS Department
(under the auspices of the Vice President for Aca-
demic Affairs) has organized a Faculty Development
Program./ In 1980, Professor Pat Sterbenz conducted
a small test project to teach PL/I to those with
some previous knowledge of programming (typically
Fortran). In 1981, the Chairman. of the CIS Depart-
ment, Professor Frank Beckman, proposed a more am-
bitious program, one part of which was designed to
teach other faculty members how to teach computer
science. With the aid of a number of my computer
science colleagues, I supervised the Faculty De-
velopment Program in 1981 and then again in 1982.

A detailed description of the 1981 program is
given in [4]. Here is a brief overview (the 1982

program was similar). All participants were ex-
pected to have some previous knowledge of PL/I (in
practice, this was not always true). The faculty
members were asked to audit the equivalent of a
second course in PL/I, even though they would be
teaching an introductory course. Thus, they would
be exposed to more of computer science than they
were expected to teach. In addition, weekly meet-
ings were held to discuss the style and presentation

of material, problems students seemed to be having,
and differences between teaching computer science
and teaching their own disciplines. They were re-
quired to complete all programming assignments for
the course (but they did not take any exams).

Current Status of the Program

After successfully completing the Faculty
Development Program (some did not complete it), a
faculty member is accepted as a candidate to teach
CIS 1, our introductory PL/I course. The depart-
ment then provides the instructor with a syllabus,
several different course outlines (corresponding
to different approaches to teaching the course),
model homework assignments and exams, etc. Each

new instructor is observed informally two or three
times per semester, until we are confident that the
instructor is doing a good job and needs less super-
vision. The CIS Department Appointments Committee
reviews all new instructors every semester, and
has the right to reject any candidate. We discuss
such matters as their progress in learning more
computer science, observation reports, and other
feedback on their teaching.

Faculty members are urged (but not quite
ordered) to continue their education in computer
science by taking further computer courses. It is

suggested that they eventually learn the equivalent
of at least three or four courses, including assem-
bly language programming, data structures, and pro-
gramming languages. Although a few people have
been somewhat remiss, most of the new faculty mem-
bers have been extremely conscientious. As part of
the faculty union's collective bargaining agreement,
faculty members receive a full tuition waiver when
they register for graduate or undergraduate courses.
Many people have taken advantage of this offer and
re,-..eived credit for courses in such areas as Cobol
programming, file processing, compiler construction,
simulation, and so on. (One graduate of the 1981
Faculty Development Program has made so much pro-
gress that she has shifted her department affilia-
tion - because of budget cutbacks, she was about
to let go by her old department. She is currently
an instructor teaching a full load in CIS.), We
have then asked some of the more advanced people
to teach second or third level CIS courses, and they
have done quite well. Thus, as we produce new can-
didates to teach introductory courses, we hope to
Move the more experienced teachers into intermediate-
level courses.

65

Evaluation of the Program

As with most experiments, there are both good
and bad things to report about our use of faculty
from other departments. Let's start with the nega-
tive points.

The most obvious problem is that these faculty
members are not computer scientists. Even if they
do a good job in teaching little details, they do
not always see the global point of view. In addi-
tion, they tend to be less sensitive to some of the
things that we consider to be important (e.g.,
style of programming).



www.manaraa.com

This is especially true for old Fortran programmers
who have a lot of bad habits. We are trying to
solve these problems by requesting these people to
broaden their exposure to computer science, by ask-
ing them to study other aspects of the field (e.g.,
assembly language or data structures), and by em-
phasizing to them what we consider to be important.
In particular, by having them take a second or
third course after the introductory one, we hope
that they understand more clearly what a stu-
dent who h as completed the first course should
know.

Another potential problem that we were con-
cerned with was the development, especially in the
Administration, of a false impression that anyone
can teach computer science. Fortunately, in prac-
tice this has not been a problem. We have continu-
ally emphasized the need for special training and
for a final review of all candidates by our de-
partment. So far, we have been successful in re-
sisting the temptation to flood CIS with a horde
of new instructiors, and we have been able to as-
sert our authority by rejecting certain candidates
because of a lack of preparation.

However, there are real problems with super-
vising people once they are teaching. Our depart-
ment has a preponderance of young faculty members,
especially in comparison to the more established
departments. It is quite hard for an untenured
faculty member (or a graduate student or an adjunct
lecturer) to criticize a senior faculty member from
another department. Thus, our chairman and one or
two other senior computer scientists have been
forced to serve as intermediaries in a number of
delicate situations.

The problem that we are most concerned with is
related to this. How can we eliminate someone
from another department who is doing a poor job?
We have one person who seems to be relatively weak
as a computer science teacher (he may very well be
weak as a teacher in his own department). We have
made a number of suggestions to him, but with little
effect. As of now, we would rate the job he is do-
ing as adequate, so the problem is not really acute.
However, we may one day be faced with a situation
in which an instructor is doing an unacceptable job.
Will we be able to remove such an instructor?

Despite the criticisms mentioned above, we are
pleased with the results of the program. First,

our introductory courses are being covered in a
reasonable way, enabling us to maintain an assort-
ment of advanced undergraduate and graduate courses.
The instructors from other departments are all ex-
perienced teachers, unlike most adjunct lecturers
who are usually full-time programmers, not teachers.
Thus, we do not have to worry about missed classes,
unprofessional conduct, etc. These faculty members
are all familiar with Brooklyn College students and
academic regulations. We encourage them to attend
our department meetings and they have provided a
number of interesting perspectives on some impor-
tant issues.

66

Second, we have gained a number of new friends

in other departments. Most of the retrained facul-
ty members are quite happy to be teaching computer
science to motivated, intelligentstudents (for
many, the altarnative is teaching remedial mathe-
matics). It is aisc good for them professionally,
since a knowledge of computer science will almost
surely be helpful as a. tool in their own disci-
plines. (It will be interesting to see if any
novel uses of a computer in other fields of re-
search are introduced as a result of our program.)
Teaching in our department has made them more' a-
ware of many of the CIS Department's special needs

- e.g., the continual need to upgmde equipment.
In many, cases, they have served as our spokesmen
on college-wide committees investigating these

needs. Most of them have gained an increased
appreciation of computer science as a legitimate

academic discipline. As noted above, tnese facul-
ty members have maintained their positions within
their own departments. We hope that they will
share their increased awareness of computer science
with their colleagues.

Finally, we have shown the Brooklyn College
Administration that we are trying to help the col-

lege as a whole. In a time of severe budget cuts
and talk of dismissal of all untenured staff, we
have made a good-faith effort to help solve these

problems. The college recognizes these efforts,
and has been generous in meeting many of our other
requests, including the hiring of several new com-
puter science faculty members. It would be easy
to insist that the CIS Department needs five new
full-time faculty members per year. But given the

current demand for computer science faculty, it
would be quite hard for us to find five competent
people each year. By retraining faculty members
from other departments, we have been able to con-
centrate on finding one or two good people per year
and we are able to maintain the quality of our
faculty.

Summary and Prospects for the Future

In summary, we are pleased with the job being
done by most of the faculty members from other de-
partments. To repeat, we do not view them as per-
manent substitutes for legitimate computer scien-
tists; but we do accept them as short-term replace-
ments. Many colleges and universities either al-
ready face or will soon be facing similar staff-
ing problems. We hope that our program can be used
as a model at other institutions.



www.manaraa.com

References

1. Peter Denning, "ACM President's Letter; Eating
Our Seed Corn" .

Comm. of the ACM 24, 6 (June 1981), 341-343.

2. Peter Denning et al, "A Discipline in Crisis:
The Snowbird Report",
Comm. of the A".',14 24, 6 (June 1981), 370-374.

3. Gerald Engel and Bruce Barnes, "Employment
Decisions by Computer Science Faculty: a
Summary of the 1980-81 NSF Survey", Proc. of
the Thirteenth SIGCSE Technical Symposium
on CoMputer Science Education (Feb. 1982),
167-159.

4. Keith Harrow, "A Faculty Development Program",
Proc. of the Thirteenth SIGCSE Technical
Symposium on Computer Science Education
(Feb. 1982), 170-173.

'5. J. F. Traub, "Quo Vadimus: Computer Science
im a Decade", Comm. of the ACM 24, 6
(June 1981), 351-369.

67



www.manaraa.com

HOBBY ROBOTS AS TEACHING/LEARNING TOOLS

Michael Moshell
The University of Tennessee
Knoxville, TN 37996-1301

Charles Hughes
The University of Central Florida

Orlando, FL 32816

Carl Gregory, Lee Wittenberg
Gentleware Corporation
Knoxville, TN 37919

Abstract

The development of hardware and software for
simple robots is proposed as a follow-on experience
for students who have completed an introductory
computer programming course or tutorial.

Goals and a syllabus for a course, equipment
and software needs and resources are described.
Emphasis is on easily available, inexpensive
resources and the use of microcomputers as control
devices.

The course is intended to teach principles of
physical mechanics, cybernetics, computer science,
and to develop problem solving skills.

The course of study being designed is appro-
priate for both individual and class use. The
course is embodied in a tutorial book, and is
supported by a software package and a hardware
computer interface for robotics experiments.

Outline

1. Goals of the Course

2. Syllabus for the Course

3. Hardware for Hobby Robotics

4. Software Concepts and Tools

5. Speculations about Impact

1. Goals of the Course

*"Practical" versus "Foundation" Courses

It is often the case that courses in computer
programming are viewed as "vocational" or at least
of a practical, or applied nature. Math or English

courses are viewed more as "foundations", sobrces
of conceptual skills that can be applied to alMost

all other mental activities. This hazard is(odoubly

relevant to any proposal for a robotics course

Why shouldn't introductory programming and
robotics courses be regarded as practical or
vocational?

We have long maintained (e.g. Aiken and Moshell,
1982; Moshell and Hughes, 1982) that an introductory
programming course is primarily an opportunity to
develop problem-solving skills and logical thinking..

68

These mental abilities are certainly necessary to
the development of good programmers. However, no
single introductory course can begin to make an
employable computer professional of a total beginner.

To set such goals for a course is to delude
both oneself and the students.

We raise the same objection to the view of
robotics as a subject matter appropriate for
vocational, or perhaps pre-engineering, curricula.
Without diminishing a course's usefulness in those
roles, it is possible to,structure a course that
serves much broader goals in developing thinking
and reasoning skins.

We would also object to assertions that the
teaching of robotics should be motivated by a com-
petitive desire to compete with Japanese (or anyone
else's) industrial automation. The goals for our
educational system must remain firmly based in
general (though "hard-nosed") knowledge and skills.
Premature "targetting" of specific technologies is
a dangerous form of short-sightedness for educators.

*Course Goals

We intend to develop skill and insight in
three areas:

mechanics/physics,
computers,cybernetics,
and planning/problem-solving.-

Let's explore each area briefly.

Mechanics

One of the most popular experiments in standard
introductory physics is the construction of an
electric motor from nails and magnet wire. This

motor illustrates rather well the state of electro-
mechnical technology in Edison's time, and teaches
a direct, hands-on sense of what magnetism actually
is.

We samesort of-experience,with- , --
simple robots. The issues of force, torque, friction
and material strengths are fundamental to mechanics;
yrt most standard lab-experience provides very ,

limited intuition into these issues.

The ,authors' eXperience with small rebots
indicates that they are high;y motivating, and
supply exactly the kind of intuition and practice



www.manaraa.com

with mechanical design that is needed.

The robotics course should have a physics pre-
or co-requisite course.

Cybernetics

Programming is usually taught primarily as a
hands-on skill. Little opportunity is provided to
consider how a program is connected to its users and
to the world.

Programs to control robots are conceptually
simple, yet their design is difficult. The problem
is to understand the delicate relationship between
sensory 4nformation and control of motion.

This emphasis on feedback, timing, proportional
control and error correction constitute a domain
called real-time programming. The issues are not
intellectually very deep, at the introductory level,
yet there is much art in the careful design of work-
ing systems.

This presents the course designer with the
opportunity to "sneak up" on the student. By pre-
senting stimulating material with important content,
in a format that demands many iterations and re-tries,
the course can build firm foundation skills in the
desired areas.

Organization

For the individual or for a class, the design
and construction of a robot is a complex enough
task that planning is required.

Merely starting to build something is most
unlikely to succeed, because the parts must work
together.

A robot project can be factored into several
components, with each being handled by a team of
students. A typical breakdown is:

-Transporter;
-Hand and Arm;

. -Control Devices;
- Computer Software.

The software can be further broken down by tasks, so
that one team writes programs to move about the
room, another to find something with the arm,
another to assemble a structure, etc.

Once one 'or more operational robots are
available, a different level of skill-building is
possible. Contests can be held for the most effec-
tive programs and strategies to build a castle from
blocks; to build a bridge across which the robot
walks, etc. When these tasks generate the need to
modify the robot, the students have the skills to
do so, if they built the robot in the first place.
These interactions between task and design are
exactly what engineering is all about.

Let us now consider a syllabus that organizes
these concepts into a series of lessons.

69

2. A Syllabus

This syllabus presumes that certain equipment
is available; the details of the equipment are
described in the following section. Briefly, the
following items are needed:

-A simple remote-controlled toy car;

-Components for a three-degree of freedom hand;
(an Erector Set with three motors);

-A transporter base; (we use the "Big Trak" toy,
ana equivalents);

-A microcomputer with a controller capable of
sensing the positions of up to 8 microswitches,
and of controlling up to 8 motors;

- Some miscellaneous switches, wires and connectors;

- A software system designed for educational robotics.

If the school or individual has an Apple II
with 64K of memory and one disk drive, the additional
equipment and software needed for this course will
cast about $400.

Most of the support software and computer
hardware is not yet available for other computers.
The tutorial book will include specifications for
its construction by dedicated experimenters.

Sequence of Events

Eight lesson modules are intended to span an
entire year of high school coursework. The first
four modules could be used for a half-year. The
timing and relative importance of modules will have
to be determined after an experimental teaching of
the course.

MODULE 1: INTRODUCTION TO CONTROL

Reading: General -:oncepts of robotics. Robots are

general purpose programmable machines which manipu-
late things. They have senses and us2 feedback.

Lab: Use remote controlled toy car. Then try to
use it when you can't see it; another student gives
you instructions and you try to maneuver it through
a course. Strategies are analyzed and written down.

MODULE 2: HANDS AND MECHANICS

Reading/Discussion: Degrees of freedom. Force,

torque, friction, types of motors (servo, actuator).

Lab: Assemble a simple three-degree arm, controlled
by manual "winches". Measure forces on control

wires. Test motors with various gearings to see
what forces are available.

Use motors to control the arm. Try to pick up

small objects.'

MODULE 3: SENSORS

Reading/Discussion: Binary (touch) sensors; analog

8



www.manaraa.com

(angle) sensors. Introduction to programming with

these sensors.

Lab: Write a provam that displays the status of
the arm, using two angular and two touch sensors.
Using the direct motor controller, and the program
display of arm position, try to pick up an unseen

object whose position is known.

Then try to "map" an object by touching it.
Is it long or short? How high is it?

MODULE 4: -GOAL SEEKING

Reading/Discussion: Feedback, positive and

negative.

Lab: Add two microswitch sensors to the remote
control car or transporter; one for "edge of table",
one for "object in front". Try to find a block of
wood on a table without falling off the table,
working "blind". Use other students to report car's

X,Y position.

MODULE 5: PROGRAMMED GOAL SEEKING

Reading/Discussion: Introduction of program
features that control motors, interacting with
sensors.

Lab: Try to write a program which does what you
just did up in Module 4. First cut: "trivial":
car just explores along a one dimensional "track".
One direction is fall-off, one is block.

MODULE 6: HAND WITH TRANSPORTER

Reading/Discussion: Balance and Stability; trigo-
nometry for calculation of hand position in space.

Sensors for accumulated motor travel,

Lab: Mount the arm on the transporter. Try manual

control of the entire system to locate and lift
small objects, first visual and then blind (with
other students and position sensor program for
feedback).

MODULE 7: PROGRAM HANDS

Reading/Discussion: Systematic design of complex
programs. How to search a space.

Lab: Program what you did manually in Module 6.

MODULES: ROBALL

Reading /Discussion: Description of the game. Two

teams, each with one or.., more robots, attempt to
grasp a softball in the center 'of a pingpong table
and, despite all efforts by the opposing team,
return it to their own end of the table.

Two divisions: one under manual control, one under

computer control.

Lab: Design of a Roball game appropriate to the
particular robots available. If only one machine
exists, make it a time trial between teams of
operators or programmers.

70

3. Hardware

The primary obstacle to hobby robotics, and the
focus of most of the literature, is the design and
construction of the mechanical robot itself.

It is rapidly becoming easier to build satis-
factory robots for hobby and educational purposes,
as more sophisticated components become available.

Robotics Age magazine is a good source of inspira-

tion and ideas.

The approach we have taken is to use the most
complete subsystems that can be bought, while
avoiding the expensive special-purpose modules
designed specifically for hobby robotics.

For instance, we use a large Jeep model car
from Radio Shack as a transporter base. It is

equipped with a proportional servo motor for steer-
ing. The "Big Trak" toy is another useful trans-
porter.

In the book we are preparing, the construction
of three robots is detailed. The first (R1) is a

simple Erector set construction. The second (R2)

uses a toy car as its transporter base and has a
simple home-built arm. The third (R3, or "Woody"),
uses lawn mower tires and a more substantial trans-
porter, and has the most sophisticated arm. All

share a common control design and contru,ler unit.

Robot R3 (used in examples later in this paper)
has an arm with four degrees of freedom: lateral

rotation, whole-arm and forearm elevation, and hand
grasp. It has independently controlled left and
right wheels, and is supported fore and aft on
caster wheels. (See Figure 1)

The following sections describe hardware and
software packages being developed to support the
tutorial book.

4. Software

Using an unmodified Apple II or Radio Shack
computer, it is difficult to control a robot. An

interface of some kind is necessary.

Several of the commercially available robot
arms use serial ASCII communication, scyour computer
needs only a serial port such as a printer interface.

The controller under development for this pro-
ject uses serial communication, but doe.; not require
a separate ASCII interface with the Apple II :

computer. It uses the game cbntroller port and a
special software system, instead.

PASPAL for Robotics

PASPAL is a user-friendly Pascal interpreter. It

supports advanced animation graphics, and many
features designed to help the beginning programmer.

The ROBOT Library Unit for PASPAL adds a
variety of data structures and procedures to PASPAL's
dialect of Pascal. These commands make it possible
to operate the motors of a robot until some



www.manaraa.com

condition on the sensors is met.

The syntax and features described below are
preliminary, and are likely to be changed as the
system is tested and refined during 1983.

Before we explain PASPAL/ROBOT, we need to
briefly discuss motors and sensors.

Motors

The two types of motors in common use in hobby
robotics are called "servos" and "actuators".

A servo is a motor whose output is some
restricted motion, sic as the turning of an arm
through 90 or 180 degrees. A servo can be commanded
to set its output to some value, such as 50 degrees,
and (if it is strong enough to overcome the load
imposed on it), it moves to that angle and stops.

An actuator is a motor which can simply be
turned on or off. Almost all actuators are revers-

ible. Usually an actuator iS paired with some kind
of sensor so that the actuator, sensor and control-
ler together behave as a servo. That is, a given
angle or position is achieved and the motor is then
turned off. Actuators are usually either DC motors,
or stepping motors.

If the controller is so designed, a servo can
also maintain the position of its output under
varying loads. This is important if, for instance,
the servo controls the first segment of a multi-
segment arm. Usually, however, the friction of the
motor and drive train is used to maintain position
when the part is not moving.

Small servos are available for $20 to $40 from
model airplane shops. Actuator motors are available
for prices from a few dollars up, at many hobby
shops.

Sensors

Sensors come in many forms, but the three most
popular for robotics work are switches, potentio-
meters and photocells.

A "microswitch" is a very sensitive switch;
typically the weight of a sheet of paper will
operate a microswitch. These'are used to sense a
robot's touching something, or the arrival of some
part at the limit of its motion.

A potentiometer is a rotary (sometimes straight-
line) device whose motion is translated into a vary-
ing resistance. The Apple II computer can detect
a resistance value between 0 and 150 Kilohms on any
of four "game paddle" inputs, so this is a conven-
ient way to report the angle of an arm or shaft.

A photocell is actually a variable resistor,
which can be used as a game paddle input or, with
a simple circuit, as a switch input to detect the
presence or absence of light.

71

Commands and Functions

The intention of the PASPAL/ROBOT Library
Unit is to supply a kind of medium-level command
set for our robots.

A low-level command structure would consist
solely of commands to start and stop motors, and
functions which reported the state of sensors. The

difficulties in using such a system are many. Every

action must be placed in a REPEAT or WHILE loop,
with the program looping until a sensor condition
occurs. If the sensor condition was transient, such
as the detection of the edge of the table (before

falling off), and the loop was slowed by the inclus-
ion of several motor control commands, disaster

could occur.

A high-level command structure ot;,. contain

commands like "GO TO LOCATION 22,45" and -Cs:'K UP A
LARGE BALL". Obviously there is a high levei of
sensor, and program, sophistication required to
supply these commands as primitives. It is expected
that the creation of these actions as procedures
will represent something close to the ultimate capa-
bility of the command set to be provided.

A high-level system would also permit several
independent actions to occur simultaneously. This
degree of parallelism is only possible when the
hardware supports reasonably powerful interruption
capability. Inexpensive microcomputers such as the
Apple II and TRS-80 don't usually have this power,
so we are prevented from considering truly concur-
rent processes in simple command systems.

A concurrent robotics system for more advanced
microcomputers such as the IBM and DEC machines will
perhaps be developed later. The current system
contains some limited concurrent capability,
described below in the section titled "BINDING".

We will now describe the "medium level" command
set used by PASPAL ROBOT. An example program
follows.

Software and Hardware Structures

The software supports up to 32 motor control
channels, and 32 sensors (which are usually switches)
The hardware is expandable in units of eight motors
or sensors up to this limit.

The Apple II also provides four analog inputs.

Sensors may also be defined as "logical sensors"
which are combinations of other sensors, or functions
of the state of an analog input. In effect, sensors

are like boolean functions. The usefulness of this

will be apparent later.

The motors and sensors are referred to by
integers 0 through 31. CONST declarations in Pascal

make these more legible.

We frequently use CONST declarations for the
analog sensors attached to game paddle inputs, also.



www.manaraa.com

For instance:

CONST LEFTMOTOR=0
RIGHTMOTOR=1
ELBOW=2
FOREARM=3
HAND=4
WHEELS=5
TOUCHFORWARD=0
STIFFARM=1
HOLDING=2
ELBOWANGLE=0
ARMANGLE=1

These declarations provide us with six symbolic
motor names, three symbolic sensor names, and two
symbolic analog input names.

In the following, each new command is marked
with a star (*) in the left margin, to make it
easier to locate.

Sensors

*The boolean function SENSE(whlch,TOUCH) returns
TRUE if sensor number "which" is touching something.
Similarly, SENSE(which,NOTOUCH) returns TRUE if the
sensor is not touching something. We say that the
sensor has value TOUCH or NOTOUCH in these two cases.

The sensors can be combined into "pseudo-sensors
by several commands. For instance, if we execute

*ANDSENSOR(SENSE1,SENSE2,BOTH)

we have now created a new "pseudo-sensor" BOTH
(which must be declared with a CONST and a value
between 0 and 31, of course.) BOTH will have the
value of TOUCH when'SENSE1 and SENSE2 both have
value TOUCH.

Similarly,

*ORSENSOR(SENSELSENSE2,0NE)

would cause ONE to have value TOUCH whenever at
least one of SENSE1 and SENSE2 has value TOUCH.

*NOTSENSOR(SENSE1,N0SENSEl)

would cause NOSENSE1 to have value NOTOUCH whenever
SENSE1 has value TOUCH.

*ANASENSOR(PADDLE1,GREATER,100,HIGH1)

causes sensor HIGH1 to have value TOUCH whenever the
analog input PADDLE1 has a value greater than 100.

*CNTSENSOR(TRIGGER,CNTFLAG,100)

causes sensor CNTFLAG to have value NOTOUCH until
TRIGGER has changed to TOUCH and back to NOTOUCH
100 times. Then its value changes to TOUCH.

This is used when we need to do something until
a given number of counts are recorded. For instance,
TRIGGER might be "toggled" once for each 1/4 revol-
ution of a driving wheel. The sensor counter would
be used to measure distance travelled.

72

The usefulness of these commands will become
apparent when we begin to explore the motor control
commands.

Motor Control

Motors come in two kinds, servo and actuator.
There are three simple "unconditional" commands for
the two types of motor.

*SERVO(FOREARM,60)

causes the forearm motor to be set to 60 percent of
its fullscale deflection.

*SETDIR(LEFTWHEEL,FORWARD)

causes the actuator motor LEFTWHEEL to run in a for-
ward direction when the motor is activated. Replac-
ing FORWARD with REVERSE would the motor to run
backward, whenever it is activated.

*ACT(LEFTWHEEL)

turns on the left wheel. The motor runs for 0.1
second each time this command is encountered in
the program.

This simple command would suffice to control
some kinds of motion. For instance, if FINGER were
a sensor that detected the hand's having closed on
something, a loop like

REPEAT
ACT(HANDGRASP)
UNTIL SENSE(FINGER,TOUCH)

would cause the hand to close on an object.

However, a smoother and more rapid action can
be achieved by combining the ACT and SENSE commands
into a "conditional actuate" command:

*CONDACT(HANDGRASP,FINGER,TOUCH)

which has the same effect as the previous REPEAT
loop.

Similarly, we have a "conditional servo" command
which allows the servo to quit trying to achieve
some angle, if a sensor de :acts a problem.

*CONDSERVO(FOREARM,60,COLLISION,TOUCN)

would cause the servo to try and tutu the arm to 60%
of its full deflection, unless sensor COLLISION
detects a TOUCH.

We also support commands that incorporate
counting directly into the motor control.

Assume that DISTANCE is a sensor which "toggles"
from TOUCH to NOTOUCH and back again every time the
drive wheels rotate 1/4 turn.

*COUNTACT(WHEELS,DISTANCE,40)

would have the same effect as the following:



www.manaraa.com

CNTSENSOR(DISTANCE,CNTFLAG,40)
CONDACT(WHEELS,CNTFLAG)

That, is the robot rolls forward a distance of
ten full revolutions of its drive wheels.

*TIMEACT(WHEELS,20) would cause the robot to roll

forward for 2 seconds. (Time is measured in units

of 0.1 second).

Several other commands, particularly related
to arm positioning and control, are omitted here
for reasons of brevity.

Binding

There are times when you want two motors to act
in unison; but separate ACT or CONDACT commands would
cause one motor to act at a time. For instance, a

robot with separate left and right drive motors
should use both motors at once to walk forward.

*BIND(LEFTWHEEL,RIGHTWHEEL,WHEELS)

causes any subsequent actuator commands directed to
WHEELS to cause both LEFTWHEEL and RIGHTWHEEL to act.

It is still possible to refer to LEFTWHEEL and
RIGHTWHEEL independently. Application of SETDIR to
WHEELS would reverse the direction of both wheels
when actions were later requested of WHEELS, but
not of course when actions were requested of indi-
vidual wheels.

Example Program

The following program contains several proce-
dures that would be standard parts of any program
for R3 ("Woody"). These procedures constitute the
"how-to" for retracting the arm, turning in place,
and initializing the bindings and counters that are
to be used.

The actual main orogram which uses these proce-
dures is very short. Its purpose is simply to look
randomly about a room until it locates a block of
wood lying on the floor. R3's arm projects about 4
inches in front of the leading edge of the trans-
porter platform, when the arm is fully retracted.
Anything touching the arm is considered to be an
obstacle, and activates the sensor OBSTACLE.

A second sensor, on the front caster, detects
objects lying on the floor. . It is assumed that the
wood block is the only thing lying on the floor.
This sensor is called LOWTOUCH.

When R3 encounters an obstacle, it backs away
and turns a random angle (a multiple of 45 degrees),
then resumes walking. This simple a program is
capable of being trapped, if the arm is by chance
inserted into a hole from which the "back ,way"
maneuver doesn't extricate it. The OBSTACLE sensor
would have to be sensitive to touches on both the
side and the front of the arm to free R3 from this
trap.

Since these commands are imbedded in the PASPAL
dialect of Pascal, no semicolons are required. Each

73

command must occupy a separate line.

PROGRAM FINDBLOCK

(*
A Program for Robot R3, in the PASPAL/ROBOT
Dialect of Pascal.

Moshell 12/82

This program guides R3 around the floor randomly
until a low-lying block of wood is detected. The
computer then signals with a "beep" that the block
has been found.

SENSORS
*)

CONST OBSTACLE=1
LOWTOUCH=2 (* PHYSICAL SENSORS *)

ANYTHING=3 (* LOGICAL SENSOR *)

(*
MOTORS

*)

LEFTWHEEL=1
RIGHTWHEEL=2 (* TRANSPORTER MOTORS *)

WHOLEARM=3
FOREARM=4 (* ARM CONTROL MOTORS. *)
ARMANGLE=5 (* UNUSED IN THIS PROGRAM *)
GRIP=6 (* DITTO... *)

WHEELS=7 (* LOGICAL MOTORS, FOR BINDING *)
ARMS=8

PROCEDURE RETRACT (* PULLS THE ARM UP SHORT. *)

(*
WHOLEARM retraction is positive (upward); but
FOREARM retraction requires negative (downward)
motion.

*)

BEGIN
SETDIR(FOREARM,REVERSE)
TIMEACT(ARMS,100)
SETDIR(FOREARM,FORWARD)
END .,

PROCED/RE INIT (* SETS UP BINDINGS AND ORSENSOR. 9
BEGIN; '

(* FOREARM RETRACTION : *)

BIND (WHOLEARM,FOREARM,ARMS)

(* FOR FORWARD MOTION : *)

BIND (LEFTWHEEL,RIGHTWHEEL,WHEELS)

(* FOR DETECTION OF EITHER KIND OF COLLISION : *)

ORSENSOR (OBSTACLE,LOWTOUCH,ANYTHING)

RETRACT (* THE ARM *)
END

PROCEDURE ROTATE(DEGREES:INTEGER)

(* Turns the whole robot an angle of
DEGREES (counterclockwise, looking down,
is positive.)



www.manaraa.com

DEGREES is rounded down to nearest multiple
of 45 degrees, because that's the accuracy
of the wheel turning sensor switches.

* )

BEGIN
IF DEGREES>0 THEN
SETDIR(RIGHTWHEEL,REVERSE)

ELSE
SETDIR(LEFTWHEEL,REVERSE)

(*
Sensor ANGTURN pulses once per 45 degrees.

*)

COUNTACT(WHEELS,ANGTURN,N DIV 45)

SETDIR(RIGHTWHEEL,FORWARD)
SETDIR(LEFTWHEEL,FORWARD)

END

PROCEDURE BACKOUT (* Pulls R3 back from obstacle. *)
BEGIN
SETDIR(WHEELS, REVERSE)
TIMEACT(WHEELS,10)
(* RUN FOR ONE SECOND *)

SETDIR(WHEELS, FORWARD)
END

(*
The Main Program
k)

BEGIN

IN IT

REPEAT

(* Run forward until you touch anything *)
CO...WACT(WHEELS,ANYTHING,TOUCH)
IF SENSE(OBSTACLE) THEN
BEGIN
BACKOUT

(* Rotate 45,90 135 or 180 degrees,randomly. *)
ROTATE(RAND(4) * 45)
END

UNTIL SENSE(LOWTOUCH)

NOTE(20,200) (* Beep your success ! *

END.
Fore thews
EleaOrion

VVI4, t

/VIA
Roil:bn

Lo+end
Rotation

Programs for arm control are necessarily some-
what more complicated and require analog arm position
sensing.

5. Speculations on Impact

Whereas our earlier effort at designinl, a pro-
gramming curriculum ("Computer Power", cf. Aiken and
Moshell, 1982 and other papers in bibliography) was
explicitly designed for the median student, we do
not regard the robotics tutorial as appropriate for
that audience.

At the current state of development of hardware
and software, the probability of successful, working
robot systems is going to be marginal for all but
the brightest and most highly motivated students.

This curriculum will, therefore, have to accept
the burden of a certain kind of elitism.

Teachers may be surprised, however, at just who
the "robot elite" turns out to be. The authors
suspect that the skills of "vocational track"
students, with tools and materials, may make it
possible for them to contribute strongly to the
success of such a course.

If the curriculum is successful at teaching
technological "basics" such as principles of physical
mechanics, it might even turn out to be a subtle
path for upward mobility for certain students.

The authors eagerly look forward to in-school
tests in academic 1982/3 and 83/4, and will report
results in later articles.

Bibliography

Aiken, R. M. and Moshell, J. M. "Computer Power".
The Computing_ Teacher, 9:8, April 1982.

DaCosta, Frank. How to Build your own Working
Robot Pet, TAB Books, Blue Ridge Summit, PA. 1979.

Hughes, C. E. and Moshell, J. M. "Rascal and

INTERPAS: Graphic Programming Tools for Kids".
The Computing Teacher, 9:9, May 1982.

Moshell, J. M. and Hughes, C. E. Robots and the

Personal Computer. John Wiley and Sons,'to appear
in 1984.

Robotics Age. P.O. Box 801, La Canada, CA. 91011.

Hand
isk °Pen:if-ion

74

Figure 1: R3 ("Woody"), a

Mobile Hobby Robot



www.manaraa.com

ENDING THE ISOLATION:
DEAF-BLIND AND MICROCOMPUTERS

by Dan Zuckerman

Human-Interface Laboratory, Science and Technology Studies,
Rensselaer Polytechnic Institute, Troy, NY 12181

Abstract

A method to enable a deaf-blind person
to work with a microcomputer is described.
Morse Code is used tactilly as a general
interface to the screen. Techniques,
experiences, and directions for future work
are discussed.

Microcomputers can be used to broaden
the horizons of the deaf-blind and to
greatly expand the number of deaf-blind who
are able to interact effectively within the
context of sighted hearing people. More
than 15,000 people in the United States are
both deaf and blind. This overwhelming
handicap, being able to neither see nor to
hear, was described by Helen Keller as a
"dark, silent imprisonment." The lack of
educational and training opp)rtunities that
are concomitant with their communicative
deficit3 contribute further to the
isolation of the deaf-blind. Specialized
training is intensive, requires
extraordinary committment from the teacher,
and requires physical contact for tactile
communication.

A minority of deaf-blind, such as Helen
Keller, have demonstrated that if the
communication barrier can be breiched, the
deaf-blind can productively and effectively
interact with their world. An even smaller
minority have found a means and a context
in which their handicap is completely
eliminated so that they can effectively
participate in an international community
of seeing-hearing people. These are the
deaf-blind who use Morse code and

*I am, especially indebted to Dr. Linnda
Caporael, friend and teacher, for her help
and encouragement with this and other
projects, Josepl.i L. Hartmann Jr., who
discovered the Morse code connection and
involved me with it, and Ray Boduch, a
source of inspiration for myself and many
others.

75

participate in amateur radio. They can
communicate by "speaking" with a telegraph
key and "hearing" the vibrations from a
speaker cone with their fingertips. There
is an enormous potential for all deaf-blind
people to actively participate in society.
By harnessing the power and versatility of
today's inexpensive microcomputers with the
communication possibilities of Morse code
the intellectual and productive potential
of the deaf-blind may be released.

My purpose in writing this paper is to
describe such a Morse code/microcomputer
interface, and the experiences of one deaf-
blind user. The interface was implemented
on a Radio Shack TRS-80 Model
microcomputer, a machine that costs about
$1000. The machine uses the Basic language,
has sixteen thousand characters of memory,
and uses cassette tapes for long term
storage. Development of this software took
less than thirty man-hours. The keyboard is
used by the deaf-blind individual in the
same way most people use it.

The Morse code interface enables a deaf-
blind person to interpret the screen just
as a seeing person would. As each key is
pressed, that character is sounded out in
Morse code. These sounds are "heard" by a
deaf-blind person as vibrations. Mr. Ray
Boduch, the deaf-blind user in this
project, developed a circuit to substitute
a doorbell buzzer for a speaker so that
Morse code can be felt on a sensitive part
of the body such as the neck or thigh. An
infrequently used key serves as an escape
into screen reading mode. The user presses
the shift and right-arrow keys followed by
a'key-indicating line'is to be heard.
The sixteen lines on the screen are
represented by the characters 0 through 9
and A through F. Upon pressing one of these
keys, the characters on that line of the
screen are communicated to the user in
Morse code. At this point, any key will
serve to temporarily pause the display and
any other key will resume the
communication. The enter key is available
to stop in mid-line. A utility program is
used to control the speed at which
information is sent. If the "escape" key is



www.manaraa.com

pressed twice, the program will tell (in
Morse code) which line on the screen is

presently being typed (contains the

cursor.)

This software is designed so that it is

always available to the user. In general,
it permits the use of any software
available for the machine and allows the
deaf-blind to write their own computer
programs. Even if the machine is busy with
complex calculations the deaf-blind person
can watch the screen as it changes,
enabling him or her to share the same
perception of the screen as others.

Since Morse code was not designed for
computer work, it does not have all the

characters needed. Appendix A explains
extensions that were developed to display
all the characters that a TRS-80 uses. Most
of these characters are currently used by
ham radio operators. The software interface
for this computer is in the public domain
and is available from the author.

The interface described above was
developed and tested in collaboration with

Ray Boduch, who has been blind and deaf
almost since birth. By way of background,
Mr. Boduch can read Braille, read lips
(with his thumb feeling the lips and a

forefinger feeling the vibrations in the
throat), and speak. At the age of 14, he

was taught Morse code and successfully
taught the code to a deaf schoolmate. The

significance of Morse code is that it

eliminates the necessity of tactile

physical contact for communication. At 23,
with the assistance of a neighbor, Mr.

Boduch became a ham radio operator. He can
send and receive Morse code at 50 words per
minute: the federally set minimum speed

competency for an amateur license is 5

words per minute. presently, Mr. Boduch is

employed assembling electronic parts. He
hopes to become a computer programmer, an

opportunity that is only now possible
because of the Morse code/microcomputer.
interface.

Although it is difficult to generalize
from the experiences of one deaf-blind
user, the activity is useful for suggesting
directions for further research and
development, especially for the user side

of the human-computer interface. The user
side involves both a student and a teacher.

What does an educator of the handicapped
need to learn to be able to teach computer

To start a person learning
computers, a teacher must have a good
understanding of a language such as Basic
and the techniques for using the available
machine. Some Morse code familiarity is
also needed to understand the student's
feedback. This can be learned with one
month of intensive study. Mr. Boduch taught
Morse code to a deaf 17-year-old in two

weeks. Teachers of computer skills need
only have enough background to start their
students off. Once the interest is sparked,

it is easy to 1parn independently from
informatiph accesssible on diskettes for
the system being used. If more than one
student is involved, they will learn from
each other.

I assume the student knows how to touch-
type, has already obtained a grasp of Morse
code, and has had the mechanics of starting
the computer demonstrated to him or her.
The first skills that need to be taught to
a new computer user involve reading the
screen. The teacher needs to explain that
there are sixteen lines of print on the
screen, which may change after each
keyboard entry. The student needs to be
shown how to systematically read the screen
by pressing simultaneously the shift and
right-arrow keys followed by the number of
a line on the screen. The screen should be
read from the top down by pressing shift
right-arrow, zero to read the first line,
shift right-arrow, one to read the second
line, shift right-arrow, two to read the
third line, and so on. Emphasis should be
made on the necessity to methodically read
the screen so as to be aware of how it is
changing. The user should also be
encouraged to read the line he is presently
typing. The number of that line may be
found by pressing the shift and right-arrow
keys twice. The current line number will be
heard in Morse code instead of echoing the
Morse code signal for the second shift
right-arrow. Then, this line may be read by
pressing shift right-arrow followed by the
character just determined. Characters not
previously learned will have to be
explained in the context of the computer.
For example, the TRS-80 uses ">" as a

prompt to indicate that it is awaiting the
user to type something.

76

Although the deaf-blind effectively use
a trial-and-error method for learning, the
extreme flexibilty of the computer makes
"playing" with it, a common strategy for
introducing novices to computing, an unwise
choice for the beginning deaf-blind user.
It is very important to present simple,
clearly shown examples of how program
input, listing, and execution differ. The
first program should consist of something
like "10 PRINT 2+2". Character strings,
input statements, and immediate execution
mode (a statement with no line number)
should not be demonstrated. It is critical
at the initial stage that the input program
be completely different from the results.
Similarity between them will cause
confusion. For example, the program 10
PRINT "Hello, I am your TRS-80 Computfr."
will only confuse the very central issue of
how listing a program differs from using a
program. The user should also be taught, at
least initially, to clear the screen with
the CLEAR key before each command. This

9



www.manaraa.com

will erase the screen without affecting the
computer's memory. The user needs to
recognize that clearing the screen makes it
easier for him to evaluate the effects of a
command.

The first multi-step program should be
the speed-varying utility. This program
uses some statements to control the speed
ald timing of the Morse output. In order to
work with this program, the user needs to
change the numeric values contained in the
program. The results of doing so and
executing the new program will be very
apparent: the speed of the Morse code
interface will change. Though it is
difficult for the deaf-blind user to
understand, at this stage, how changing
just a few numbers can change the way a

computer sends Morse code, the excercise
will develop an understanding of just how
versatile the machine is. It will also
demonstrate how it is possible to defeat
the Morse code interface software. This is
an important lesson because, as the user
becomes more experienced, sophisticated
experimentation may possibly do this.

The computer is a very different
educational experience for a deaf-blind
person because he or she must initiate
their learning by using examples, rather
than by trial-and-error methods. The deaf-
blind do not have the experience of
learning by following instructions and
understanding examples. Their entire
perspective on life is experimental. Very
rarely are they presented with instructions
for new experiences that make sense to
them. In spite of this preference for an
experimental approach, it should be
emphasized that non-structured
experimentation with the computer, rather
than trying to understand and repeat the
examples presented, will accomplish little.
This is a very difficult point to get
across to someone whose entire life
experience involves tinkering with their
environment until the desired effect is
achieved.

Presently, Mr. Boduch uses his TRS-80 to
exchange letters with a deaf friend via
program tapes. The lack of Brailled
technical materials has been a shortcoming
of using Basic on the machine. The software
-interface for an IBM personal computer is
presently being designed. One advantage of
the IBM is that the documentation is
available on disk, so it would be
accessible with the Morse code interface.

Of course, Braille terminals are
available and are used by a growing number
of blind programmers. The Versa-Braille is
one such device. It has a Braille keyboard
and a paperless Braille output device that
can mimic the behavior of a video terminal.

77

Nevertheless, Braille output has an
important role. It provides a less
immediate method of communication which
doesn't require remembering the entire
contents of a line. The characters of
output can be easily scanned and carefully
observed rather than heard just once each
time a line is read.

Ray was recently asked what he thought
about hoy readily deaf-blind people could
learn to interact with the computer via
Morse code. He said that any deaf-blind
person who could learn Braille could easily
learn this. "Yes, I am very sure, as long
as they know what is going on."

A significant number of intelligent,
thinking people who are presently blocked
by communicative barriers can become
participants and contributors to the
microcomputer revolution. Technological
developments presently available at low
cost can be used by educators and others to
make a major breakthrough in the welfare of
the deaf-blind.

The remaining barriers to this release
of intelligence are social, not
technological. For example, the Federal
Communications Commission requires not only
a minimum speed competency in Morse code,
but also a technical knowledge of things
such as Ohm's law. The requirement of this
technical knowledge should be waived for
the deaf-blind. Morse code is such a.

tremendous break-through for the deaf-blind
that legislation should be passed to more
easily license these people. The world of
amateur radio should be made available
solely on a statement of desire to
communicate via Morse code and a test
demonstrating sufficient understanding to
communicate v!a ham radio.

Through computer "cottage industry",
deaf-blind people working at home or in
small businesses can compete as equals for
employment rather than having no option but
to work in sheltered workshops at
occupations below their intellectual
capacity. No prejudice can affect the
person who submits a floppy disk for sale.
With the tremendous potential at hand, once
a few of the deaf-blind come out into the
world, the rest will surely follow.

A row of retractable plastic pins above the
Braille keyboard are controlled so as to be
readable as Braille. There are at least two
advantages of the Morse code/microcomputer
interface. One is its low cost and easy
access. The other is that the interface is
designed to give the user an experience as
similar as possible to the usual
communication techniques.

9



www.manaraa.com

Appendix A
Morse Code for the TRS-80

This chart shows the Morse code extensions
that have been defined for use with the
TRS-80. Both the character (or control code
name) and its decimal ASCII representation
are qiven. Appreciation of this information
requires a knowledge of Morse code. To find
a particular character, combine the Morse
sounds of the characters defining that
column and row. Here are two examples:

< Column N, Row B, Morse NB
(dah dit dah dit dit dit)

! Column M, Row R, Morse MR
(dah dah dit dah dit)

Blank spaces represent character sounds
available for extending this definition to

other machines. Spaces that contain boxes
are considered sounds too complex for
practical use,.

A
B
C
D
E
F
G
H
I

J
K
I,

M
N
0
P

Q
R
S

T
U
V

Y

* * *

A
95 I X 88

% 37 I < 60
ESC 27 1 ; 59
+ 43 I

96
R 82 D 68'
" 34

I SOH 1

I

86
SLC *

ELC **
$ 36
S 83

M
Q 81

58

& 38

8 56
G 71
SUB 26
9 57

L 76 I B 66 H 72 Z 90

HT 9 ,
LF 10

J 74 Y 89 I = 61 NOT ***

P 80 C 67 L F 70
1 49 _L 2

L

50 0
1

48
123

( 40 1 124
EM 25 / 47 ! 33

SP 32 6 36 5 53 7 55
W 64 K 75 U. 85 0 79

@ 87 CR 13 4 52 * 42
- 45 I 125

[ 91 j 3 51 # 35
\ 92 > 62 -. 126
1 93 1

DEL 127
94 j 7 63

In addition to the table, the following
characters are defined:

BS 8 IIII
CAN 24 IIIII
US 31 IAA

39 AOE
41 NQE
44 MIM
46 AAA

SLC: Start Lower CaseLUpper!casis_
assUMedUniiithS-CharaCter is heard.

ELC: End-Lower Case--This-character-.:,
(as well as CR, ., !, and .7).- signals
that upper case is now .being heard..

. .

NOT: Undefined -Code. Should a code
not in the table be requested, this
code is sounded.'

Appendix B
Technical Description of the Morse

Code/Microcomputer Interface

This section is provided for the benefit
of the technically inclined reader who is
interested in implementing the system. The
software to accomplish this scheme on a
TRS-80 Model I tape-based machine or a TRS-
80 Model III disk-based machine has been
written. It has been placed in the public
domain and is available from the author.

The first implementation was done on a

TRS-80 Model 1. Itotook 475 bytes of code,
Without provision for upper/lower case. The
entire routine resides in the keyboard
scan. A tape that patches the keyboard
vector and loads it into protected high
memory enables the Morse interface.

Upon being invoked, the routine calls
the address that was original.ly- in the
keyboard vector. The returned character is
echoed in Morse code to the speaker port.
The routine will. return at this point if
the key just pressed is not shift right-
arrow (ASCII 25). If it is, the keyboard
vector is patched to a scan known to be
available in the ROM and a character is
requested from this keyboard scan.

This character is not accepted until it
is a shift right -arrow or a hexadecimal
digit representing a line number. If a
shift right-airow, the cursor line is
calculated, echoed in Morse code, and the
routine returns, after fixing the keyboard
vector to point to the Morse interface.
10therwise% the hex character is used to
calculate a starting. address in video

. memory. The -length.. of -this- line- is__
determined without trailing. spaces. The
line, is -sent in Morse code followed by a
carriFge-return.....Before_eachharacteris
sent; the keyboard is polled with the ribm-----
keybOard scan.

An ENTER will cause the line displaying
loop to exit so the remainder of the line
will not be heard. 'Any other key will pause
the routine, waiting for a different key to
restart the process. The Morse code
keyboard routine patches itself back in the
keyboard vector before it returns.



www.manaraa.com

The Morse code sending routine uses the
cassette port to generate a tone. The most
interesting part of this routine is the
table encoding the dits and dahs. This
table is a bitwise representation of Morse
code such that as many as 7 dahs or 14 dits
can be represented in two bytes (16 bits).
Dits are encoded bitwise as a single O.
Dahs are encoded as a 10. End of character
is indicated by a 11. For example, a Morse
A (dit dah) is encoded as 0 10 11 and
padded with zeroes to form the hex byte 58
(0101 1000).

The character set is encoded in two
separate tables. One represents the ASCII
codes from 32 to 95. This is used as a
look-up table for codes in that range and
uses 128 bytes. The second table contains
12 other characters. It uses 36 bytes to
encode the ASCII code followed by two bytes
of Morse. An ASCII NUL (0) indicates the
end of the table. The following two bytes
are the character used if the routine is
asked to represent an undefined ASCII code.

Thus, it takes 164 bytes to encode 76
characters. The remaining code consumes 311
bytes. The amount of code utilized is a
great concern since many TRS-80
applications use almost all of the 16K
available on the machine. Implementations
on machines with more memory not need be so
byte efficient.

a

79



www.manaraa.com

PLATO STAYWELL: A Microcomputer-Based Program of
Health Behavior Change that Improves With Use

Murray P. Naditch, Ph.D.

Control Data Corporation

PLATO STAYWELL is a microcomputer pro-
gram of health behavior change. It is
highly individualized, matches people
to program interventions most likely to
be effective for them, and includes
branches so that a person's program may
be changed if it is not working. The
efficacy of person to program matching
is evaluated by a mathematical model
that enables the program to make in-
creasingly accurate decisions.

Proaram Rationale

Cardiovascular disease is the leading
cause of death in the United States and
in other Western industrialized coun-
tries. More people die of cardiovascu-
lar disease in the United States than
all other leading causes combined. Pre-
vention of cardiovascular disease has
been a major focus for scientists and
clinicians in fields of public health
and behavioral medicine because the
disease is primarily caused by people's
behavior and is to a large degree pre-
ventable. A considerable body of re-
search and clinical practice has focus-
ed on the development of effective pro-
grams of smoking cessation, modifica-
tion of eating behaviors concerned with
dietary cholesterol, salt ingestion,
and weight control, modification of be-
haviors related to more effective con-
trol of blood pressure, as well as pro-
grams of stress management and physical
fitness.

Control Data Corporation initiated a

80

preventative medicine program focusing
on cardiovascular behavioral risks in
1979. That program, called STAYWELL,
screens employees for potential risks
in the areas of smoking cessation, phys-
ical fitness, blood pressure mangement,
cholesterol and salt consumption, weight
control, and stress management. Em-
ployees interested in changing health-
related behaviors are given opportun-
ities to enroll in courses and other
on-site program activities related to
health behavior change. This program
has been described elsewhere (Naditch,
In press).

In 1981, after the STAYWELL program had
been implemented in approximately ten
American cities, a decision was made to
examine the extent to which computer
technology could be used to address fun-
damental unsolved problems in health be-
havior change.

Research in the area of response to
treatment for weight control is illus-
trative of one of the general problems
in this area. In recent years, cogni-
tive behavioral modification techniques
have been used with some success in
effecting weight behavior change. (For
example, see reviews by Stunkard and
Mahoney, 1976; Jeffrey, 1976.) Although
the results of these studies are statis-
tically significant, the mean group
weight losses are often small and do not
reach clinical significance. Consistent,
significant individual differences among
patients in weight loss are observed in
studies where individual data are report-
ed (e.g., Harris and Bruner, 1971;
Penwick, Filion, Fox and Stunkard, 1971;
Gormally, 1979). Consistent individual
differences in response to behavior ther-
apies indicate that small mean treatment
effects observed in most programs are
misleading. This therapeutic approach
is effective for some types of patients
but not for others.

The importance of identifying individual
differences as predictors of success in



www.manaraa.com

behavioral therapies for weight control
as well as other behavioral risk areas
have been recognized by a number of
authors (e.g., Weiss, 1977; Coates,
1977; Leon, 1976). Unfortunately, there
has been very little success in finding
reliable predictor variables. This
lack of success may be due to the fact
that most behavior studies: 1) have
small sample sizes, 2) use univariate
rather than multivariate explanations,
and 3) focus on further differentiating
the efficacy of program comnonents
rather than the interaction of programs
and individual responses to those pro-
grams.

Another major unsolved problem in the
field focuses on continued availability
of social support following the end of
a formal program. This lack of contin-
ued access to social support and/or per-
vayors of the program after the inter-
vention is over often results in the
effects of the program eroding to fail-
ure over time.

A final problem that resists solution
in the development of effective behav-
ioral interventions concerns the lack
of significant cumulative scientific
findings in this area. Studies tend to
use different definitions of dependent
variables, do not all follow up dropout
subjects and those who complete the pro-
grams for adequate lengths of time,
apply varying meanings to the program
interventions that they use, and in gen-
eral lack a sufficiently unified set of
definitions or unified scientific para-
digm that would be required to produce
more cumulative scientific findings.

A Computer-Managed Program Can Address
Unsolved Problems in the Field

The PLATO STAYWELL Program has formula-
ted one set of solutions to the prob-
lems of individualization, support, and
cumulative scientific knowledge. These
solutions are based on unique aspects
of program users (N = 20,000).

Individualization

The PLATO STAYWELL Program achieves in-
dividualization by:

1. Matching people to the programs most
likely to be effective for each person,

2. Modifying programs while people are
in them as a function of their perform-
ance.

3. Tailoring skills to each individ-
uals' needs,

4. Tracking progress and utilizing re-
sults to engage in a dialoguelike com-
mentary with each user,

81

5. Using personal data to interact
with each user in a familiar way.

Matching People to Programs

Although there has been a significant
body of research that has focused on
the effects of individual difference
variables and program outcomes, there
is very little definitive work that
would enable ona to effectively match
individual differences with the prog-
rams most likely to be effective for
each person. The PLATO STAYWELL Prog-
ram has developed a procedure to make
this possible. For each behavioral in-
tervention (for example, weight control)
the user completes a behavioral profile
prior to beginning the program. This
behavioral profile contains operation-
alized versions of the key variables in
the clinical literature that have been
hypothesized to relate individual dif-
ferences to program outcomes. For ex-
ample, in the area of weight control,
behavior profile variables include know-
ledge about nutrition, the degree of
social support at home, the degree of
overweight, the number of programs the
person has been in previously, sex, and
other demographic characteristics.

In the initial interation of the pro-
gram, subjects are randomized across a
number of intervention approaches con-
tained within the program. These inter-
vention approaches represent approaches
and configurations of program interven-
tion approaches. For example, in the
weight control program, some people may
either lose weight at the beginning of
the program using either a fixed diet,
a program of avoiding certain foods and
eating others, or a program of calorie
counting.

When a sufficient sample of people have
run through the program, the individual
difference variables are examined using
regression equations to determine their
efficacy in predicting outcomes at the
end of the program and 12 months after
the program is over. Individual differ-
ence variables that are useful predic-
tors remain in the model and those that
do not account for a significant vari-
ance are deleted. Variables whose main
or interactive effects account for sig-
"ificant variance are then used to match
individuals to program paths in the next
iteration. This procedure is repeated
with each interation, and the system is
gradually able to make increasingly ac-
curate predictions about the effects of
natching people to program paths.



www.manaraa.com

Program Branching

Each program path includes branches so
that individuals who are not doing well
may move to an alternative intervention,
have the intervention they are in en-
riched with adjunctive material, or
repeat certain aspects of the interven-
tion they have already experienced.
Each branch point is treated and tested
as an alternative experimental inter-
vention. The efficacy of branch points
are evaluated and reconsidered with each
new cohort of people comprising one of
the iterations in the evaluation process.
In this manner, branches may be deleted,
new branches may be added, or branches
may be kept for people with certain char-
acteristics but not used as branches for
people who do not share those character-
istics.

Tailoring Skills to Individual Needs

The behavioral profile is supplemented
during the program with other self-re-
port data related to an individual's
lifestyle and needs. These variables
are used to suggest choices or menus of
specific lessons to users. For example,
in the weight control program, subjects
who entertain clients in restaurants,
eat many of their meals in restaurants,
or who travel frequently are offered
lessons focusing on those specific is-
sues. In this manner, people are match-
ed with the skill lessons that are dir-
ectly relevant to their situation and
level of knowledge, and are not exposed
to non-relevant lessons.

Tracking and Commentary

The program tracks each user's program
history, and uses that data to review
progress with each user. Tracking in
the weight program, for example, focuses
on pounds lost. Tracking in the fitness
program, for example, focuses on kilo-
calories expended, resting pulse rate,
and changes in mood since the beginning
of the program. This tracked informa-
tion is presented in a graphic form at
the beginning of each lesson. This
graphic tracking of progress enables
each user to assess their own progress
as well as to compare their progress
with the progress of other people who
have taken the program. As the program.
data base accumulates information, users
will be able to compare themselves with
other users who have specific demograph-
ic characteristics. For example, a user
can ask, "How does my progress compare
wlth that of other white women execu-
tives who are my age in this company?"

The commentary and tracking functions
are key elements in the user's flow

82

through the program. After a specific
program path is selected, the user be-
gins a lesson. Lessons usually involve
the introduction of some specific know-
ledge or skill area relevant to the user,
a simulation in which the user is given
the opportunity to apply new information
in a life-like context, and an assign-
ment through which the individual has
the opportunity to try out those speci-
fic skills in a real world context prior
to the next lesson. For example, in the
weight control program, a lesson concern-
ed with eating in restaurants introduces
basic skills related to eating and main-
taining a low calorie diet in a restaur-
ant, allows the person the opportunity
to order a low calorie meal from a simu-
lated restaurant menu in a social con-
text in which other people are strongly
and tenaciously encouraging the person
to eat a higher calorie meal, allows the
individual to track how many calories
are in the meal that they have chosen,
and makes suggestions for alternative
choices and for modes of handling inter-
personal situations in which people are
encouraging the user to eat more calor-
ies than he or she would like.

When the user returns to the next lesson,
information is collected about progress
and success over the last week. That
information is used in the tracking sys-
tem to present progress, and the user is
given an opportunity to engage in a dia-
logue -like interchange with the computer
concerned with the success or failure of
the assignment for that week. The dia-
logue is actually a simple set of options
in which the user either moves on to the
next lesson, repeats some aspect of the
last lesson, modifies their goals into
smaller steps, or reconsiders their ob-
jectives and moves on to a new course of
action.

Personalization Through Familiar Inter-
action

The computer-managed program is further
individualized by having a friendly,
supportive tone, referring to the user's
name, remembering statements made by the
user earlier in the program, allowing
users a wide latitude of choice, as well
as enabling the tracking of individual's
progress and comparison with the prog-
ress of other people.

Continued Social Support

The program provides continuing social
support by nature of its continued avail-
ability. Unlike conventional program
interventions, where the instructor or
the class disperse when the course is
over, the computer terminal continues to
be available for the user to come back

93



www.manaraa.com

to review, continue or reassess progress
at any time.

By remembering the user's earlier data,
and by having a number of lessons that
focus on long-term maintenance, the user
is able to experience the program as
continuous, friendly, supportive, per-
sonal, and responsive even after the
user has been away for many months.

The program currently can run either on
a free-standing microcomputer using
floppy disks or a microprocessor tied
into a central computer via a telephone
modem. In those instances where there
is access to the central computer the
program provides a social support net-
work that enables people to communicate
with one another about their progress.
The primary mode of this communication
is through a system called PLATO notes-
files.

Notesfiles are an electronic bulletin
board in which users may write state-
ments that can be read by other users.
Users reading statements can respond
with statements of their own or initiate
new statements. Notesfiles can be open
to all users or access can be limited
to users with specific characteristics.
Users who complete the program, or users
who are having trouble at various por-
tions within the program related to soc-
ial support, have the opportunity to
read and write in notesfiles of users
who are also attempting to stop smoking,
lose weight, manage their stress, con-
tinue in a program of physical fitness,
or manage their blood pressure. Users
have the option of creating new notes-
files that may limit group membership,
focus on selected topics, or be geo-
graphically specific. For example, a
localized notesfile can be used to match
partners for fitness activities.

A variation of the notesfiles process
used in a work site setting involves a
program called Action Teams. Action
Teams are work site based groups who get
together to effect some aspect of the
work environment related to more healthy
behavior. These groups focus on chang-
ing some aspect of the environment such
as putting healthier foods in the vend-
ing machines or company cafeterias, putt-
ing in bike racks or showers, or on some
more general health-related activities
such as starting an aerobic dance class,
having contests among work groups to
to lose weight or stop smoking, or in-
itiate intramural sports activities.
Each Action Team is led by a lay leader.

The PLATO STAYWELL program recruits
Action Team leaders based on their suc-

83

cess in the program. People interested
in being an Action Team leader take a
microprocessor-based lesson on how to
be an Action Team leader, and then in-
itiate Action Teams in their work site.
A special notesfiles for Action Team
leaders is available. Leaders can dis-
cuss ccmmon problems and have access to
expert consultants who can give them
advice in initiating and maintaining
these groups.

Program Evolution and Theory Construc-
tion

The efficacy of the program in producing
behavioral change is evaluated using a
multiple regression-based structural e-
quation model. This structural equation
causal model can be represented pictori-
ally as a causal flow diagram. The flow
diagram is one representation of a for-
mal theory, and the model tests the par-
ameters of that theory using regression
equations. The theory is redefined with
each subsequent iteration of users, and
basically serves as a paradigm for the
evolution of cumulative scientific re-
search in this area. This scheme is
similar to the proposal for the formal-
ization of theory developed by Blalock
(1969). In this situation, the evolu-
tion and testing of the computer-based
instructional model, the clinical model
examining the efficacy of person-thera-
peutic intervention interactions, and
the formal theoretical model are synon-
omous.

Computer Configuration

The PLATO STAYWELL Program runs on a
Control Data 110 microprocessor. The
program uses two floppy disks that are
run on a one-disk drive unit. In each
course area, there is a personal disk
and a public disk. The personal disk
contains information about the indivi-
ual's health risk profile, their prog-
ress in the program, their history_in
the program, and evaluation data. The
public disk contains specific course
lessons.

A program session is initiated when the
user inserts his or her private disk.
The private disk greets the person, dis-
cusses progress during the week, and
refers the user to a specific lesson on
the public disk. The private disk is
removed, the public disk inserted, and
the user takes the lesson on the public
disk. After completing a lesson on the
public disk, the individual returns to
the private disk where a specific home-
work assignment is determined that en-
ables the user to apply the information
learned in the lesson.

-BUJ



www.manaraa.com

The program can run either with or with-
out the notesfiles support group and
Action Team functions. Notesfiles and
Action Team functions require a modem
hookup through which the microprocessor
can have access to the central computer
and to other users.

Programs for weight control, sm-,king
cessation, blood pressure manag-mient,
and stress management will be in use at
Control Data work sites during the first
quarter of 1983. Programs for physical
fitness and nutrition will be available
later in 1983.

Bibliography

Blalock, H. M., Theory Construction:
From Verbal to Mathematical Formula-
tion. Englewood Cliffs, NJ: Pren-
tice Hall, 1969.

Coates, T. J., Theory, research and
practice in treating obesity: Are
they really all the same? Addictive
Behaviors, 1977, 2, 95-103.

G'rmally, J., Correlates of weight loss
and maintenance in a behavioral
weight clinic. Paper presented at
the Annual Meeting of the American
Psychological Association, New York,
1979.

Harris, M. B. and Bruner, C. G., A com-
parison of a self-control and a con-
tract procedure for weight control.
Pehavioral Research and Therapy, 1971,
9, 347-354.

Jeffrey, D. B., Behavioral management
of obesity: Learning principles and
a comprehensive intervention model.
In W. E. Craighead, A. E. Kazadin,
and M. J. Mahoney (Eds.), Behavioral
Modification: Principles and Appli-
cations. New York: Houghton Mifflin,
1976.

Leon, G. R., Current directions in the
treatment of obesity. Psychological
Bulletin, 1976, 83(2), 557-575.

Naditch, M. P., The STAYWELL Program.
In Matarazzo, J. D. Miller, N. E.
Weise, S. M. Herd, J. A. Weise,S.M.
Behavioral Health: A Handbook of
Enhancement and Disease Prevention.
NY: John Wiley and Sons (In Press).

Penick, S. B., Filion, R., Fox, S. and
Stunkard, A. J. Behavioral modifi-
cation in the treatment of obesity.
Psychosomatic Medicine, 1971, 33(1),
49-55.

Stunkard, A. J. and Mahoney, M. J.,
Behavioral treatment of the eating
disorders. In H. Leitenberg (Ed.),
Handbook of Behavior Modification
and Behavior Therapy. Englewood

84

Cliffs, NJ: Prentice-Hall, 1976.

Weiss, A. R., Characteristics of success-
ful weight reducers: A brief review
of predictor variables. Addictive
Behaviors, 1977, 2, 193-201.



www.manaraa.com

THE NEUROSCIENCE SOFTWARE PROJECT

by Terry M. Mikiten, Ph.D. and Ronald Pyka

Department of Physiology
and Graduate School of Biomedical Sciences

University of Texas Health Science Center at San Antonio

Abstract

The Neuroscience Software Project was estab-
lished in 1980 to provide a complete system for
delivering computer-assisted instruction in
Neuroscience for medical and graduate students.
An operating system using Apple II microcomputers
was devised for the delivery of instruction and
for data collection on student utilization of the
system. This report describes the philosophy of
the Project, the component parts of the delivery
system as viewed by the student user and by the
people who manage it, as well as preliminary
results gathered after the first year of the sys-
tem's operation.

Introduction

In order to understand the Neuroscience
Software Project (NSP) goals, it will be helpful
to briefly describe the course of study it is
designed to assist as well as the institutional
setting in which it occurs.

Neuroscience is a 98-hour course given to
first-year medical students at The University of
Texas Medical School at San Antonio, The Medical
School is one of several schools in a large
Health Science Center. Other institutions include
a School of Nursing, School of Dentistry, School
of Allied Health Professions and Graduate School
of Biomedical Sciences. Because of the subject
matter of Neuroscience, the course is taught by
people from a variety of disciplines, mostly
clinicians and basic scientists from departments
in the Medical School and Graduate School.
Students taking the Neuroscience Course were from
the medical and graduate schools.

The main NSP objective was to provide com-
puter-assisted instruction to the 200 or so
students taking the Neuroscience Course. All
were linked to what we have called the Primary
Assumption of the Project - people using the
computers would have no background in either
the hardware or software that was involved.

85

There were a number of other principal ob-
jectives in the project. They were as follows:

1. To provide a user-friendly learning
environment that emphasized the learn-
ing experience, not the hardware.

2. To create a system that was reliable
from the standpoint of both software
and hardware.

3. To create a system that could be placed
in a library setting and could be con-
trolled easily by library personnel.

4. To make both hardware and software
available to all individuals who choose
to use it.

5. To collect data on the user identity by
category, time of use and frequency of
use according to individual programs.

The Hardware

-The hardware components of the Project con-
sisted of four Apple II microcomputers. Each

was coupled to a 12" color televisioi. set and a
5 1/4" disk drive. Each Apple II contained 48K
of RAM memory, a disk interface card and a CCS
clock card. The monitor chip on the motherboard
was replaced by a 2716 EPROM containing a mod-
ified monitor. This was done to prevent software
theft.

This hardware system was mounted in a study
carel designed for individual student use. In- -
structions were mounted on the walls of the carel
to remind students of the rules for system opera-
tion. Each carel had a powerstrip to which all
of the equipment was connected. A switch on the
carel wall turned on all the equipment at once.
At the same time, power to each carel was con-
trolled by the librarian who activated a numbered
switch at the main desk. This system prevented
unauthorized use of the systems and gave the
librarian an easy way to check which systems were
in use. This method forced clients to come to
the desk to request that a machine be turned on
and so promoted good record-keeping on system
use. Figure 1 below shows the overall system
diagramatically.



www.manaraa.com

NEUROSCIENCE SOFTWARE PROJECT

directions
USSR IISOLNISTS

STEP DISKETTE mom
CATALOG ON LISTENS

STEP 3

LASARIA11

DISKETTE
NOD ENUIll,

TUNIS ON
SISCONTIL-

-STUDENT
UST* ROORANI

STEP

STIANINT NETINENU

DISSETTI-.

-LISSANIAN
RITINDIS DISKIETTII
TO MS

AND
TANS EN
POWER

Figure 1

IN CASS or ERA',
e* PROBLEM

I. CONSULT
11t110111 UST

NOTNNIS ON
UST AMMO.
CELL O. MITTS

Operation of the System

The Student's Viewpoint: To use software
created for the Neuroscience Course, the student
requested a topic package of NSP materials from
the librarian. The package consisted of both
written materials and a diskette. After the
student surrendered an ID card, the librarian
would switch on one of the carels and give the
student the materials. Once the student was at
the carel, the sequence of events was as follows:

1. The student placed the diskette in the
drive and turned on the local power switch. All

programs created for the Project were designed to
operate automatically when the system was started
in this way.

2. The NSP logo was displayed while the pro-
gram was loaded.

3. A series of brief menu-oriented questions
was run.

4. The main teaching program was run. At
the completion of the exercise, the student was
asked whether he/she would like to go through
the program again. If an affirmative answer was
given, the sequence returned to step #3. If a
negative response was given, the system ceased
operation and power would have to be turned off.
Torun another program the student would have to
start again at step #1.

86

The Teacher's Viewpoint: From the instruc-
tor's viewpoint, the NSP operating system has a
variety of features which fulfill the objectives
related to security, data collection and ease of
management.

Security

Security of the system is maintained at two
levels; hardware and software. Both were meant
to prevent tampering with either the hardware or
programs. Hardware was protected by having pad-
locks on the back of the Apple II lids. This pre-
vented the machines from being opened. In addi-
tion, each computer was fitted with a "reset re-
mover", a small chip inserted in the mother board
socket that received the cable from the keyboard.
The keyboard cable was in turn connected to the
reset remover. This maneuver prevented students
from activating the reset key, thereby interrupt-
ing the program that was being run.

Software security was achieved by having
programs specially coded on the diskettes. The
programs were decoded by a machine language pro-
gram placed into the system monitor on the mother-
board. In order to run encrypted programs, the
monitor routines were required to convert them to
a usable form. Thus it was not possible to take
diskettes to non-NSP computers and modify or copy
them. Nor could NSP diskettes operate on a non-
NSP computer.

Data Collection

In order to determine which programs were
used most by the students and who the users were,
special efforts were made to collect this infor-
mation. Each NSP program diskette contained, in
addition to the Neuroscience tutorial, an inter-
rogation program which determined the user's
identity. Through a series of questions the pro-
gram determined whether the user was a member of
the Health Science Center, then asked if the user
was a member of the faculty, student body or other
group. If the user was a student, it then asked
for the user's School and class level. The pro-
gram then entered this data, along with the
present clock time (read from the hardware clock
in the computer) into a random access file on the
disk, named the Hostory File. At the end of the
program, when the user indicated that it was time
to quit, the time was taken once again, ana the
quitting time was added to the History File.

The History File on a diskette contained the
complete history of its use by each individual.
Of course, to serve many students, it was necessary
to have duplicate diskettes of each NSP program,
each with its own History File.

At weekly intervals all of the diskettes were
collected and the data from their History Files
was read by a Consolidator Program which gathered
the data from duplicate diskettes into a Master
History File. This file contained the complete

103



www.manaraa.com

history of use for all NSP programs. Extraction
of appropriate data from the Master files was
used to determine information about general sys-
tem utilization, such as total time spent with
the NSP programs by all users.

A large number of people used the microcom-
puters for purposes other than the Neuroscience
Course. Because these individuals could not
readily be interrogated by an NSP program, data
on non-NSP utilization is somewhat less reliable.
Since these users had to sign in at the main desk
and ask to be assigned to a computer, they were
also asked to enter information in a logbook.
In addition to name and sign-in time, they were
asked to indicate the use to which the computer
was to be put. Typical entries were "to play
games" or "curiosity". Because the library ac-
quired a significant number of utilities and pro-
gramming tools, "programming" was also a common
entry.

The data gathered from the non-NSP logbook
were handled separately from the data collected
by the NSP program software. lc gave useful in-
formation about additional uses to which the com-
puter resources were put and gave a more complete
picture of the user community's interests.

Results

System Utilization

The NSP hardware was installed in the Learn-
ing Resources section of the Health Science Center
Library in the first week of January 1982. Soft-
ware for the Neuroscience course was made avail-
able five weeks later, just prior to the start of
the course. Some of the material was related to
another ongoing course, Cell Physiology, a pre-
requisite for the Neuroscience course.

The software remained in place and was avail-
able to all students of the Health Science Center
for a period of 25 weeks. The total time logged
by all four machines over this time was 93,990
minutes. This includes all uses, i.e., NSP and
non-NSP. This was accounted for by 1138 individ-
ual user visits. Some of these were repeat visits
by the same individual; data were not taken to
determine the actual number of individuals who
used the machines.

Of the total group, 3376 minutes (3.6% of
the total) were used for actual use of the NSP
programs. The remaining, i.e., non-NSP uses
have tentatively been classified into 'game' and
'other' categories. Game players accounted for
18,264 minutes, or 19.4% of the total non-NSP
use.

Game-playing was not discouraged provided
that it did not interfere with use of the com-
puters for the NSP programs. For the most part,
individuals brought personally-owned games to thec,
computers, although the library did acquire some

87

from a local User's group and made these available.
Iddividuals from all user categories played games.
This was not surprising. This aspect of the sys-
tem's use has increased steadily and by 10-11
months, it has grown to a volume that has elicited
some complaints from 'legitimate' users. The com-
plaints most often relate to the noise-level of
the games. Other complaints referred to the noise
made by groups of children playing games. It wts

interesting to learn that a large number of game-
players were children of the faculty. This was
probably the least-expected result of the study.
The NSP policy on game-playing is being carefully
reconsidered.

System Use Trends

Over the course of this study there-. was a
progressive increase in the system's utilization.
Figure 2 below shows total system utilization,
expressed as the time spent by all users each
week.

10000-- iainiEXLOCROM_9000
°see --

TOTAL TIME_

7060--

iFeliii:allkilli ii

6000-.-
5000--
4000-.-

0 1 2 3 4 5 6 7 0 9 11 13 15 17 19 21 23 25
WEEK

Figure 2

The graph also shows peaks and troughs of
use. Closer inspection of the data by NSP pro-
gram users shows that some of these were linked
to Neuroscience-related examinations that occur-
red in weeks 9, 16, 22 and 26. The examination
in week 9 was the final examination in the Cell
Physiology Course. Figure 3 gives the data on
the NSP programs expressed in minutes. The pat-
tern of use related to examinations is evident
here. This graph also shows that NSP use fell
dramatically after April 11. This is perhapsnot
surprising, since the NSP tutorials only covered
material presented in the first half of the
course.



www.manaraa.com

~IN (N -3376)

1060
11111E1111LIZaIIIIIIL

BI- MEEKLY

elm

648

2j0 s

1
'Iv

41 a 0 i v

14 28 14 28 11 26 9 23 6 20
FEB MAR APR MAY JUNE

Figure 3

The drop in the utilization around May 23 (week
22) was probably related to something other than
examinations in the Neuroscience course. The same
drop in utilization was seen in the analysis of
off-campus persons who used the programs. Figure
4 shows the pattern of usage for the latter groups
of individuals.

16
mmeulluzatunt

ALSFF-CAMPUS USERS
0I- MEEKLY

14 28 14 28 11 26 9 23 6 28
FEE MAR APR MAY JUNE

Figure 4

NSP Utilization by Time of Day

Figure 5 below shows the pattern of use of
NSP programs during the course of the day. It is

evident that, on the average, there was a progres-
sive rise in the number of people who used the
system as the day proceeded with a peak around
4:00 p.m. It should be emphasized that this pat-
tern was probably not fixed over the course of the
study. More likely, it varied according to the
students' academic schedules and the proximity of
examinations. The data here show only the cumula-
tive experience.

88

98

72

64

36

18

8 18 12
(AM)

2 8 18 12
um)

Figure 5
Use According to Student Category

Table 11 NSP Utilization by Group_

Group Identity
No. of

Individual
Visits

Time Spent
(min)

Medical Students 244 2295
Graduate Students 42 428
Dental Students 17

Nursing Students 11 43
Faculty 31 131

Miscellaneous 47 303
Off-Campus Visitors 38 159

Totals 414 3376

System Failures

All problems which rendered a carel inopera-
tive were collectively classed as system failures.
When a problem occurred, the librarian was asked
to report the malfunction by phone. Sometimes a
brief consultation with a member of the NSP team
clarified the difficulty. On other occasions it
was necessary for one of the NSP members to go to
the library. On these occasions,-,the carel was
inoperative until the repair could be made. Table
2 below lists the problems that were encountered
and the total computer downtime they caused. Data
given are approximate values taken from written
notes made about each repair.

Table 2: NSP Downtime

Cause

TV improperly set by user
Damaged diskette
Improper insertion of diskette

into drive
Disconnected video link to TV
Oxidized contacts on disk

interface card
Dislodged Reset Remover

Total

103

Down Time
(min)

30

30

60
30

30
1080
1260



www.manaraa.com

The total system downtime was approximately
1.3% of the total use time. Notice that Reset
Removers accounted for a high proportion of the
problems we had - 86% of the total downtime. This
was evidently due to the propensity of these
accessories to dislodge themselves from the 16-pin
sockets on the motherboard. The usual repair
simply involved reseating the Remover. The time
lost because of these devices was partially due
to slow response time in answering the initial
complaint call for the librarian. In several
instances the NSP team was not available and
several hours elapsed before a repair could be
made. Roughly 10 hours were lost for this reason.
If this time (600 minutes) is subtracted from the
total downtime, we get a better reflection of
downtime related to system malfunction. This cor-
rected value for total downtime then becomes 660
minutes, or 0.7% of the total operating time, a
figure that compares favorably with mainframe
performance. The problem with the Reset Removers
was finally solved by discarding the devices and
disabling the Reset key by another means; cutting
the Reset line on the Keyboard circuitry.

Conclusions

The system devised for providing computer-
assisted instruction operated satisfactorily.
Equipment reliability was, for the most part, very
high, and the software performed well. The data-
gathering system operated extremely well and re-
vealed a few surprising results. Perhaps the most
surprising was the overwhelmingly positive user
response to the Project. Second was the finding
that the utilization for the NSP programs was
dwarfed by the other uses to which people put the
computers.

Acknowledgements

Several people played important roles in
programming the NSP tutorials. They were
Shawn Mikiten, Erick Mikiten, and Robert Woodward.
John Finley was responsible for the data collec-
tion snd reduction. Jacqueline Mikiten did the
fine artwork and computer graphics that were used
throughout. Without the support and help of all
of these individuals, ths s'udy could not have
been done.

We are grateful to Barbara Greene and her
staff in the Health Science Center Library's
Learning Resource Center for the use of their
facility to house the NSP effort. Their kind
cooperation and enthusiasm in managing the day-
to-day operation of the checkout system was vital
to the positive student responses we have receiv-
ed.

89



www.manaraa.com

COMPUTING IN A NON-CURRICULAR SUPPORT ROLE

J. Spicer Bell
Alonzo D. Peters
Linda L. Royster
Robert W. Jackson
Richard Cornelius

Dr. Randall K. Spoeri

ABSTRACT: A Microcomputer Based Vocational
Placement and Follow-up System

J. Spicer Bell, Director, Alonzo D. Peters,
Coordinator, Frederick County Board of Education,
115 East Church Street, Frederick, MD 21701

The Vocational Placemert and Follow-up service
was initiated by the Frederick County Board of
Education in the fall of 1981 with a grant from the
Maryland State Department of Education under Public
Law 94-482. The program serves seven comprehensive
high schools and one vocational technical center
and is designed to serve a dual function of
facilitating initial job placement of graduates and
analyzing the success of those graduates on the
job. Approximately nine hundred graduates from
twenty two different vocational programs register
each year and are eligible for employment placement
in local businesses. The program provides a
systematic design to ensure students equal access
to potential job openings and employers a central
source of potential employees.

The project was developed around the the use
of microcomputer technology to facilitate the
handling of large numbers of records and to provide
the capacity for quick responses to employer
inquiries. Commercially available hardware and
software systems were selected because of
affordability and the availability of back-up and
service. Data collection irr,truments were designed
for use with graduates as they leave the vocational
training system and with employers. Student
questionnaires provide identifying information as
well as information used to screen their
eligibility for certain jobs. Employer
questionnaires identify potential employment needs
and job classifications represented in the
employer's work force.

Software systems provide the capacity to
rapidly sort graduate files for students with
employer identified qualifications. Many times,
same day responses to employer inquiries are
possible. Current informantion is kept on file
through the use of periodic mail and phone
follow-up questionnaires. Employer data is kept on
a separate data bank and is used by the placement
coordinator to periodically canvass the community
for available jobs. In addition to immediate
information access the system is also designed to
provide hard copy back-up in the form of client and
employer lists, student referral forms, mailing
labels and labor market statistics.

90

ABSRTACT: Individualized Grade Reports:
Motivational Aid and Teaching Tool

Linda L. Royster, Division of Counselor Education,
University of Iowa, 338N Lindquist Center, Iowa
City, IA 52240

A description of the use and effect of an
instructor-made computer grade report, using
SCRIPT, a text editing package from the University

of Waterloo. The reports were made for junior and
senior undergraduate students in a theories of
counseling course. The primary pupose of tho
reports was to provide students individualized
statements of their learning accomplishments, and
the instructor a structured system of course
management. The reports were also used to motivate
students, provide diagnostic feedback, demonstrate
application of instructional and counseling theory,
and validate course performance standards.
Rogerian, behavioral, and expectency theory and
Bloom's Taxonomy in the Cognitive Domain were used
to develop student feedback. Specific student
reaction to the reports and class outcomes will be
discussed. copies of reports and the program will
be provided.

ABSTRACT: Using a Microcomputer for a Test
Question Storage Bank

Robert W. Jackson, 2 Andrews Road, Greenwich, CT
06830

I have repeatedly been asked if a
microcomputer could assist the classroom teacher in
the preparation of test questions. Inevitably I
would reply affirmatively and ask to see the
material involved.

Most teachers described a program that would
either randomly select questions from a large data
base or present the questions for the teacher to
select and then print out the test questions neatly
on one page and the correct answers on another
page. Analyzing the problem I discovered that
sequential access was limited by memory constraints
of the micros and random access used up too much
disk space as it required all files to be as big as
the largest question. Normally I would recommend
using a commercially available data base manager
except that almost all of them limit the material
to 255 characters.



www.manaraa.com

I finally came upon a perfect solution t3 this
problem. Most schools have word processor software
and almost all word processors allow the material
to be saved in ASCII format. If the teacher would
use the word processor to enter, edit, and format
the questions and answers and then save the large
text file in ASCII on the disk, it would be
possible to access that text file from BASIC just
like a sequential file.

This approach would combine the use of maximum
disk space and overcome the 255 limit of random
access. Entering and editing the file would be
done from the word processor and the selection and
printing of the questions would be done from a
short BASIC program. I selected the TRS-80 Model
III because of its file handling abilities and
because the school system that ordered this
software used that machine, but the concept can be
translated to almost any microcomputer.

ABSTRACT: How Easy to USe Can a Grade Management
Program Be?

Richard Cornelius, Wichita State University,
Wichita, KS 67208

One way to introduce teachers to
computers is to give them a program that saves them
time and effort. A grade management program is an
obvious choice for this purpose. If a particular
program is to be the teacher's first exposure to
computers, then every precaution should be taken to
be certain that the program is both useful and
extremely easy to use. GRADISK is a program that
has been written with the overriding goal of making
it the easiest to use grade management program
available. This presentation will focus on
demonstrating how easy to use the GRADISK program
is. Features that make it easy to use include:

a) Documentation is complete and includes a
sample run.

b) Instructions (to the detail of "press
RETURN" where applicable) always appear
on the screen.

c) All features are menuselected.
d) Previously created files are

menuselected.
e) Student records can be examined or edited,

by identifying a student with a few
letters of the last name or the first few
digits in a student number.

f) Users are warned before actions that
would erase information.

g) Error messages are informative.
h) The program remembers options that you

select and streamlines itself for the
same selection the next time through.

1) Weighting schemes can be changed at any
point during the grading period.

j) The choice of letter grades (e.g., A+, A,
A, ... or pass, fail, or ..) is up to
the instructor.

91

ABSTRACT: An Analysis of Academic Grades at the US
Naval Academy, 1971-1981

Dr. Randall K. Spoeri, Major Malcolm W. Fordham,
United Sates Naval Academy, Annapolis, MD 21402

In recent years, an area of interest in
academic circles has been the phenomenon of grade
inflation, or "grade creep". For our purposes,
grade creep refers to the steady increase, over
time, in grades awarded in academic couses. That
is, the inflation of grades over time. This is an
area of interest to the Office of the Academic Dean
of the US Naval Academy as well.

In consultation with the Academic Dean's
office, it was decided to study changes over time
of academic grades summarized by:

1) all courses
2) selected courses
3) selected majors
4) all academic departments

Computer data files were established from
administrative records stored on computer tapes.
The data base was organized to contain all grades
awarded to all students for each semester for the
academic years 1971 to 1981.

It was decided that the standard quality point
ratio (QPR) for academic grades would be suitable
for comparing grades for the four types of summary
information. FORTRAN 77 programs were prepared to
access the data files to develop for each area of
interest:

1) the course credit hours
2) a count of A's, B's, C's, D's, and F's by

credit hours
3) the percent of each letter grade
4) total quality points
5) total credit hours
6) semester QPR
7) semester standard deviation

The semester QPR's for each semester were
placed in data files so that plots of the QPR's
over time could be made. Simple least squares
linear regressions were applied to each file to
provide an indicator of the QPR trend over time

The study provided useful information to US
Naval Academy administrators and department
chairmen, as well as showing that there has not
been any appreciable grade creep during the period
studied.



www.manaraa.com

EXPERIMENTING WITH A COMPUTER LITERACY PROGRAM
FOR ELEMENTARY SCHOOL GIFTED AND TALENTED STUDENTS

by W. Starnes and J. Muntner

Montgomery County Public Schools
Rockville, Maryland

Abstract

A computer literacy program for fifth and
sixth grade gifted and talented students is des-
cribed. Computer literacy is a unique vehicle
for enhancing the learning experiences of gifted
students by providing varied opportunities for
differentiation. Because these activities are
developed with the characteristics of gifted stu-
dents in mind, an emphasis is placed on the use
of the computer as a tool. Seventy elementary
schools participated in the project which centered
around three elements: establishing an appropriate
learning environment, building creative thinking
skills, and planning differentiated computer
learning experiences. Ideas and approaches for
use by gifted elementary students are suggested.

Introduction

When instituting an innovation in public
schools, it is wise to choose a small population
on which to try the new idea. Five years ago the
Department of Instruction and Program Development
in Montgomery County, Maryland decided to purchase
a few microcomputers in order to explore how they
might be used with gifted and talented fifth and
sixth grade elementary school students. The in-
tent was not to restrict computer learning to this
population ultimately but to use this group for
curriculum experimentation. The school district
wanted to determine if elementary pupils could
learn beginning programming skills and if they
would be interested and motivated to do so. In

situations of limited computer access, Seymour
Papert advocates looking "for a small pocket of
students--perhaps a class of learning disabled
youths--and then give them the computers...to show
the strength of the computer, which is its ability

to help children think." In this case, the choice
of gifted students for the program was intentional.

Why Start With Gifted Students?

Computer literacy is a unique vehicle for en-
hancing the learning experiences of gifted students
because it provides many opportunities for differ-
entiation. Classic and current research recog-
nizes that the characteristics of the gifted and
talented should determine the nature of their cur-
riculum; in fact, differentiated curriculum must
be an outgrowth of those characteristics or learn-
ing styles (Kaplan, 1979). The Renzulli-Hartman

Behavioral Rating Scale in Chart A lists the learn-
ing characteristics of gifted students which are
found in the literature.

The task of the educator of the gifted and
talented student is to provide experiences and
environments which respond to the characteristics
o: the students by stimulating critical thinking,
fostering the use of a scientific approach to prob-
lem solving, promoting self- direction and In-
dependent work study skills, allowing for use of
creative abilities, and providing opportunities for
the development of self-evaluation. Activities
that stress higher levels of abstraction and con-
cept development are more appropriate for gifted
students than those that emphasize rote learning.

The use of the computer as a tool and the
development of programming ability are activities
that respond to both the identified characteristics
of the gifted and talented and the prescribed fea-
tures of differentiation. In using the computer as
a tool students are able to control their own edu-
cational environment and build a skill that will be
useful in all disciplines.

Implementing the Program

Seventy elementary schools participated in the
curricular experimentation with a single microcom-
puter available to the school for a semester each
year. Montgomery County uses the PET microcomputer
because these machines are inexpensive, easily port-
able, and conveniently packaged, having one wain
body component. They are hardy with an excellent
repair rate record which is especially important
considering the number of students using the com-
puter in a variety of school environments.

When the computers were first purchased, they
were placed in a few schools with some self-in-
structional materials for student use. Without
careful staff orientation, the program often was

not implemented.

After that aborted start, the program began
with a half-day training workshop for two teachers
and the principal from each school. These work-
shops focused on implementing the program, teaching
about computers in society, and hands-on instruc-
tional time with the PET. Teachers and adminis-
trators worked together to learn their way around
the keyboards of the microcomputers. They also

92

1a[



www.manaraa.com

learned some elementary programming and graphics
in BASIC. Teachers were encouraged to plan some
literacy activities and some initial introduction
to programming for class-sized groups to be fol-
lowed by independent activities for students to
pursue.

The goal of the program was to increase the
confidence of students in the use and control of
computers. The computer literacy activities; were
designed as a semi-independent irstructional unit
with objectives in the following categories:
understanding computers, working with computers,
computers and the society, hardware/software, and
attitudes and values.

The chief instructional text used by both stu-
dents and teachers was the BASIC Manual, written by
Montgomery County Public Schools teachers as an in-
teractive approach to teaching beginning BASIC pro-
gramming. This text uses flowcharts, sample pro-
grams and end of chapter exercises to present the
content in a constantly reinforcing mode. Supple-
menting the text were commercially produced games,
filmstrips, manuals, magazines, and tapes.

After two years in the pilot situation some
elementary schools purchased additional micro-
computers and began trying parts of the program
with all students. The school district received
funding from the Human Resources Research Organi-
zation to develop a more generalized K-8 computer
curriculum. Elementary teachers who had been ex-
posed to the use of the microcomputer with gifted
students began clamoring for additional in-service
training.

The official pilot of the project ended last
summer. The overall effect of the program was
two-fold: to learn that bright fifth and sixth
grade students are motivated to and capable of
mastering programming skills and to move computer
literacy into the elementary schools for all stu-
dents. A commitment to providing differentiated
computer experiences still exists as Montgomery
County continues to refine the elements of the
Elementary Computer Literacy Program for Gifted
and Talented.

What Are The Key Elements?

In Figure 1 is a schematic representation of
the elements which were determined by the pilot to
be important for implementing a computer literacy
program for gifted students.

Figure 1
Elements of the Elementary Computer Literacy

Program for Gifted and Talented

Learning
Environment

<r--> Differentiated Computer
Learning Experiences

Critical
Thinking
Skills

93

Learning Environment

Papert envisions the school in the year 2000
as "a research lab with students engaged in projects

2
and adults function as consultants and counselors."
This is a description of the learning environment
appropriate for teaching computer literacy to the
gifted and talented student. This optimum environ-
ment will include the following:

- small groups working together to solve
problems of mutual interest

- open-ended tasks
- development of independent ideas
- student involvement and choice in

the selection of both resources and
projects

- the fostering of discovery learning
experiences

- students and teachers working together
in interchangeable roles

- self-pacing of activities and projects
by students to allow for maximum time
for exposure, exploration, and acquiring
ownership of concepts

- development and use of self-evaluative
techniques by students

The burgeoning appearance of computers in the
elementary school classroom has brought with it
some feelings of inadequacy and apprehension for
the teacher. Teachers have had little experience
in either using or teaching about computers. Train-
ing courses have been hard pressed to meet the needs
of educators. In addition, many students have ex-
hibited remarkable computer skills in very short
periods of time. This scenario will only become
more prevalent as more and more families purchase
home computers. As teachers face the prospect of
students with greater knowledge and skills, they
will be required to rethink their role as teachers.
Nowhere is this more true than in working with the
gifted and talented students. Teachers have had to
adapt to multi-role concepts as they worked with
their young programmers. Molly Watt, writing of
her experiences in teaching LOGO, mentions some of
the following as appropriate teaching styles: "dem-
onstrator, teacher-lecturer, teller, time structure;
problem setter, management solver, arbitrator, de-
cision maker, challenger, helper) collaborator,
process sharer, question asker, idea extender, ob-
server, documenter, admirer, enjoyer, time provider,

technician and model learner."

The effective teacher needs to deal with both
the cognitive and the affective domains. Tradi-
tional teaching roles are not totally abandoned.
Students still want and need instruction, but they
also have a need for unfettered exploration. The
teacher functions as a facilitator, helping stu-
dents identify and utilize a wide variety of re-
sources. The students' range of materials needs to
be broadened as they learn to seek out ideas and
solutions in magazines and books and from mentors.
An important ingredient in establishing this learn-
ing environment is the teacher's ability to admit
that he or she does not know all of the answers,



www.manaraa.com

but that she is willing to guide, encourage and ap-
preciate the student's efforts.

While such a learning environment can be estab-
lished with the availability of only one microcom-
puter, it is much easier to achieve when several
computers are available. PTAs and schools are pur-
chasing additional computers. During the course of
this project, summer school courses in computer use
were offered using a laboratory setting. The tea-
chers who taught these specialized sessions found
that the need for role flexibility was even greater
in these situations. In one case, middle school
teachers were concerned because they had to estab-
lish the summer laboratory with microcomputers from
several vendors. They were startled to find that
the students leaving the sixth grade had no dif-
ficulty moving from one type of computer to another.

Critical Thinking Skills

The second element in the design of the pro-
gram is an emphasis on the critical thinking skills
needed in computer programming. As soon as stu-
dents begin to practice beginning BASIC, they are
asked to predict what an operation will do and to
hypothesize about the RUN if the program is changed.
Students are challenged to continue to hypothesize
as they become more sophisticated programmers.
Problem solving is another thinking skill which is
emphasized. The logical and inalterable step-by-
step nature of learning to program the computer re-
fines the student's problem solving ability. The
process of debugging presents a real problem, a
program that isn't running as intended. It re-

quires that the student find what the problem is
and figure out how to solve it. Very often the
solution involves risk-taking, trial and error, and
learning from one's mistakes.

The use of creative thinking is an important
skill for gifted students. Much emphasis is placed
on students creating their own programs. Of course,

these programs while new to the students are not
unique. The student may be building on some skill
he has just learned or refining some previously at-
tempted idea.

The critical thinking skills will not be em-
phasized if the student is using computer assisted
instructional software which emphasizes drill and

practice. Games and canned programs can be used
occasionally as motivational tools or instructional
devices to help students write their own programs.

Differentiated Computer Learning Experiences

Because of their special learning character-
istics gifted students can learn faster, acquire
in-depth knowledge of an academic area, retain the
knowledge, and be expected to use it to create.
What relevance does this have for teaching students
programming? There are two major ways to ensure
that this student has differentiated computer
learning experiences: acceleration and horizontal
enrichment. Acceleration involves students learn-
ing more rapidly and progressing beyond what is ex-
pected at a particular grade level. Horizontal

94

enrichment involves a student remaining at a parti-
cular skill level but using these skills in a vari-
ety of learning activities. These two methods are
not discrete, but should be interchanged in dif-
ferent proportions as appropriate for individual
students.

What kinds of differentiated computer learning
experiences are appropriate for gifted and talented

students? The answer to this question must be un-
derstood as a tentative answer for the early 1980s
when we are just beginning to explore the methods
for introducing and working with computers in the
elementary school. Several years down the road,
so much more will have been learned that present
designs will seem inadequate. Present teaching ap-

proaches may be viewed as obsolete in the future
as the present computers will be. With these dis-
claimers in mind the following is a list of ideas
and approaches useful for gifted and talented upper
elementary students.

1. GRAPHICS PROGRAMS. Students can explore
a variety of picture and design programs.
Using INPUT a program can generate an
oriental type rug design with the students
name printed in reverse in the middle.
Banners and greeting cards are also rela-
tively simple, but satisfying to create.
A student created the Happy Mother's Day
program reprinted in Figure 2. Sports

team banners are particularly successful
each season. Also a banner announcing
the classroom teacher or class nickname
can not only decorate a classroom but
assist in class identity. Pictures of
hamburgers, people, robots, ice cream
sundaes, Snoopy, rockets, Martians and
symbols are, just a few of the ever popu-
lar ideas that students will use to de-
sign their own unique graphic programs.
Graphics can, of course, be included as
an exciting part of all of the other sug-
gested programs, to deliver messages, to
provide a title, or to illustrate a parti-
cular situation.

2. QUIZZES. These are popular and can be
used by other students to enhance a
specific study. Elliott, a 6th grader,
designed an Egyptian vocabulary quiz
entitled Pyramid Power for use in his
classroom. The program ended by gen-
erating a picture of a pyramid with the
user's score on the screen. Students

can also be encouraged to contract with
another teacher in the building who would
like to have a quiz or drill program writ-
ten for his or her students. In this case,

the student has a real simulation of being
a programmer and having to design a pro-
gram to meet the teacher's specifications.
Responding to such a request, Stuart de-
signed a program called Planet Weight.
The user typed in his or her name and
weight. Next a chart was generated on
the screen listing the planets of our
solar system. The user selected one and



www.manaraa.com

was then told his weight on both earth
and the chosen planet. Although Stuart's
fifth grade classmates enjoyed this pro-
gram, it was an even bigger success in the
second grade classroom where the students
had just finished a study of the universe.
The second graders were provided with a
beginning computer experience and meaning-
ful learning as well. Stuart received 27
thank you letters showing pictures of him
and his computer.

3. MADLIBS. The ever popular game provides
the source of another programming idea.
Students write their own original Madlib
stories and then design the program to ask
for the appropriate words and generate a
story at the end. Topics are endless
from "The Disease" (Figure 3) to "Last
Sunday at the Redskin Game."

4. ADVENTURES. This category mixes together
adventure, simulation and variations of
create-your-own-story. These programs
can be written on a very simple level
using IF-THEN (see Figure 4) or on a
more difficult and exciting one by using
RANDOM. Students using the latter BASIC
statement will need to graphically re-.
present the program to keep track of its
convolutions, and analyze the steps being
written. Settings can vary greatly: a

wagon train in 1850, a pyramid, or on
board a space ship bound for outer space.
(Figure 4)

5. ANIMATION. Students moving ahead in their
programming knowledge enjoy exploring PEEK
and POKE to generate animated pictures on
the screen. A birthday cake complete with
blinking candles and a happy birthday mes-
sage greeted one teacher as she entered
her classroom on the auspicious day. Mov-
ing robots, animals that assemble and dis-
assemble before your eyes, and barren
moonscapes that suddenly grow into future
cities are other challenging ideas for
young programmers.

6. MUSIC. This is another area of explora-
tion for programmers who are no longer
novices. Music can be generated for its
own sake by budding composers. However,
sound and MUSIC can also be incorporated
into other programs as mood-setting de-
vices or as a means of delivering a mes-
sage.

7. GAMES. This is a broad-based catch-all
category for homeless program ideas. Word
searches based on a theme with a suitable
graphic are exciting to design and debug.
Scott designed a game called Lucky Sport
which incorporated a paper game board.
The computer simulated the toss of 2 dice
and then asked which of 3 sports symbols
the token had lanced on. A random event,
relevant to the sport was flashed on the

95

screen (ex., you struck out, stay here one
turn). Unfortunately, the school year ran
out before Scott had a change to figure out
how to generate the game board on the com-
puter screen. A thoughtful word is appro-
priate here. Commercial games and LISTs
of game programs have a definite place and
value at this level as students strive to
create their own and are looking for models
of various ways to accomplish specific
tasks. The ultimate accolade in this cate-
gory goes to David, who at age 11 designed
a Pac-man type game for the PET computer.
(Figure 5) His knowledge far exceeded his
teacher's, but she was able to facilitate
his work by providing him resources, en-
couragement and access to a machine.

8. ELEGANCE COMPETITION. This idea can pro-
vide a great deal of stimulation and ex-
citement within not only a school, but the
community at large. Students are assigned
a specific program writing task and com-
pete against each other to create the most
"elegant" program to solve the problem.
Community members can be utilized as
judges. This type of activity requires
fairly sophisticated programming ability.

9. PUBLICATIONS. Create a book, newsletter,
or a publicity flyer. Use a printer to
produce a book of student programs. Sam
and Roy borrowed the administration printer
to generate the PTA flyers advertising the
computer demonstration and discussion.
Their flyer included a graphic of a com-
puter and the relevant information. Stu-
dents have also produced newsletters with
a section called DEBUG ME which features
programs such as computer riddles, puzzles
and cartoons which contain bugs.

The Elementary Computer Literacy Program for
Gifted and Talented has been an important component
of the overall gifted and talented program in Mont-
gomery County. Feedback from administrators, tea-
chers, parents, and pupils reflect the overwhelming
success of the pilot. Eighty-nine percent of the
teachers indicated that they would like to continue
refining the program and further that they believed
the activities were particularly appropriate for
gifted and talented students. Eighty-eight percent
of the students indicated that they would like to
continue in the program in order to further their
knowledge of BASIC, write more original programs,
and design computer graphics. The staff and stu-
dents in this pilot would agree with Papert that
computers are "carriers of powerful ideas and of
the seeds of cultural change...that can help people
form new relationships with knowledge that cuts
across the traditional lines separating humanities
from sciences and knowledge of self from both of
these."

11 2



www.manaraa.com

2

References

"Computers Are Objects to Think With", an Instruc-
tor Interview with Seymour Papert. Instruction,
3:82, p.85-89.

Ibid., p.87.

Watt, Molly. "What is Logo?", Creative Computing.
October, 1982, p.112-129.

Papert, Seymour. Mindstorms, Children, Computers
and Powerful Ideas. New York: Basic Books, Inc.,
1980, p.25.

Kaplan, Sandra. In-service Training Manual:
Activities for Developing Curriculum for the
Gifted/Talented. Ventura, California: National
State Leadership Training Institute on the Gifted
and the Talented, 1979.

Chart A

Scales for Rating the Behavioral Characteristics

of Superior Students*

Part I: Learning Characteristics

1. Has unusually advanced vocabulary for age or
grade level

2. Possesses a large storehouse of information
about a variety of topics

3. Has quick mastery and recall of factual
information

4. Has rapid insight into cause-effect relation-
ships

5. Has a ready grasp of underlying principles and
can quickly make valid generalizations

6. Is a keen and alert observer

7. Reads a great deal on his own

8. Tries to understand complicated material by
separating it into its respective parts

*
Renzulli, J.S., Smith, L.H., White, A.J.,

Callahan, C.M., Hartman, R.K., Creative Learning
Press, Inc., 1976.



www.manaraa.com

60 PRINT40$0000 LUCKi04"

2 OPEN5,410105,LIST

10 PR11ITTP8(5)161 I pima

20 PRINTTA8(5)P1 01 II
30, PRIWY08(5)N011tto 00881

OM MO I r
1 1 1 1 a"

UOISI MIS 0001"

40 PRINT AB(5)111 11 1 p 0 1 r
50 PRINTTR8(5)1 i0 10 NI 1 8'

60 PRINTTR8(5)1"1 10 NI Ir
70 PRINTIPRINTtPRINTIPRINT

80 PRIrT4(12)1"111 11"

90 PRINIP 1111,0 81 8"

00 PRINTIA8(11) 1 L E 8"

10 PRINTIR8(12) "1 OV I"

28 P010r88(0) "1 I"

30 PAINTM(14) 11

40 kiNTTA8(26)11 NO 1"

50 PRINTM(26) "8 L E 1"

60 PRINTTR8(27) 1 OV 0"

70 PRINTIRB(28)111 1"

80 PRINTIO8(29) "81"

90 PAINT

200 PRINTTR8(35);"111

210 PRINTTR8(36) 1"

220 PRINTT08(31) "Ir

230 PRINTTR8(0)140 OR MOO

240 PRINTTRO(8)1 "14 IN I

250 PRINTTR8(0),"1 $1 I I

260 PRINTTR8(0)1 "1 81 I I

270 PRINTTR8(0) "8 1 1 1

280 PRINTTR11(0)1 "1 1 14411

290 PRINT

300 PRINTTA8(13)1101 10"

310 PR:WM(14),i 1"

320 PRINTTR8(14)1 "1 1"

330 PRINTTR8(12)1 "11 NI 11"

340 PRINTTR8(11),"1 pgrI 1"

350 PRINTM(11);"1 14 8"

360 PRINTTRO(11),"I 11 1

370 PRINTM(11)1 "I I0 I

380 PRINTIR0(12)1 "1 NS I

390 PRINTTR8(13)1 "1 II I

488 PRINTTAB(12),"1 110 I

410 PRINTM(11) "11 00 I

420 PRINTTAB(11);"1 p1 1"

430 PRINTTR8(11)4 IVO A"

440 PRINTIA8(12);11

450 PRINT:PRINTORINTIPRINT

460 PR1N11A8(11),"1141 11880 I I 1"

470 PRINTTAB(11) "1 It 11 1 1"

480 PRINTTA8(11) 1 18400 11101 1'

490 PRINTTA8(11),"100 8 1 1"

500 PRINTTA8(11),"11411"
510 PRINTTR8(11) "1182 I 8 1 1"

520 PRINTIPRINT,PRINT;PRINTIPRINT

530 PRINTTR8(16),"LOVE,MIKA"

540 PRINT:PRINT,PRINT1PRINT

550 PRINTIAB(15)1 "MRV 9,1982"

REALM

8881"

MINI M Ma 11 0100"

1 I 1 1 I
I 10110181 MN Pr
I I II II I'
i i .I I e r

Mil I I WV

N

0
6

Cn

4'

U.

2 OPEN 4,4:CM04:LIST

70 PRINTI"

80 PRINT:PRINT:PRINT:PRINT:PRINT

90 PRINTTAB(6),"**410************************"

100 PRINTTA8(6);"*
TNE,DISEASE.A MOWS CRAZE *"

110 PRINT TA8(6)ei
*"

120 PRINT TA8(6))"*
BY JEFFREY CORDON

*"

125 PRINT TA8(6))"*
AND

130 PRINT TA8(6))"*
STEVEN SMITH

*"

150 PRINT TA8(6))"*

*"

160 PRINT TA8(6)e**************000*************"

11' ''OR T1 TO 1000

)1 T

170 HINT";

180 INPUT"OIVC A NOUN" ;A1

190 INPUT "GIVE A
DISEASE ";8$

200 INPUNIVE A HOUNPIC$

210 INPUT "DIVE A NOW/

220 INPUNIVE A FEELIN0410$

230 PRINT1"

240 PRINT"ONCE
THERE WAS A "pA$

250 PRINT"IT HAD A BAD "18$

260 PRINTC$)" CAME
FROM MILES AROUND TO HELP IT"

270 PRINT"ONE DAY
A ",E$;" CAME TO HELP IT"

280 PRINT"IT LIVED "0
285 PRINT:PRINT:PRINT:PRINT

290 PRINT "DO YOU
WANT TO PLAY AGAIN-Y OR 117"

295 INPUT MS

300 IF MI NY" DOTO 180

310 END

READY.



www.manaraa.com

I C''N4,4t0104iLIST

2 PRINT"7

3 PRINT'YOU ARE INFROIT OF A PYAMID."

4 PRINT'YOU MUST REIREIVE A PHAROAHS STAFF,'

5 PRINT"WITHOUT FALLINO INTO R TRAP OR BEING CAUGHT BY A CREATURE,"

60 PRINT".410000 LUCKIOss'

61 PRINT"YOU ARE IN R DARK HALL IN THE PYRAMID."

62 PRINT' YOU ALMOST FALL IN A DEEP DARK PITT"

70 PRINT"THEN YOU ENCOUNTER R JACKAL - HEADED"

80 PRINT'000."

85 PRINT"SHOOT OR EXIT (S/E)"

90 INPUT AS

100 IF RS 'S' Th: PRINT'YOU KILLED HIM 1"100TO 120

110 IF ASs"E" THEN PRINT "YOU WERE ALMOST KILLED!"

111 PRINT'YOU LEAVE SAFELY "100/0 460

120 PRINT 'YOU APE WALKINO DOWN THE ',ILL YOU SEE DEEP PIT'

130 PRINT' SHOULD YOU SWING ACROSS Ok JUMP ACROSSNSW/J)":11NPUT Bs

140 IF esn"sw" THEN PRINT"YOU BARLEY MADE IT11100TO 160

150 IF Bli"J"THEN PRINT "1 °AALLIIN4001"100TO 160

160 PRINT'LUCKILY,YOU ORAB AN OLD STONE IN THE HOLEAND CLIMB UP!'

170 PRINT"YOU ARE WALKING DOWN A HALL AND SUDDENLY DARTS FLY AT YOU"

180 PRINT" SHOULD YOU Or : TO THE FLOOR OR RUN FOR YOUR LIFE(D/R)?"II INPUT CS

190 IF CS "R" THEN PRINT"DART DOT YOUR RIGHT ARMI"IGOTO 210

200 IF CS."0" THEN PRINT"ALL THE DARTS MISSED YOUIPIOOTO 220

210 PRINT'YOU PULLED THE DART OUT OF YOUR ARM ANO SUCKED THE POISION OUT"

220 PRINT"YOU SEE A DIM LIONT ABOUT 200 FEET AHEAD OF YOU."

230 PRINT'YOU RUN TOWARD THE LIOHTI"

240 PRINT'THEN YOU ARE IN THE ROOM ONO IS

250 PRINT'FULL OF TREASURES OF THE PHARDAN'S."

260 PRINT"TNE DOOR BEHIND YOU CLOSES!"

270 FRINT'00 YOU WANT TO STAY OR LEAVE (S/L)' li INPUT OS

290 IF 0$ "S" THEN PRINT"YOU ARE BRAVEI"WOTO 310

300 IF DSIOL" THEN PRINT"YOU MOE IT OUT,CNICKEN1'1643TO 460

310 PRINT"VI! LOOK FOR THE STAFF OF THE PHNOM"

320 PRINT"YrJ ARE READING THE HIEROOLYPHS TO FIND THE STAFF AND A WAY TO OET OU

330 PRINT"qU FOUPO THE STAFF AND A WRY TO GET OUT.'

340 PRINT'YOU CAN GET OUT BY(PUTTINO THE STAFF IN FRONT OF THE MUTINY CASE."

PRINT"TEN CREATURES COME OUT OF THE OUT OF TRAP DOORS IN THE WALL!'

370 PRINT' SHOULD YOU FIOHT OR OET OUT(F/0)",IINPUT Et

380 IF Ell'," THEN PRINT"THE 000$ ARE AOAINST YOU,BUT YOU KILL TXMOOTO 400

390 IF ESs"0" THEN PRINT"THEY DOT YOU,YOU ARE DEADI"OOTO 460

400 PRINT"A TRAP DOOR OPENS AND YOU WALK OUT INTO THE SUNLIGHT WITH THE STAFF'

410 PRINT" YOU BECOME FAMOUS"100TO 460

450 PRINT"THEN THE LIGHT ZAPS YOU IN THE FRONT OF THE PYRAMID WITH THE STAFF!'

460 ENO

READY.

et

(I)

S.

2
21

U.

1 OPEN4,41CM041LIST

S PRINT"3"t0IM V(2)

10 READC,R,P,X,04,0,Y,TINFJA

20 DATA20,14,33348,33348,20,12,33268,33268,87,1,3,32

30 DEFFNZ(Z2).4004.32768

40 OEFFNW(WW).40*S+0.32768

50 FORA43140T0331571POKEA,160WOKEA4280,160iFORNIT01501208,0

10 FORA'38140T033420STIP40iPOKEA,160iPOKEA+17,160!FORBATOMNEXTB,11

70 FORA433264T033272!READCOPOKEA,C0FOR8.1,015iNEXTB,A

80 FORAN33302T033315MAOCCIPOKEA,CCARUITOISINEXTB,A

90 DATA13,21,14,341,32,13,1,14,225,32,40,229,4,32,7,10,15,19.18

100 FORAIIIY01000iNEXTA

101 005084000

110 FORARITO2tPRINT"TIMINEIDIGINMIMI(TIS)+40

120 PRINT"PRESS X TO BEGIN, PLAYER"A

130 OETAWFASOWTHEN130
131 TIS "000000*

132 XISa"5"0(2111"S"0.0iNVAL(TIS)+40

135 AS."

137 P333480( 33348i0m33268IY.332681C201141040411121Us0

140 00512200

150 00T0460

200 PRIHTN7"IXIse5N ix2ses"
201 nE32826,81
205 PRINT" SCORE! 0 MUNCH MAN MEN, 3"t

220 PRINT

230 PRINT" 050=010010410KOMMERRIMR11=1,
240 PRINT" 11014 10 1.1 0211r1

250 PRINT" 111112.1.0 ..... ..... 1.1 030";
260 PRINT" a014 I. No. I. a. 04 0. 1. 1. MI. IL 00.0 11R'1 li

270 PRINT" 0...4.0.10.0.0.1.0.0.1010.0 a"

280 PRINT" 00 0101 0 a";

290 PRINT" 00....80.0.1P012.0110.14001.0.081,..,010")

300 PRINT" LOU 1 0111 1 000.11";

310 PRINT" 0444.011.111411.1 1.0.1.D141.1 .1"t
320 PRINT" 1.0101.0...0 I II N...1.001.0 ")

330 PRINT" 1 1 LIM To 00 00a 0.0.3 2"t
340 PRINT" 100811..,11.11.101( lad IM.1.1...0=11",
350 PRINT" ..... ..... 1...0.4m0";

360 PRINT' 0....0000.1.600.001.0m.1401.1.15011")

370 PRINT" 0.1010 =IX;
380 PRINT' I 1111.1.182001.1011410.041 8"3

390 PRINT" 1001.04 8.a. $0.0.0000",

400 PRINT" ..1.11.1.1.04 RIAM,043141-'
410 PRINT" 00 1 0.0 0 Itl 01";

420 PRINT' 00/0...0010.001,..11.1...011.01104....1111")

430 PRINT' WISSI 0 $ 0411.40")

440 PRINT" tratiarawitiorsagamealumar,
458 RETURN

460 TISe000080"

465 POKEP,01:POKEO,T

470 005138500

480 GOTOEOO

ZOO POP.E3426,10:POKE32027,51POKE32328.1

510 P0KE32229,41POKE32330,25

520 FORA617010001NEKTAAIFORAA32326TLJ2830tPOKEAA.32

530 NEXTAAIRETURN

600 8 +111F8939999999THEN8.010010600

610 IFB/2INT(8 /2)THEN1500

620 °ETAS

630 IFRINVORRIeFrOP,Ata"S"ORFISNVORRWM"THFAX26114tlitialt
cm+ rv.rawat

3
CR

U.



www.manaraa.com

INTRODUCTORY COMPUTER PROGRAMMING
FOR

ALL COLLEGE BOUND HIGH SCHOOL STUDENTS

by Ken Jones and Dennis Simms, S.J.

Regis Jesuit High School
Denver, Colorado

Abstract

In this paper we will show an affordable
method of developing programming skills for all
college bound high school students that does not
diminish any of the other skills required of these
students.

Many schools cannot afford to use classroom
space exclusively for computers. We found a solu-
tion to this problem.

In April of 1982, Regis Jesuit High School of
Denver, Colorado received a Title 4-C Mini Grant
for a project that would develop introductory com-
puter programming as apart of our regular geometry
course. Geometry is required of all students at
Regis and is taken by most students elsewhere who
attend college. This project, therefore deals with
the problems of providing computer programming for
all college bound students.

THE PROBLEM

1) Regis is a small private school with lim-
ited resourses where 98% of the graduates eventual-
ly go to college.

2) Many students and teachers at Regis feel
that an entire semester of programming is a low
priority compared with the other academic demands.

3) The Math Department Chairperson feels that
all of our graduates should have hands-on experience
;TM computers and suffiPient programming back-
ground to allow them to write and understand pro-
grams that deal with topics presented in high
school.

With these diverse needs and attitudes how can
Regis or any other school provide:

A) The equipment and floor space to teach all
students programming.

B) The class time necessary to have a satis-
factory computer programming experience which will
serve as the foundation of computer literacy for
these students.

HISTORY OF OUR SOLUTION

In 1978 we built a Digital Group Micro pro-
cessor. Students helped with the project and they
were allowed to use it anytime they wanted. We, at

99

that point, were able to satisfy one student at a
time. But it did allow us to get rid of our tele-
type and the $50.00 a month time-sharing bill.

It was suggested to us by Dr. Ruth Hoffman and
her associates at the Denver University Math Lab.
that if we could interface a high speed optical card
reader with the micro processor we might have an
inexpensive solution to our problem. The theory
was to set the card reader, the computer and a rel-
atively high speed printer on a cart that you could
roll into any classroom. Students would then mark
cards and run their programs with almost zero turn-
around time.

Students would be able to mark cards at home
or anywhere else and we would not have to dedicate
a classroom to machines. The cart could be rolled
into a closet when a computer class was not in
session.

It took almost a year to get everything to-
gether, but in the end the system worked perfectly.
The computer took no extra floor space, did not
require a special room and a class of 25 or more
students could get one or two programs running each
day. We did indeed have the equipment to reach all
students. In addition it was inexpensive, about
$3000 for the actual hardware. Cards cost us about
$40.00 for 10,000 and it costs about $160.00 to do
a semester class, which is well within our budget.

Further, there are educational advantages that
exist that should be mentioned.

First, it is not fun to mark cards, therefore
students tend to fUrik 1 little more before they
attempt to run a program.

Second, when programs do go wrong, students
can work through the program at their desks on the
hard copy they have. Once the mistakes are found,
corrections can be made and the program can be
quickly run again. That is, the cards serve as a
storage medium that is quick and reliable.

Our first problem was solved at this point.
We had a cheap piece of hardware which a lot of
students could use at the same time. But less than
one half of our graduating seniors had even taken
a computer course. This was not satisfactory.

Would be possible to take two weeks away
from Geometry and teach the whole class how to do
area problems on the new computer system?



www.manaraa.com

The answer was a resounding YES! They all

learned to operate the machine, mark cards, and to
use the Basic commands LET, READ, DATA PRINT, END
and FOR-NEXT. The class' response was, as you
might expect, enthusiastic but it was remarkable in
several other ways.

First, the students were becoming computer
literate. The Micro System has all four basic
parts of any computer system. There are:

2 Input Devices - a keyboard and a card
reader

2 Output Devices - a CRT and a printer

2 Storages Devices - tape storage and
cards

1 C.P.U.

A student can see and touch it all on one cart
and with a little help, understand these components
as parts of any system.

Second, the students achieved some small power
over the machine even in a short period of time.
Possibly they could become comfortable with them
and not fear them.

Third, there is a link between Geometry and
computing. One student went as far as to observe
that "programs are much like Proofs in Geometry".
We and the National Council of Mathematics teachers
agree with him.

SOLUTION TO THE SECOND PROBLEM

How do you provide the class time to have a
satisfactory introductory course for all students?

In the results of the experiment indicated
above, we could see the possibility of finding a
solution to our second problem. The theory is that
you can take a substantial amount of time from
Geometry to teach programming without hurting
Geometry because the two subjects are mutually
enhancing.

In January of 1982, we applied for and received
a Title 4-C Mini Grant to test our theory.

The grant proposal was divided into two parts.
The first part was a pilot program in which four
weeks would be taken from Geometry in the Spring of
1982 for one half of our Geometry students. Based
on the experience gained with the pilot program the
second part of the proposal would develop a six-
weeks unit in computer programming and would in-
volve all of our Geometry students in the year 1982-
1983.

The main point of this paper will concentrate
on the results of the pilot program of 1982. The
results of the full program will be presented at
the National Educational Computing Conference in
the oral presentation of this paper.

100

During the pilot program we developed a book-
let which covered the history of computing, flow-
charting, READ, REM, LET, DATA, PRINT, GO TO, IF
THEN, END and FOR-NEXT statements and the function
SORT. The students are asked to write and run
twenty programs using the statements indicated
above. These programs are not all related to geom-
etry as they cover some business topics and some
topics from algebra.

The objectives for the pilot program included
preparation of a syllabus for a modified Geometry
course which would include the computer unit and
which would not deteriorate the skills of Geometry
as measured EY-Our final exam.

We tested this objective in the following way.
Three sections or about 90 students took the four-
week computer unit. The other three sections did
not take the computer unit. They served as our
primary control group. This second group spent
their extra time on constructions and review of
topics that had already been presented.

In May of 1982 the same final exam was given
to all geometry students. .It was essentially the
same exam given in past years. Note, that the
previous years results served as a secondary con-
trol group. The exam given covered all the material
that was common to all sections. It did not cover
computes nor was there a heavy emphasis on con-
structions.

On that test the sections that had taken the
computer unit scored better than the control group.

This is exactly what we anticipated. The con-
trol group had scored lower on the first, second
and third quarter common exams. This is due to
slightly lower ability in those classes. However,
the difference between the median score for both
groups remained the same for all exams. We thought
that the difference between the two groups would be
smaller on the final exam because of the time taken
out for programming. It was not smaller.

When the results of this exam were compared to
the results of previous years' exams with the same
ability range students taught by the same teacher
(our secondary control group), we found that there
was less than a 2% difference.

Geometry has not suffered. We have in hand a
solution to the second problem mentioned above. It

is possible to teach a worthwhile introductory
course on computer programming in a Geometry course
while at the same time maintaining high standards
of academic excellence for Geometry.

The four week period was not long enough to
allow all students to finish all of the programs.
It was, however, about 75% successful. We antici-
pate that the six weeks program to be presented
this year will take care of that problem. We will
be very interested to see how the scores on the
final exam for this year compare with those of pre-
vious years. These results will be presented in
the oral report of this paper.



www.manaraa.com

Time schedule
without
computers

Chapter 1

4 days

Chapter

10 days

GEOMETRY SYLLABUS

THE NATURE OF DEDUCTIVE
REASONING

Time schedule
with 30-day
computer unit

Emphasis on: If...Ther...
Converse, Inverse, Contra-
positive, IFF., Only If,
Direct Proof, Indirect
Proof (Math example only)
Some Work on Euler Diagrams

2 FUNDAMENTAL IDEAS:
LINES AND ANGLES

Chapter 3

10 days

Chapter 4

14 days

Chapter 5

3 days

Chapter 6

7 days

Chapter

9 days

1. The Distance Between Two
Points

2. Betweenness of Points
3. Rays and Angles
4. Angle Measurement
5. Complementary &

Supplementary Angles
6. Betweenness of Rays

4. Some Consequences of
the Parallel Postulate

5. The Angles of a Triangle
6. Two More Ways to Prove

Triangles Congruent

Chapter 8 QUADRILATERALS

4 days 9. days

10 days

SOME BASIC POSTULATES AND THEOREMS

1. Postulates of Equality
2. The Bisection Theorems
3. Some Angle Relationship

Theorems
4. Theorems about Right Angles

5. Some Original Proofs

CONGRUENT TRIANGLES

10 days

14 days

1. Triangles
2. Congruent Triangles
3. Some Congruence Postulates
4. Proving Triangles Congruent
5. More Congruence Proofs
6. The Isosceles Triangle Theorem

7. Overlapping Triangles

DISCUSSION OF REFLECTION AND
SYMMETRY ONLY

INEQUALITIES

1. Postulates of Inequality
2. The Exterior Angle Theorem
3. Triangle Side and Angle

Inequalities
4. The Triangle Inequality

Theorem

7 PARALLEL LINES

1. Parallel Lines
2. Perpendicular Lines
3. The Parallel Postulate

3 days

7 days

9 days

101

1. Quadrilaterals
2. Parallelograms
3. Quadrilaterals That Are

Parallelograms
4. Kites and Rhombuses
5. Rectangles and Squares
6. Trapezoids

Chapter 9 AREA

9 days

9 days

9 days

1. Polygonal Regions and Area
2. Squares and Rectangles
3. Parallelograms and Triangles
4. Trapezoids
5. The Pythagorean Theorem
6. Heron's Theorem

Chapter 10 SIMILARITY

11 days

Chapter

13 days

11 days

1. Ratio and Proportions
2. More on Proportion
3. The Side-Splitter Theorem
4. Similar Triangles
5. The A.A. Similarity Theorem
6. Proportional Line Segments
7. The Angle Bisector Theorem
8. Perimeters and Areas of Similar

Triangles
11 THE RIGHT TRIANGLE

1. Proportions in a Right
Triangle

2. The Pythagorean Theorem
Revisited

3. Isosceles and 30-60 Right
Triangles

4. The Tangent Ratio
5. The Sine and Cosine Ratios
6. Trigonometry Is Taught from

Unit Circle Approach
7. Use of Hand Held Calculators

Chapter 12 CIRCLES

13 days

7 days

13 days

1. Circles, Radii and Chords
2. Tangents
3. Central Angles and Arcs
4. Inscribed Angles
5. Secant Angles
6. Tangent Segments
7. Chord and Secant Segments
8.* Inverse Covered by a Discussion



www.manaraa.com

Chapter 13 CONCURRENCE THEOREMS

5 days
1. Concyclic Points
2. Cyclic Quadrilaterals
3. Incircles
4. Ceva's Theorem
5. The Centroid of a Triangle
6. Some Triangle Construction

3 days

Chapter 14 REGULAR POLYGONS AND THE CIRCLE

12 days 7 days
1. Polygons
2. Regular Polygons
3. The Perimeter of a Regular

Polygon
4. The Area of a Regular Polygon
5. Limits
6. The Circumference and Area

of a Circle
7. Sectors and Arts

Chapter 15 GEOMETRIC SOLIDS

10 days 5 days
Emphasis on '7orh las and
Not Proofs

Chapter 16 NON-EUCLIDEAN GEOMETRIES

3 days

CONSTRUCTIONS

11 days

3 days

0 days

Changes were made in

Chapter 11, saving 7 days
Chapter 13, saving 2 days
Chapter 14, saving 5 days
Chapter 15, saving 5 days
Construction saving 11 days

30 days TOTAL

The only topics that have been dropped are
Ceva's Theorem, Concyclic Points and Limits. All

other topics are taken. Less time is spent on
topic development and practice as indicated above.

102

30 DAY COMPUTER UNIT

SYLLABUS

Time ACTIVITY

3 days Discuss history, flowcharting and the
first program in the text covering REM,
READ, LET, DATA and PRINT statements.

5 days Show how to mark cards and use the
machine. Write and run 3 introductory
programs. Administer first quiz.

6 days Discuss Loops, arithmetic symbols and
the statements GO TO, IF-THEN and END.
Run 3 more programs using these state-
ments. Administer second quiz.

6 days

6 days

4 days

Discuss counters and debugging. Run 5
programs. Administer third quiz.

Discuss FOR-NEXT Loops and assign 2
programs using them. Discuss the first
2 programs and assign 3 more. Adminis-
ter fourth quiz.

Assign the last 2 programs. Administer
final exam on the unit.

30 days TOTAL

1 1 j



www.manaraa.com

A Programming Environment for Preliterate Children

Charles E. Hughes
The University of Central Florida

J. Michael Moshell
The University of Tennessee,

Knoxville

Both of
Gentleware Corporation
Knoxville, Tennessee

Abstract

This paper describes a programming environment
that provides a gentle, non-textual introduction
to programming. The, system, named KIDBITS, has
been used experimentally for about two years and
is appropriate for a wide range of beginners,
including children as young as five years old.

Introduction

Many people fail to learn programming because they
stumble over the syntax of the language. Remem-
bering facts such as where semicolons go is not
an important skill that programming develops; yet,
this is the first and, for many, the insurmountable
barrier to cross.

When we try to teach programming to young children,
the syntax issue is an even greater stumbling block.
This is most unfortunate since the real benefit of
learning to program comes from the problem solving
skills that are developed.

Among the skills developed in learning to translate
a problem statement into a programmed solution are
the ability to:

Analyse a problem statement, to determine if it is
clear enough to allow you to start designing a
solution.

Break a large problem into more easily managed sub-
problems.

Develop an algorithmic approach to solving a clear-
ly specified problem.

Scientifically test a proposed solution to deter-
mine if, and under what conditions, it fails to
solve the given problem.

Devise a portion of a solution in such a way as to
correct this part without polluting other compo-
nents.

Prepare descriptions of your solutions so that
others may understand both what you solved and how
you solved it.

103

Since the activity of programming is so beneficial,
it is desirable to introduce it to very young
children. Unfortunately, programming environments
are, in general, usable only by those who can both
read and write. Exceptions to this are certain as-
pects of the Smalltalk environment (Goldberg 1981,
Gould 1982), some implementations of turtle graph-
ics (Papert 1980), programmable toys such as Big
Trak, and simple artists tools such as QUILT and
PAINTER (Moshell 1982).

This paper describes a programming environment that
provides a gentle, non-textual introduction to pro-
gramming. The system, named KIDBITS, has been used
experimentally for about two years. This is, how-
ever the first paper that describes it.

Technical Details

KIDBITS is a programming system in which icons
(pictures that represent actions, or objects upon
which actions occur) are assembled into sequences
to achieve some desired effects. The paradigm used
here is one of a movie director (the child) putting
together a film. KIDBITS permits the making, edit-
ing and playing back of these movies.

Entering a Movie

Typically, the movie's director uses a game paddle
to select the components of a movie. The chil,
first sees the following display in the lower part
of the screen.

56 ccd OP 9
A

There are six choices here. The first option,"sun-
rise", means "begin a movie". You use the paddle
to position the cursor (") under the chosen action,
and then press the game paddle's button.

(Cursor control keys can be used on systems having
no paddles.)

Jr)



www.manaraa.com

Here is a description of all the options:

Graphic Meaning Details

Sunrise

Movie Camera

Broom

Glasses

Pencil

Stop Sign

"BEGIN" Enter a sequence of commands

"SHOW" Replay the movie

"EDIT" Modify a movie

"READ" Get an old movie from disk

"WRITE" SaVe current movie on disk

"BYE" End of the day's work

Let's explore what happens when you select BEGIN.

You receive a new menu. Here are its contents.

[I]

Graphic

Face

Counter-
clockwise
Arrow

Clockwise
Arrow

Four
Diverging
Arrows

Four
Converging
Arrows

Arrows to
Left,Right,
Up, Down

Brush

Left
Square
Bracket

Moon

Meaning Details

"TELL" Select an animation figure

"SPIN" Spin the figure 45 degrees

"HOP" Make the figure hop

"GROW" Make the figure grow

"SHRINK"Make the figure shrink

"LEFT",
"RIGHT",
"UP", Move the figure
"DOWN

"PAINT" Make a copy of the figure

"REPEAT"Repeat some commands

"END" End of the movie

When you select TELL, you receive a new menu of op-
tions. This is the list of folks to whom you can
"tell" something.

There is a large selection of animation figures
available. However, for any given execution, you
may have at most six. As an example, we can have a
menu that looks like this.

A.
These figures represent:

Flower Bird Cat Rocket Triangle

Here's a typical animation seqUence:

BEGIN

TELL BIRD
HOP
HOP
HOP

TELL CAT
HOP
HOP
UP
UP

RIGHT
RIGHT

DOWN
DOWN

TELL BIRD
SHRINK
SHRINK
SHRINK

END

SHOW

Select the bird
Bird hops three times to the right

Select the cat
Cat prepares to pounce on bird

Cat lands on bird

Select the bird
Bird gets small quickly
(being eaten, perhaps)

End taping session for this movie

Replay the movie

104

Any number, 1 through 9, may be typed and then be-
comes the "repeat factor". This number is dis-
played in the lower right corner of the screen. If
you type 3 then select HOP, the current figure hops
three times.

Selecting the repeat symbol, a left square bracket,
is analogous to using a Pascal or Basic FOR loop: a
subsequent sequence of commands is executed some
fixed number of times. Prior to choosing this sym-
bol, you enter a repeat factor that determines how
many times the following sequence of commands is
executed.

As soon as you choose a repeat group, the menu
changes slightly. The moon, used to terminate the
program, disappears and a right square brackets ap-
pears in its place. This icon is selected to close
out a repeat group.

An example of the use of the repeat is the follow-
ing sequence to create a flower garden.

BEGIN

TELL FLOWER

4

REPEAT

PAINT
3

RIGHT

END REPEAT

END

Select flower

Repeat four times

Make a copy of flower
Move flower over to make
room for next copy In garden

End repeated sequence



www.manaraa.com

Editing a Story

If you have a movie which you have entered into the
computer, or loaded from the disk, and you want to
change it, select the EDIT option (the broom).

The movie, as currently known to the computer, will
be displayed at the top of your screen. This
script is read from left to right and from top to
bottom, just like English text.

A menu of five choices appears on the bottom of the
screen.

The options are:

Graphic Meaning Explanation

Right Arrow Forward Move forward in the script

Left Arrow Backward Move back,lard in the script

I(nsert) Insert Splice new action into movie

D(elete) Delete Cut out scene from movie

Q(uit) Quit Go back to outer menu

The cursor movement commands (left, right arrow)
operate as in a normal scan of text. Moving right
of the end of a line positions you at the start of
the next one. Moving left of the start of a line
positions you at the end of the previous one.

When you select the Insert option, you are given
the same menu you used when building the movie in
the first place. You use your game paddle to move
back and forth and select an item to insert into
the movie.

When you select the Delete option, the item pointed
to is just removed from the story.

Modes of Presenting this Material

Most children, when learning their native language,
master the spoken language by the time they are
only three years old. They accomplish this remark-
able task by the simple techniques of mimicry and
observation of cause and effect.

Several very successful educators have capitalized
on this natural mode of learning. The Suzuki meth-
od of teaching music does not initially train child-
ren to read music. Rather, an adult, usually a
parent, is brought in to provide a role model. The

child then learns by the familiar methods of mim-
icry and cause/effect experimentatlon.

The software we are describing provides an environ-
ment for children to enter, modify and play back
simple animated stories. Reading is not a prereq-

uisite skill.

The child, with adult assistance, but hopefully not
interference, can enter this story via a menu
selection scheme. On the bottom of the screen will

105

appear the set of all icons that may be used at the
current point of story telling. The game paddle is
all that is needed to enter the above story. The
position of the paddle controls the cursor that may
be moved across the icons.

Pressing the paddle's button enters the currently
selected icon as part of the story and shows the
effect of this action in the cartoon being gener-
ated. Each such selection results in the display
of the text of the corresponding Pascal-like state-
ment.

The child who is already reading is lead to learn
some of the syntax of a programming language. The
child who does not read is helped to develop this
skill by the word/action association.

Some of the prominent features of this child appro-
priate computer story telling system are:

1) Children and adults can work as a team. Adults
provide a more highly developed sense of logic plus
the reading/writing skills needed for more advanced
work. Children provide imagination and enthusiasm.
Each learns to program the computer, not be pro-
grammed by it.

2) With rare exceptions, e.g., establishing com-
munication with a figure by the TELL verb, each
command requires the selection of only one icon.

3) Syntax errors are impossible. Thus the begin-
ner needs to be concerned only about errors of
logic. This helps to decrease the frustration
level of a high energy, low attention child (or,
for that matter, adult).

4) Text
selected
pants to

is always displayed to correspond with the
actions. This helps to initiate partici-
the next stage of programming.

5) Only one control structure is introduced, the
repeated set of commands. This acquaints students
with repetitive execution while retaining the
essentially imperative nature of the language.

6) Movies may be edited. This early introduction
to editing emphasizes debugging and the important
realization that you need not throw everything away
when your story line is not exactly what you want.

Summary

This paper presents a technical description of
KIDBITS' features, anA a scenario on how it may be
used to introduce children to the art and science
of programming. The environment provided by
KIDBITS is object-oriented, where the objects are
usually cartoon characters. Programming in this
system is non - texts,.... This fact, together with

the appealing graph). 3 it very promising for
use with preliterate

Certain aspects of KIDBITS have been intentionally
designed to reinforce other educational objectives,
such as reading and understanding the meaning of
single digit numbers.

124;



www.manaraa.com

The present version runs on an Apple II, II+ or IIe
computer with 48K of memory and one disk drive.
Distribution of the software, along with a self-
teaching text, is being done by John Wiley and Sons.

References

Goldberg, Adele and Joan Ross, Is the Smalltalk-80
System for Children?, Byte, Volume 6, August 1981,
pp. 348-368.

Gould, Laura and William Finzer, Programming by
Rehearsal, Personal Communication, December 1982.

Moshell, J. Michael et al, Computer Power, McGraw-
Hill, New York, NY, 1982.

Papert, Seymour,Mindstorms: Children, Computers,
and Powerful Ideas, Basic Books, New York, NY, 1981

106

12j



www.manaraa.com

Teacher Training in Computer Education

William Wagner, Chairperson
Santa Clara County Office of Education

San Jose, CA 952,15

ABSTRACT
We are often asked, "How can we ensure

that computers will not be just another fad
in education, like TV or flexible
scheduling?" Since its beginning, the
computer education revolution has been
different from other innovative episodes
because it has featured the involvement and
leadership of classroom teachers.

The dilemma for continued successful
implementation is to allow each wave of
newly involved teacher to experience the
sense of ownership, pride and power which
is critical in the success of any
innovation.

When this need is viewed in the light of

Bobby Goodson
Computer Resource Teacher
Cupertino Union School District
Cupertino, CA 95014

Gary Neights
Bureau of School Improvement
Pennsylvania State Department of Education
Harrisburg, PA 17108

Nancy Roberts
School of Education
Lesley College
Cambridge, MA 02138

107

the relative lack of technological
sophistication of the average teacher, anti
the lack of new teachers entering the
system, the problem of teacher training
becomes absolutely essential to the
continued progress of this particular
innovation at this particular time.

The participants in this panel are four
leaders in the field of computer education
who have extensive experience meeting these
needs in both pre-service and in-service.
They bring the perspective of local school
district, regional center, state department
of education and teacher training
institution.



www.manaraa.com

Instituting Computer Programs within a School District

John Cheyer
Manchester High School
Manchester, CN 06040

ABSTRACT
This session will describe computer classes
or programs being offered by the Manchester
School System.

"Principal In-Service Program" educate
principals on different ways the
microcomputers may be used in the school
system.

"Teacher Awareness Yeat" - two VIC-20's
with packet developed by summer curriculum
money explaining hook-up, simple computer
programming, and assorted CAI software
programs. Each computer stays at each
school for 2 months in which teachers can
take it home with them to learn at their
own pace.

"Elementary Task Force Committee'' - will be
evaluating pilot programs that are just be
introduced in selected elementary_schools.
For the past two years, we have been
evaluating other school district programs
which are using LOGO, PILOT, and CAI
materials.

108

"Probe'' - two teachers circulate between
the ten schools teaching computer
programming to the gifted children in the
fifth and sixth grades.

"Computer Literacy' - every seventh grader
from special education to gifted students
receives 15 lessons on computer literacy.
Seven lessons are on history, parts of the
computer and usage in society and eight
lessons are hands on use of the computer..

"Introduction to Microcomputing" - a

semester offering to eighth and ninth
graders teaching BASIC.

"High School Projects" The high school
has 21 computer available to teach BASIC
programming. Another lab is available for
CAI. Four departments (English,
Mathematics, Science, and Social Studies)
have been invited to develop materials
using SUPER PILOT or to use courseware from
MECC.

14/4,J



www.manaraa.com

Voice Input/Output
New Directions in Instructional Technologies

Carin E. Horn, Chair
Scott Instruments Corporation

Denton, Texas 76201

ABSTRACT
Speech input/output is adjusting the 'traditional' computer assisted learning

environment. The panelists in this session will address various aspects of voice
recognition and speech synthesis technologies with educational applications.

Remarks will attend to:

a) historical voice I/O developments and applications;

b) the impact of voice I/O on student performance;

c) real-time pronunciation feedback and foreign language learning, and

d) voice recognition for special eduation.

A demonstration of the VBLS (trade mark) voice-based learning system will be given.

PARTICIPANTS

Richazd H. Wiggins
Editor, Speech Technology

Herb L. Nickles
California State University

Harry S. Wohlert
Oklahoma State University

Brian L. Scott
Scott Instruments Corporation

109



www.manaraa.com

Educational Use of Microcomputers by Special Needs Students

Joan Davies, Chair
Lynbrook High School
San Jose, California

ABSTRACT
Just because one happens to work with

special education students in Silicon
Valley, the heart of California electronics
industry, it does not mean that computer
instruction automatically becomes part of
the curriculum. As much exertion is
required here as anywhere else to implement
computer use in special education.

Session participants will hear panel
members discuss exemplary school site

PARTICIPANTS:

Joan Davies
Lynbrook High School
San Jose, CA

Don Clopper
Coordinator of Special Education
Santa Clara County, CA

110

computer programs, as well as, the role of
district level and county level personnel,
in providing appropriate computer services
for special needs students.

Panel members are leaders in the field
of compute use for special needs students
and have extensive staff development
experiences. They will address concerns
from school, district, and county level
positions.



www.manaraa.com

Needs and Opportunities for Educational Software
in Grades K-12

Edward Esty, Chair
OERI

Washington, DC 20208

Robert Tinker
Technical Education Research Centers, Inc.

Cambridge, MA 02138

Lawrence M. Stolurow
Center for Educational Experimentation, Development and Evaluation

University of Iowa
Iowa City, IA 52242

Darlene Russ-Eft
American Institute for Research

Palo Alto, CA 94302

ABSTRACT
Recognizing the urgent need for improvement in the quality and the quantity of

educational software for microcomputer, the National Institute for Education soonsored an
eight month study to document the present state of microcomputer use in elementary and
secondary schools, and to determine the needs expressed by educators for software which
will enable the full potential of microcomputers to be realized.

The results of the survey of teachers, administrators, and software developers will be
summarized. The panel will present recommendations for the effective use of
microcomputers in the areas of 1) math and science, 2) reading, writing, and
communication, and 3) foreign language instruction. Discussion will focus on the ability
of microcomputers to improve student motivation and performance, to introduce new topics
into the curriculum, to increase teacher productivity, and to decrease educational costs.

The final report of this project should be available at the time of presentation and
will contain an exhaustive directory of educational software, commercial and
non-commercial sources of software, and a bibliography of pertinent journals, articles,
hooks, and other research studies.



www.manaraa.com

Program Maintenance ... The Forgotten Topic

by Frank W. Connolly

Center for Technology and Administration
The American University
Washington, D. C. 20016

Abstract

Program maintenance is a topic that is
frequently overlooked in undergraduate programming
classes. This paper offers an approach to present-
ing the topic. It is based on the author's class-
room experience.

Introduction

Programming courses include numerous topics --
structured design, problem solving, language gram-
mar and syntax, interfacing with operating systems,
file construction, programming techniques, and
more. Discussions with former students brought to
light a significant topic I had overlooked for
years. A review of several textbooks reflected a
similar oversight. The topic? Program maintenance.

Many faculty use a building block approach to
teach languages and programming techniques. Stu-
dents begin with simple programs and then expand
them, adding new requirements and using new tech-
niques. Such an iterative approach to program
development is a valid teaching approach, but is
not what I consider program maintenance. For pur-
poses of this paper, Program Maintenance is defined
as modifying, correcting and extending an operating
program written by someone else.

Recently, I instituted a learning module on
program maintenance in my COBOL classes. That
experience is the basis for this paper.

Background

Many students leave the halls of academia to
start work at the bottom of the computer career
ladder. They are not given programs to create
from scratch, as they did in class, nor are they
assigned sophisticated new systems to implement.
Instead they are given the task of program
maintenance. Maintenance tasks are logical
assignments for a new programmer. First, as
individuals at the lowest rung on the professional
ladder, they are assigned work that more senior
members of the staff dislike. Second, maintenance
tasks are easily defined and controllable, enabling

112

new employees to do productive work without con-
stant supervision. Third, doing maintenance
programming gives new staff members the opportunity
to learn the accepted norms of their new working
environment: programming standards, library con-
tents, and major file formats and conventions, etc.

However, maintenance programming requires
knowledge of some special techniques. If students
are not introduced to these techniques and require-
ments, they are ill prepared to effectively handle
the initial programming assignments they are likely
to receive. Thus, the employer's initial impres-
sion of both the new employee and the new employee's
education may be nagative. In addition, the psycho-
logical impact on neophyte programmers is signifi-
cant. While adjusting to new work settings, they
must contend with programming tasks which are
unfamiliar to them.

Environment

The Program Maintenance module I developed
was introduced in two introductory COBOL courses.
The courses are conducted using strict structured
programming techniques. For each programming
project, students receive specifications. There
are two walkthru's scheduled -- the first at the
design stage, the second at clean code. The design
phase walkthru requires each student to prepare
IPO charts and pseudo-code. The code walkthru
requires that the compilation be free of all Warn-
ing, Caution and Error messages. There are strict
coding style requirements: naming, use of literals,
comments, and format. Student teams are formed
for each project.

At American University, students use MUSIC
(McGill University's System for Interactive Com-
puting). All program code and execution is done
on an interactive basis on the University's
IBM 4341 via IBM 3270 terminals. From the begin-
ning of the semester, students work in a "library-
oriented" environment as program segments and con-
trol language are retrieved by students from a
public library and incorporated into their code.
During the eleventh week of a 15-week semester,
the students receive the maintenance assignment.

12i



www.manaraa.com

Assignment

In prior course projects, students received a
detailed layout of the input, a description of the
processing to be accomplished, and a layout of the
uutput format. For this project, they received:

1. IPO charts of an existing program
2. pseudo-code for the existing program
3. a copy of the existing program

source code
4. a description of the modifications

required
5. a format of the output for the

updated program

After the code walkthru, data and control
language for running the updated program was

provided.

The program to be updated was written by a
former student at the University who understood
that the program was to be used by students as
described above. It was a short (approximately
150 lines of code), relatively simple program
(one file in and a report file out). The code
did not adhere to the coding standards used in the
course and contained few comments. The IPO and
pseudo-code supplied were accurate.

The major restriction placed on the students
was that they were not to make unnecessary
changes to the existing code. Unnecessary
changes were defined as changes made for style or
convenience purposes. All new code added was to
be in accordance with the style standards estab-
lished in the class. That meant that the com-
pleted code would contain two different styles of
writing.

Expectations

While the students appeared to hale few
expectations about the project, I had several.
First, I thought students would enjoy working on
a program which had.existing code. I anticipated
they would find an advantage in being presented
general approach to solve a problem. Having to
contend with code not as well-written as they
would have ft, I hoped to reinforce the need fr,r
good structured technique, especially in nvil!.g
and documentation. I also expected that stpdents
would easily make the transition from "cmator"
of their own programs to "maintainer" of someone ._
else's programs.

Reality

Not surprisingly, reality was significantly
different from my expectations. Students did not
like doing someone else's programming. They had
great difficulty adjusting to the role of "fix-it
person." Clearly, the transition from creating
to maintaining programs was not as easy as I

thought. While the students acknowledged they had
learned a great deal, they considered the amount of
frustration they experienced as excessive. Upon
reflection, I concluded that although the same
tools are used for creating and maintaining pro-
grams, they are used for different purposes.
Therefore, I backtracked and added a new teaching
module to explain the maintenance task.

Suggestions and Findings

Finding little material in the literature, I

developed the following approach for performing
maintenance programming:

113

I. Determine where you are

What does the existing program do?
The analysis begins with IPO charts
and pseudo-code, to give the main-
tenance programmer an overview of
the program.

Verify that the IPO and pseudo-code
are in agreement both with each other,
and the code. It is recommended that
the maintenance programmer examine
the test data, predicting the output
prior to running the program.

Run the program as is, using the test
data. If the results agree with the
student's predictions, they have an
excellent understanding of the code.
Ii' they don't agree. they have a
road map to indicate where the dis-
crepancies are.

II. Evaluate the changes required

Cla71,ify the changes as "Substantive"
or 'tosfietic." Cnsmetic changes do
rot affect the logic flow of the
existing prog.an. These include such
things as headiLgs, layout modifi-
cations, field sizes, etc. These
generally require changes to the DATA
DIVISION, not the PROCEDURE uIVISION.

Substantive changes change the logic
flow. These include addition of
routines and changes to the sequence
of the current program. These changes
primarily affect the PROCEDURE DIVISION.

III. Implement the Cosmetic Changes

Without a walkthru, code and then
test these changes.

13 0



www.manaraa.com

IV. Implement the Substantive Changes

Pirst, prepare IPO and pseudo-code
to reflect the program when the
substantive changes are implemented.
There is a design walkthru at this
point.

Second, code and compile the program
with all changes included. When it's
clean, conduct the code walkthru,

Pinally, as with a program written
from scratch, test it.

V. Document the program

Document the entire program, not
just the modifications.

Student Suggestions

In addition to normal course evaluations, I
conducted a debriefing session with students when
the project was completed. They had two highly
constructive suggestions for using this project
in the future.

1. They felt the program I gave them
was too easy, As they had written
programs of comparable size, they
were tempted to rewrite the program,
rather than upgrade it, (Several
confessed to rewriting it com-
pletely. After the output of
their totally rewritten program
was correct, they went back to
their code and replaced portions
with the original code where
possible, so it conformed to the
assignment.) Therefore, they
suggested that the original
program be larger -- something
that would show them the size of a
"real world" program. They believed
such a program would eliminate the
temptation to rewrite the code
instead of updating it.

2. They suggested that no new tech-
niques or code concepts be intro-
duced as part of the modifications.
The assignment I had presented
required them to add control breaks
to the existing program. Having
worked with accumulators previously,
I considered the addition of con-
trol breaks a minor new experience.
The students felt otherwise, They
did not like having their concen-
tration divided between learning
control breaks and learning to
perform maintenance tasks.

114

f'

Summary

For 13 years of teaching college-level
programming courses, I overlooked a topic of
significance to my students -- program maintenance
techniques. It wasn't my inspiration or insight
that brought it to light. Former students
recounting their initial, on-the-job frustration,
led me to include a unit on programming mainten-
ance in my introductory programming courses.
Based on my review of texts, it is a topic that
is forgotten in many courses. But, if we are to
prepare students for the world they will face
upon graduation, we need to add Program Maintenance
to our programming courses.

131



www.manaraa.com

AN ENVIRONMENT TO DEVELOP AND VALIDATE PROGRAM COMPLEXITY MEASURES

ENRIQUE OVIEDO* AND ANTHONY RALSTON

Department of Computer Science
State University of New York at Buffalo

Abltract

he theory and practice of Software Engineer-
both require the objective definition and

measurement of the complexity of programs. Numer-

ous measures have been proposed for this attribute
but little Is known about their predictive power
and limitations. Extensive empirical studies are
needed to determine the usefulness of the proposed
measures and to help refine them to the point
where they can be used to control and measure

effectively the complexity of software products.
Programming courses are a useful medium to valid-
ate prcgram complexity measures.

(1) Introduction

Program complexity measures vary considerably
In the amount of Information they require about
the program being measured. Some are simple and
can be easily automated whereas other measures

require human Intervention. Obviously, we would
like to have automated measures that are easy to
use by programmers and that can pinpoint the

sources of complexity of programs (and that can
give useful and cost effective diagnostics). For

the present and for some time there will be no

general theory on which to base such measures,.
therefore, empirical studies are needed to eval-
uate the advantages of alternative measures, the
extent to which they can be automated and the ef-
fect on these measures of different programming

languages, program sizes and subject domains.
At some stage In the development of Software

Engineering we may hope to have a definition of
program complexity which Is directly derivable
from an underlying calculus of programs and pro-
gramming languages. Pending that time, however,
any measure of program complexity needs to be

validated by external (I.e., human) perceptions of
program complexity. Various experiments have been

performed to measure the performance of program-

mers or to find some common agreement on the com-
plexity of programs. One aspect of the variabil-

ity of these methods is due to the different
assumptions researchers have made about how pro-
grammers develop an understanding of programs. We

need to explore these experimental methods

*The author is currently with the BELL AEROSPACE
TEXTRON company, Wheatfield, New York.

115

further to find which ones can provide adequate

data on the complexity of programs. In this

paper, we -argue that college and university pro-
gramming courses are the best and perhaps the only
useful medium ,n which to carry out experiments to
validate an compare pros va. complexity measures
and models. Large numtors ,' programs ' .)al many

different subjects and 'n arent lan< sges

be obtained from such courses. Moreover, sine.

explicit emphasis on programming methodology Is

increasingly a feature of even introductory pro-
gramming courses, a portion of the grade assigned
to such projects should be related to program com-
plexity. By having Instructors assign a portion

of the grade specifically on their evaluation of
the complexity of the program, an independent

indication of this attribute can be obtained. A

data bank of the student programs and their com-
plexity grades can be used to compare alternative
measures, refine them and combine them Into hier-
archical models of program complexity and

quality.
(2) Program Complexity: The Nature of the

Problem
A basic assumption of this paper Is that pro-

gram complexity Is the Inverse of program under-
standability (where we restrict ourselves here to
understandability that depends on the structure of
the program itself and not on such things as com-
ments or choice of variables names). In order to

understand programs people use a combination of

the same skills and techniques used for problem

solving In general. Induction, deduction, divide
and conquer, trial and error and abstraction are a
few examples of the mental aids used to develop an
understanding of programs 13, 12, 15, 161. A pro-

gram can be understood at different levels of

detail which range from a general Idea of the pur-
pose of the program to a detailed knowledge about

the purpose of each control and data structure.
The degree of understanding of a program that is

achieved and the methods used to obtain it depend

on each person's needs, experience with the sub-
ject, programming language fluency. etc. The wide

variety of programmers, skills and programs' char-
acteristics are the main cause of the difficulty

researchers have had in identifying and defining

those program attributes which contribute to the
complexity of programs.

132



www.manaraa.com

Our thesis, and that of several other

researchers, is that program complexity needs to
be defined as a property of the program itself in

order to avoid any subjective components. As a

first step in this direction It seems reasonable
to assume that the complexity of a program results

from a combination of what the program does (i.e.,
the program's intrinsic functional complexity) and
how the program works (I.e., the program's imple -

mentation complexity). It would be widely accept-
ed, for example, that a Fast Fourier Transform
program Is intrinsically more complex than a Bub-
ble Sort program. Similarly, from the implementa-
tion complexity point of view, it would be safe to
assume that appropriately chosen control struct-
ures and data structures make a program more read-
able and understandable than an unstructured pro-
gram for the same function 1131.

Although the eventual aim of research Into

program complexity must be to define measures of
the Implementation complexity of a particular al-

gorithm, In the absence of a general underlying
theory we argue that we should be content for the
present to define relative measures which can be

used to compare a given (e.g., student's) program
with a standard (e.g., instructor's) program for
the same function1141. Thus, a plausible initial
approach to the study of program complexity would
be to analyze measures of program implementation
complexity by comparing the corresponding measures
of several alternative programs for many different
functions. As we learn more about the relative
importance of the different program attributes and
gain confidence in the existing models and measur-
es, we will hope to achieve gradually the goal of

having absolute measures.
(3) Program Complexity: Approaches to Research

Researchers have generally used two different
methods to study program complexity. One approach
has been to quantify the performance of program-
mers in order to test hypotheses about the effect
of certain program factors on the comprehensibil-
ity of programs. The other has been to develop
models to compare programs based on their style

and organization. Research based on these two ap-
proaches has faced serious methodological problems
and further research is needed to obtain models
that can be used successfully to Ixplain program-
mer-program interactions 121.

Studies of programmers' behavior have tested
hypotheses concerning the effects on program com-
prehensibility of factors like mnemonic variable
names, indentation, paragraphing, alternative con-
trol structures and sources of information exter-
nal to the program such as flow-charts and docu-
mentation. In this type of study, the performance
of programmers was measured by scoring how well

the programmers could memorize, modify, debug,
hand trace, answer questionnaires, etc. (8, 9, 10,

151.

Program complexity models have been developed
both to achieve a better understanding of the
factors that contribute to the complexity of pro-
grams and to obtain objective complexity measures.
Program complexity models are Intended to comple-
men the more developed program correctness
models. The amount of knowledge about the

116

language used by the program which is Incorporated
In program complexity models varies widely. Soft-

ware Science's model simply distinguishes between
operators and operands whereas models based on the
program's control flow, data flow or data acces-
sibility require extensive knowledge of the syntax
and semantics of the language.

It is reasonable to assume that the more

knowledge used in the analysis of programs, the
more Information can be extracted about the pro-
gram contents to improve the usefulness of the
diagnostics of program complexity models. For ex-

ample, program complexity models based on the con-
trol flow and data flow characteristics of pro-

grams could pinpoint anomalies like unreachable
sections of code, unnecessary assignments, unfact-
ored expressions, etc., In the program 14,131,
Software Science's model, on the other hand, could
only suggest the presence of those anomalies In

the'program 171. The use of more information
about the program, however, makes more difficult
the formulation of simple measures and the valid-
ation of the complexity models. This trade-off
between the depth of the analysis of the programs
required by the different program complexity
models and their predictive power Is a basic prob-
lem in this area which must be resolved III.
(4) Data Gatherin. Technl ues and Ex erlmental

Design
Numerous models and measures of program com-

plexity have been proposed but no major efforts
have been made to find out their predictive power
and limitations 151. To test these models and
measures we need methods to evaluate independently
the complexity of programs. Obviously, these
methods have to be designed in relation to the
theoretical question being investigated. However,
a careful analysis of these methods is essential
in this research area because they can suggest how
to formulate models and measures that can be more
easily studied in an empirical form. We need to
determine which (combination of) data gathering
techniques provide data which are accurate, un-

blaseC.and representative of the complexity of the
programs as experienced or perceived by program-
mers. This is a major task, indeed, given the

broad spectrum of programmers' skills, program
sizes and functions Some methods which require a

direct observation of the behavior of programmers
have been used to try to measure the complexity of
programs. As noted, one example Is quantification
of the difficulty (e.g., amount of time) with

which programmers could trace, debug, modify,
etc., the test programs. A wide variability In

the performance of the subjects was found and it

would be difficult to develop tests to control or
compare the subjects of these experiments based on
their skills, training and familiarity with the
purpose of the test programs 12, 81. Although
tracing, debugging, etc., are processes that

belong to the software development cycle, they do
not Insure that programmers have understood the
test programs or faced all sources of complexity
in them. Finally, from a pragmatic point of view,
these methods could not be used to gather large
amounts of data because they would be too tedious

133



www.manaraa.com

and time consuming with non-trivial test pro-

grams.

We believe more comprehensive and adequate

data can be obtained from experiments where prop-
erly trained (panels of) experts Judge the rela-
tive complexity of alternative programs for the
same function. A general argument In favor of

this contention is that reading and Judging pro-

grams Is an essentially simpler process than writ-
ing, tracing, modifying, etc., them thereby making
easier the collection of data. Reliable data may

be expected from expert Judges who have a clear
understanding of the purpose of the programs, the

language used and the techniques used In their
implementation (e.g., abstract data types, recurs-

ion, etc.). Additionally, a relatively large num-
ber of alternative Implementations should help the

Judges give a well Informed opinion of the rela-
tive complexity of the programs.

Program complexity Is an elusive and multi-
faceted concept. Therefore, extreme care must be

taken In the design of case studies and experi-
ments. For example, comprehensive and unbiased

guidelines should be given to the experts Judging
the complexity of programs. These guidelines
should enhance the panelists' understanding of the

concept of program complexity, carefully define

the program attributes they should (not) consider
In the evaluation of the programs, how finely they
should classify the programs according to their
complexities, etc. Similarly, test programs have
to be carefully selected In order to control those
program attributes not taken Into account by the
particular model or hypotheses being tested (i.e.,
Insure the Internal validity of the experiment)

and to test the models or hypotheses with a

variety of program types, sizes, and programming
languages (i.e., insure the external validity of
the experiment'.

(5) An Exemplary Experiment to Test a Model
of Program Complexity
We have developed a model of program complex-

ity which Is based on the control flow and data
flow characteristics of programs (see below). The

case study we present here Is part of an ongoing

effort to test this model. The test programs for
this experiment were written by students of an

introductory computer science course and a prelim-

inary analysis of the behavior of the model is

done by comparing the complexities assigned to
these programs by the model and the graders of the

course. We do not regard the results of this ex-
periment as a definitive test of the model but as
possible insights Into the data gathering techni-
que discussed in this paper and the behavior of
the model that should be further explored.

We first give a brief description of the

model which Is sufficient to understand the data
gathering method we have developed to validate It.

A detailed definition and analysis of the model
can be found in 1131.

Control structures and data structures are
fundamental and closely Intertwined program
components (as exemplified by the title of Mirth's

book 1181, "Algorithms + Data Structures

Programs "), It would be widely agreed that the
appropriate choice of control and data structures
can make programs more readable, easier to debug
and more reliable. This general argument and the
results of studies that suggest that the control
flow and data flow of programs play an important
role In the ability of programmers to understand,
trace and debug programs id, 6, 9, II, 121 have

led us to formulate a model of program complexity
based on the control flow and data flow character-
istics of programs.

The model of program complexity we have de-
fined Is based on the assumption that, in order to

understand, trace and debug a program, a program-
mer must, at least, be able to determine a) the

statements that precede and the statements that
follow each statement in a program, and b) the set

of variable references affected by each variable
assignment and the set of assignments by which

each referenced variable could have been defined.
Based on this assumption we have defined two

program attributes called control flow complexity
(CF) and data flow complexity (DF). These attri-
butes (CF and DF) have been defined In a language

independent form and we have implemented a system
that measures automatically the CF and DF of Pas-
cal programs. In order to define control flow

complexity, we view a computer program as a flow
graph having a single entry and a single exit node
and a number of nodes in between where each node
represents a sequence of statements without
branches into It or out of it and the nodes are
connected by edges that represent paths through
which the dynamic execution of the program flows.
We assume that the difficulty in understanding the

sequences of node executions (i.e., Its control

flow complexity CF) can be measured directly by

the number of edges of the program flow graph.
Several studies indicate that the size of the

set of variable references affected by each vari-
able assignment and the set of assignments where
each referenced variable could have been defined
have a significant effect on the ability of a pro-
grammer to understand, trace and debug a program.
We surmise that the difficulty in understanding

the definition-reference relationships in a pro-
gram (i.e., Its data flow complexity DF) can be

quantified by counting the number of variable

definitions (references) associated with each

variable reference (definition) In that program.
The fifty-nine programs used In this experi-

ment were the first programming assignment of an

introductory computer science course. Only cor-
rect programs were used in order that the assess-
ments by graders of the implementation complexity
not be affected by syntactic or semantic errors in
the programs. These programs were written in Pas-
cal and they ail compute the cube root of a set of

numbers provided in an Input file. Their output
was a list of the numbers read from the input file
and the cube root corresponding to each number. All

programs consisted of a single main program with no

procedures or functions.
Two computer science graduate students

117

134



www.manaraa.com

assessed the complexity of the programs as excel-

lent (A), good (B) or poor (C) (with "excellent"
corresponding to "less complex"). One student
graded 33 programs and the other graded 26 differ-
ent programs. The graders were told only to Judge
complexity In terms of the choice and use of con-
trol structures and data structures in the pro-
grams but they were not told what the details of
the model being tested were. In order to enhance
the graders' understanding of the concept of pro-
gram complexity, they were asked to consider the
set of questions concerning some general and spec-
ific program characteristics shown in Figure I.
It was our intent that these questions not give
clues about the model being tested. Additionally,
to ensure a consistent classification of the pro-
grams, we instructed the graders to scan all the
programs before grading any of them to form a
clear notion of what constituted an excellent,
good and poor implementation, and to ignore pro-
gram attributes not considered in the experiment
such as mnemonic variable names, indentation, com-
ments, etc.

DATA FLOW (DF) RELATED_QUEST1ONS

I. Are the data structures appropriately chosen?
2. Are the data structures properly used?
3. Are the boolean conditions properly used?
4. Are there unnecessary variables?
5. Are there duplicated sections of code?
6. Are there variables that should have been

declared as constants?

CONTROL FLOW (CF) RELATED QUESTIONS

1. Are control structures appropriately chosen?
2. Is the structure of the algorithm reflected In

the control structures used In the program?
3. Can nested if's be comprised in simpler

conditional statements, as
if bI then if b2 then X A

If bl and b2 then X = A?
4. I; the level of nesting of control structures

not so deep as to make the program unintellig-
ible?

versus

CF AND OF RELATED QUESTIONt

1. Is It easy to find and understand the
conditions under which a section of code would
be executed?

2. is it easy to follow the sequence of statements
In each path of the program ?

3. Is it necessary to backtrack often In order to
follow the implementation of the algorithm?

4. Could certain sections of the program be
programmed In a simpler way?

FtGURE 1

118

We have used the data obtained from this ex-

periment to compare how well the control flow com-
plexity (CF), data flow complexity (DF), cycioma-
tic complexity (V) 1111 and a combination of con-
trol flow complexity (CF) and data flow complexity
(OF) correlated with the complexity grades assign-
ed by the graders. The grader of the 33 programs
assigned 13 A's, 15 B's and 5 C's. The grader of
the 26 programs assigned 4 A's, 16 B's and 6 C's.
In Figures 2 and 4 we have plotted the control
flow complexity (CF), data flow complexity (DF)
and complexity grades (A,B,C) assigned by the
graders corresponding to each test program for the
33-set and 26-set, respectively. Figures 3 and 5

show tallies of the complexity grades assigned to
the programs and their corresponding cyciomatic
complexity (V) and control flow complexity (CF)
for the two sets, respectively.

In order to compare roul;':iiy these measures of
program complexity, we have defined areas for A, B
and C-programs In Figures 2-5 and then have count-
ed how many programs have appropriately and Inap-
propriately fallen Into each area. Our criterion
to obtain these areas has been to take the maximum
V, CF and DF of the A, B and C-programs as the
limits for the maximum complexities that A, B and
C-programs can have. The maxima for V, CF and DF
for the programs from the two sets are shown In

Tables I and 2, respectively. The zones defined
by these limits are shown as dashed lines In

Figures 2-5.

TABLE 1

Max. V Max. CF Max. DF

A-programs 4 13 10

B-programs 6 19 16

.C-programs 7 22 28

TABLE 2

Max. V Max. CF Max. D.F

A-programs 4 13 9

B-programs 5 16 17

C-programs 7 30 29

Tables 3 and 4 show the number of A, B and C-
programs contained In the A, B and C-zones of Fig-
ures 2 and 3, and 4 and 5, respectively. Based on
the information provided by Tables 3 and 4, we
might conjecture that a combination of CF and DF
can classify the programs better than V, CF or DF
alone, but obviously this hypothesis remains to be
proved. We emphasize that this case study was
presented solely to Illustrate a method for gath-
ering data and validating models of program com-
plexity.

135



www.manaraa.com

CF

25

20

15

10

CF
30

25

20

15

FIG. 2

C

B

B

A A

AAB
AAAAJ It BB
AAA

P

A ZONE

C

BB

B

B

C

B

B

B

B

11111111i
104 15

B ZONE

C C

B

F I G. 4

20
C ZONE

25
IDF

C

B B

A

I° AAALB

B

BBB

C

C

C

C

C

A Z011E i B ZONE

119

20 25
C ZONE

136

DF



www.manaraa.com

TABLE 3

V

(see Fig. 3)

A-Zone 13 Aos, 9 B's
B-Zone
C-Zone

6

1

B's,

C

4 Cos

DF
(see Fig. 2)

A-Zone 13 A's, 5 B's
B-Zone 9 B's, 3 Cos

C-Zone 2 Cos, 1 B

TABLE 4

CF V CF
(see Fig. 5) (see Fig. 4)(see Flg. 2)

13 A's, 8 Bos
7 Bos, 2 Cos

3 Cos

CF E DF
(see Flg. 2)

13 Aos, 3 B's
11 Bos, 2 Cos

3 Cos, 1 B

A-Zone 4 Aos, 14 Bos

B-Zone 2 B's

C-Zone 6 Cos

4 A's, 10 B's
6 B's
6 Cos

DF CF d DF
(see Fig. 4) (see Fig. 4)

A-Zone 4 A's, 5 Bos 4 Aos, 4 Bos
B-Zone 11 B's, 1 C 12 B's

C-Zone 5 Cos 6 Cos

FIG.3 FIG.5
CE

30

91 i25i

IC

1Z
10
IN
tE

CC

201-J
_7 ci

,B

'0

15 11

-J

CI 8
o,
N

- -
a l 6

0

Eo

5

CCC
BB

C
BUBB

BBB=
AAAAA

BE Li
All )

BMUS
EBBBB

A, 4 AAAAAA
I
0'

E

9

8
1

C;

0

7

6

B,_5

A

:Z

10:1?; Al 4

z,
o,
N.

120

-CCC

-C

-CC

-BB

CF

30

zs

C

BB-

BBBB

AAABBBB1

BBBB

BBBBBB
BBBBBBB
AAAA

137

10

s
10
IN
E

41-



www.manaraa.com

SUMMARY 121 Brooks, Ruven, Studying Programmer Behavior

Programming courses are not only an approp- Experimentally: The problems of Proper Meth-

riate environment to perform experiments to test odology, CACM, Vol 23, 1980, 207-213,
hypotheses and models of program complexity but

perhaps the only available environment in which to 131 Brooks, Ruven, Using a Behavioral Theory of
do meaningful, experiments involving the collection Program Comprehension in Software Engineer-

of large amounts of data. From such courses we Ing, Proc. 3rd Int. Conf. on Soft. Eng.,

can'obtain many programs for the same purpose, In IEEE, 1978, 196-201.

many different computer science subject areas

(e.g., numerical analysis, data structures, etc.) [41 Chapin, Ned, Data Accessibility in Structured
and In a variety of programming languages. Many Programming, NCC, 1978, 597-603.
experiments with different models can be performed
to rank these programs according to their complex- 151 Curtis, Bill, In Search of Software Complex-
ity, and the grade assigned by the instructor ity, Workshop on Quantitative Software

would be a readily available Independent evaivat- Models, IEEE catalog #THOO 67-9, 1979,

Ion of the programs' complexity. 95-106.
Given the methodological difficulties for

studying program complexity that we have mentioned 161 Dunsmore, H., and Gannon, J., Data Referenc-
in this paper, we believe we should Initially con- ing: An Empirical Investigation, Computer,
centrate our efforts on the development and valid- Vol. 12, 1979, 50-59.

ation of models of program complexity for elemen-
tary programs and gradually develop more sophistl- 171 Gordon, Ronald, Measuring Improvements In

cated models for larger programs. A large number .Program Clarity, CSD-TR-268, Purdue Univer-
of elementary programs can be obtained from intro- sity, 1978.

ductory computer science courses for testing sim-
ple models of program complexity which are based, 181 Gould, J. D., and Drongowski, P., An explore-

for example, on the complexity of each module of tory study of computer program debugging,

the program. Similarly a fair number of large Human Factors 16, 1974, 258-276.

programs rom advanced courses (although smaller
than large production systems) can be used for 191 Green, T., Conditional Program Statements and
testing models that, for example, not only take Their Comprehensibility to Professional Pro-
into account the complexity of each module but also grammars, J. Occup, Psychol., Vol. 50, 1977,

module interactions, appropriateness of data 93-109.

structures, clarity of design, etc. We believe

that accomplishing these steps In the study of 1101 Love, T., An Experimental Investigation on

program complexity are essential before we attempt the Effect of Program Structure on Program

to develop absolute measures for the complexity of Understanding, Proc. Reliable Soft, Conf.,

large production systems. SIGPLAN, March, 1977, 105-113.

From a didactic point of view, the use of

objective program complexity measures that can 1111 McCabe, T., A Complexity Measure, IEEE Trans.
complement program correctness models is of Inter- on Soft. Eng., Vol. SE 2, 1976, 309-320.

est In itself. The guidelines or feedback provid-
ed by good measurements together with good diag- 1121 Miller, L., Behavioral Studies of the Pro-
nostic messages could provide more meaningful com- gramming Process, IBM Research Report RC 7367

mentary for students on their programs than they (#31711), 1978.
are accustomed to getting from instructors or

teaching assistants. This point suggests one 1131 Oviedo, Enrique, Control Flow, Data Flow and
final--and potentially major--benefit of a soft- Program Complexity, Proc. Computer Software

were quality measurement system based on the and Applications Conference, IEEE, 1980, 146 -

notion of quality relative to an instructor's 152.

solution and/or the other students solutions to a
programming problem 1171. With the rapid Increase 1141 Ralston, Anthony, Mathematics and Computer
in demand on computer science faculty coupled with Science, Research Directions in Software

a decreasing supply of both faculty and graduate Technology, The MIT Press, 1979.

students (i.e., teaching assistants), any system
with the potential to supply automatic grading not 115) Shnelderman, Ben, Software Psychology,

Just of a program's correctness but also of Its Winthrop, 1980.
quality could be a major boon to'computer science
departments everywhere. 1161 Simon, Herbert, The Sciences of the Artific-

ial, MIT Press, 1969. 9, 1979, 107-116.

REFERENCES
111 Basil!, Victor and Reiter, Robert, Evaluating

Automatable Measures of Software Development,

Workshop on Quantitative Software Models,
IEEE catalog #THOO 67-9, 1979, 107-116.

121

[171 VanVerth, P.B., and Ralston, A., A System
for the Automatic Grading of Programming

Style, Proc. NECC, June 1983.

1181 Wirth, N., Algorithms + Data Structures =

Programs, Prentice-Hall, 1976.

138



www.manaraa.com

TEACHING A SOFTWARE ENGINEERING CLASS
USING AN IBM PERSONAL COMPUTER (tm)

RONALD I. FRANK
(Visiting Lecturer)

Framingham State College
Computer Science Department

Framingham, MA 01701

We outline the successful use of an inexpensive
personal computer to support the programming
project portion of a standard Software
Engineering Course. First. as background, we
specify the environment, i.e. our institution
and the equipment we usually use. Second, we
outline the course, its purpose, its level, the
type of students we have, and their background.
We thus provide a reference for the following
discussion of the student projects. Third, we

discuss the projects themselves as actually
accomplished on the IBM PC. Fourth, we discuss
the pros and cons of using such a "small'
machine as a project development vehicle.
Fifth, and last, we review the lessons we have
learned from this educational experiment.

A cost estimate sheet is provided showing a cost
of computing of about $40 per student_per
semester for the complete machine service for
this Software Engineering course, assuming that
the entire cost of the PC was borne by this one

course. This cost includes an all-points-
addressable color graphics configuration
supporting extended Pascal with separate
compilation, a full macro assembler,
128KB of main memory, and an 80 cps matrix printer.
I). The Environment (School and Equipment)

Framingham State College (FSC), Computer
Science (CS) Department.

FSC is a small (3100 students) four year liberal arts
college which is part of the Massachusetts State
College System (9 colleges). Massachusetts also
"supports a University System. At the time of
this course (Fall 1982), the FSC CS Department
has one full time faculty member (the chair-
person) and 27 part-time adjunct faculty members
from industry who teach one or two course sections
per semester. The department supports 206 CS
majors and other students as well.

The home offices of Digital Equipment Corp.,
Data General, and Prime Computer are within a
ten mile radius of FSC. Most of the Route 128
complex is less than twenty miles away. Wang is
about 40 miles away. IBM has a strong marketing
presence in this area, along with its Cambridge
Engineering and Scientific Narket Support Center
and Cambridge Scientific Center. From these
demographic facts derives the unusually strong
and experienced faculty we enjoy. To accomodate
this faculty, many "day" sections are taught at
night, as was this course.

122

The equipment we use includes a large CDC Twin
Cyber 172 System located in Boston, 30 miles
away. This had been our traditional support
machine for the Software Engineering course.
We access it via local terminals running at 300
and 1200 baud. It was reconfigured to 1200/300
from 300 only, and was quite unreliable during
the semester this course was given. This en-

couraged us to use the IBM PC.

We have a DEC PDP-11, a PRIME 400, and a Wang

VS-80, locally. The Wang is restricted to

administrative use and word processing. We

recently purchased an IBM Personal Computer (tm)
with 128K (64K on a QUADRAM QUAD (tm) Board) and

an 80 cps matrix printer. We use the color/
graphics adapter and an Electrohome green phos-
phor monitor as our standard display (we would
now opt for the more expenseive but higher
quality IBM monochrome monitor). We have two

single-sided 160KB disk drives. Our hardware in-

cludes an FSC audio-visual department (shared)
color TV for color graphics output and an Electro-
home green monochrome projection TV for classroom
presentations (projecting the PC display screen
onto a regular flat suspended movie screen). The

color TV has "video-in" so we drive it without an
"rf" modulator thus getting better quality color
in "medium" (320 by 200) resolution. All three

TV's are driven by the color/graphics adapter.

Our software includes the PC Macro Assembler (1),
Pascal (2) BASIC (3), and the BASIC compiler (4),
all running under PC-DOS 1.1 (5). Advanced,

graphics, BASIC comes with DOS. All programming
was done with EDLIN (5) which comes on the $40

DOS disk. DEBUG (5), a single-step debugger and
unassembler, also comes on the DOS disk.

II). THE SOFTWARE ENGINEERING COURSE

As part of the ?our year CS curriculum, we teach a
contemporary Software Engineering Course. The
class is comprised of third and fourth year
students, and is taught by a practitioner with the
purpose of introducing them to the Software Life
Cycle, the rationale for the various documents
required, and the literature of the field. The
students get some practical advice from "war
stories" and also experience the problems of a
team project. They write the documents and per-
form all the functions required in a software
development project including generating require-
ments, generating time and cost estimates, meeting
deadlines, and giving oral presentjtions.

139



www.manaraa.com

Structured modular programming is taught through-
out the four year curriculum. This course is a
review and application of what the students have
been taught, but in the context of Structured
Design.

Walk-throughs and reviews occur in class and
during team meetings. Team meetings occur outside
of class. More time is spent in teamwork than in
class or in class preparation.

The class used Brooks (6), and Pressman (7), as
required texts with Myers (8) as a recommended
reference. A number of class handouts were used
including a MIL-STD for software development (9),
the life cycle document outline from a computer
manufacturer, and various reprints from the IEEE
"Transactions on Software Engineering". A reserve
reading list was maintained at the library. The
books included many alternate Software Engineering
texts by authors such as Constantine, Myers,
Jensen, and Orr. A number of the IEEE tutorials
were also on the list.

The course met for two hours, twice a week, for
one four-month semester. There were eighteen
students, including two professionals and 3-5
others currently working part-time in programming
in the Route 128 area. The students had all
previously taken one year of programming including
Pascal and FORTRAN. They had taken a Data Struc-
tures course and had experience using files. Many

had had Programming Languages (covering the theory
of computer languages) which included a large
individual programming project. All had completed
an assembler based Machine Architecture Course.
Various other courses were shared by the students
as a common background, but not a microcomputer
course per se. Our CS students have college
,entrance examination SAT averages of about 1075
(math + verbal).

III). THE SOFTWARE ENGINEERING PROJECTS

The eighteen students were divided into three
teams of six each. A team was comprised of a
leader. a leader back-up person, a recorder, a
chief programmer, and two editors. The leader
represented the group in class, the recorder kept
the group meeting records, and everyone did word
processing and coding. Also, everyone kept their

own Programmer's Notebook. All documents were
worked on together, but a single person naa main
responsibility for each document. There were six

documents:

1. A Proposal (Software Plan)
2. Requirements Specification
3. Architecture/Functional Specification
4. Preliminary Design
5. Detailed Design and Test Plan (and Error

Reporting Form)
6. User's Manual and Documented code

The three groups, after two weeks of investigation,
decided on three projects. One, not discussed here

was a traditional large machine Pascal-based pro-
ject on the CYBER System. It was a general pur-
pose grades maintenance, grades computing, and

123

reporting system, with data file encryption for
security. It had a menu ariven user interface.

The other two projects, reported here, were
similar to each other. They provide to PC
Pascal most of the extensive macro-level color
graphics capability which is inherent in PC
BASIC. In both projects, the screen driver is
the BAS.COM file from the PC BASIC Compiler
which provides the color graphics macro library
to compiled BASIC. The projects bridge PASCAL
to the same code - they enable a PC Pascal pro-
gram to generate color or monochrome graphic
images. This is not a capability inherent in
PC Pascal.

The BAS.COM file is proprietary to MICROSOFT
(tm). That implies that absolutely no documen-
tation is available to find out how it works.
It is a library of machine language graphics
macros with undocumented functions and calling
sequences. It is not our purpose here to
document this information - doing so might be
a copyright violation.

Our purpose is to document the successful use of
the IBM PC in the Software Engineering course.
The two PC-based projects, totaling twelve
people, shared access to our one PC without long
waits. Informal self-scheduling sufficed. Our
PC is in a controlled, but public, location. It

is available M-F, 8:00 AM - 11:00 PM, and on
Saturday 9:00 AM - 6:00 PM. Each team has avail-
able a set of diskettes. Each member maintains
their own work diskette, but not system diskettes
such as DOS, Assembler, or Pascal. The compiler,
the assembler, all work diskettes and all docu-
mentation are checked out from an operator as if
they were a restricted-use library reference
book. Diskettes are kept in the Computer Center.
This means a student gets his diskette and his
team's copy of the system software from an
installation operator and returns all of it after
the session. The students would have significant
difficulty making and keeping copies of the fee
software. It can be done, but it wasn't.

Since most of the word processing was done on the
PRIME, Wang, and Cyber Systems, there was little
use of the PC for report writing. Next semester
we will plan an experiment where we use the PC

for report writing also. There is more than
sufficient time available on the PC to allow for
this extended use. We plan to use Easywriter 1.1
(11) because it is not expensive but provides
sufficient functions for coding and documenting.

No special classes were held on the PC. The
students had to learn PC-DOS, PC Macro Assembler,
the use of the PC BASIC Compiler, and the Pascal
Compiler. we did hold two tutorial sessions on
8088 architecture, the assembler, and the overall
structure of the PC Pascal. At times we had to
advise some team members on 8088 register use.

Importantly, the PC Pascal is powerful. It is

more powerful than the mainframe CYBER Pascal we
use. As such, it is a significant item to learn.

1 40



www.manaraa.com

The PC Macro Assembler is also a mainframe level
system. The teams divided up the labor of learn-
ing into individual efforts and then held cross-
tutorials for each other. Certain advanced indi-
viduals were clearly individually responsible for
the major breakthroughs in understanding and pro-
blem resolution. Insight in the face of zero
documentation clearly varies among individuals by
at least a decimal order of magnitude, as
measured by the time needed to solve a problem.

IV). PROS AND CONS OF THE PC USE

There are no significant differences between the
capabilities of the IRM PC with its languages,
and large systems with their languages, except
that the PC has wider capabilities, such as color
graphics, at a much lower per student cost of
computation.

Cost is the main factor. We supported twelve
students doing a major software effort with no
strain on the PC schedule. All this for less
than $4700, as a one-time-charge. (See the cost
sheet at the end of this article.)

The Pascal reference manual needs a tutorial
manual. The assembler also needs a tutorial but
to a lesser degree than Pascal. We can't expect
BAS.COM documentation, but it would be helpful.
The portable Electrochrome TV unit, driven off of
the graphics adapter, enabled us to have a large
screen for in-class presentations. The port-
ability of the PC enabled in-class presentations.
The fact that the PC color graphics could use an
ordinary A-V color TV set meant that we could
afford to do a color graphics project.

The completely open (i.e. fully documented)
nature of the IBM PC system means that we can
assign such "real-world" system design problems
and get them done within the confines of a single
semester. the Technical Reference Manual (10)
for the PC explains the hardware in complete de-
tail. The fact that native BASICA and the BASIC
Compiler are essentially identical means that we
could run color graphics tests interpretively,
and then compile to find links to BAS.COM in
order to isolate its functional routines.

Development would have been faster if we had

bought the double-sided (320KB) disk drives. That

would have reduced the "Floppy Flipping" necessary
to do a Pascal compilation or an assembly. It

would be ideal if our students had these machines
at home. That would make it easier and more pro-
ductive for them. One student did have an IBM PC
at home_ However, by chance, he was on the
CYBER project!

The reliability of the hardware was perfect. The
software was also reliable, but we suspect certain
difficulties came from either poor documentation
in the Pascal manual or from true bugs. We

couldn't spend the time to isolate the problems.
The students found fixes or bypasses that worked.
None of the problems encountered left "time bombs"
in the codes. The codes came out "clean".

I 1.

124

V). LESSONS LEARNED IN THIS LIMITED EXPERIMENT

Even the smallest schools can now provide their
CS students with all of the hardware and soft-
ware tools for real-world projects. This new 16
bit micro, for example, provides large systems
capacity, capabilities, problems, and opportuni-
ties at a very low per-student cost. Very in-
expensive, technically advanced bit mapped
graphics is a major innovation.

Physical and media security is not a major pro-
blem. Student enthusiasm is a major plus.

The Programmers' Notebooks that the students
maintained became so valuable to their work that
the students didn't want to hand in the notebooks
for instructor review until the coding and
documenting were completed!

VI). ACKNOWLEDGEMENT

I want to thank Anita Goldner, FSC CS Department
Chairperson, for supporting this experiment and
participating in it. Also, I want to thank Paul
Ferguson, FSC Computing Center Director, for
handling all the administrative details needed to
order, set up, and run the open-shop PC. My thanks

to the class for their help also.

COST SHEET

For Computer Components Only

$4700 Purchase (Including Software) minus cost of
capital and maintenance which comes to:

$1175/year for 4 years
$118/month for a ten month year
$.33/hour for 84 hours a week availability

Twelve students, not doing word processing on the
PC itself, had little conflict using one PC. With
word processing there would be a need to schedule
usage, but the system (1 PC) would still not be
saturated. We estimate that fifteen students.
each needing five hours per week on the system
(75 hours out of 84 available) would saturate the
system. If the Center hours were extended to in-
clude late night and Sunday use, we estimate that
twenty students could be supported on one machine
for this course.

At fifteen students per machine, the total cost is
$7.80/student/month. This includes all system
components, but not room rent or security super
vision. By opening the center for more hours,
enabling 20 students to use the PC, the cost drops
to about $5.90/student/month. This comes to $40
per student or $30 per student,.respectively,for
a semester (1/2 year). This estimate does not in-
clude media, supplies, or a formal maintenance
contract. Media and supplies come to much less
than $50/team/semester. The 4 year life time
assumed for the PC is reasonable due to techno-
logical progress calling for its replacement.
The machine will last and be useful much longer
than that. A maintenance contract costs approxi-
mately 10% of system cost/year.

141



www.manaraa.com

BIBLIOGRAPHY

(1) IBM Personal Computer Macro Assembler. #6024002.

(2) IBM Personal Computer Pascal Compiler. #6024010.

(3) IBM Personal Computer BASIC. #6025010.

(4) IBM Personal Computer BASIC Compiler. #36024003.

(5) IBM Personal Computer DOS. #6024001.

(6) Brooks, F., The Mythical Man Month, Addison-Wesley, 1975.

(7) Pressman, R. S., Software Engineering, McGraw-Hill, 1982.

(8) Myers, G., Software Reliability, John Wiley, 1976.

(9) MIL-STD 1679 (Navy), Military Standard Weapon System Development,
Chief of Naval Material, NAVMAT 09Y Wash., DC 20360, 1 December 1978.

(10) IBM Personal Computer Technical Reference Manual. #6025005.

(11) IBM Personal Computer Easywriter (1.1). #6024005.

125

142



www.manaraa.com

CRISIS IN PROGRAMMING, OR HISTORY DOES REPEAT ITSELF

Jacques LaFrance

Department of Mathematical Science
Oral Roberts University, Tulsa, Oklahoma.

Abstract

The increasing cost, unreliability, complexity and
unmaintainability of programming efforts of the

1960s gave rise to the discipline of structured
programming. We face a similiar crisis in

microcomputer software today because of a new

generation unfamiliar with the past. New

approaches to introducing programming are needed to
solve the problem. A programming language called
Antfarm has been developed to introduce structured
programming logic in such a simple and entertaining
format that even young children can begin to learn
the currently best accepted principles of program
design. The program has been used with kids from
age 5 to college students and adults who are either
new to programming or have only worked with BASIC.

Historical Background

The Software Crisis of the 1960s.

As computer systems grew from the early days of
computing, a crisis was reached sometime in the mid
1960s when the cost of software became noticably
larger than the cost of hardware and the logical
complexity of software systems became unmanagable.
In fact some systemr became so complex and

interconnected that someone once calculated that
any changes introduced to correct errors had such a
large probability of introducing other errors that
it was very unlikely that the system would ever be
correct.

Leaders in the industry began desparately seeking a
solution to this crisis, a solution that would give
the field of software design a precision similar to
what was being achieved in the hardware area. What

was needed was a methodology for software
development which would allow it to be accomplished
efficiently and would enable the logic of complex
systems to remain manageable.

A Solution to the Software Crisis.

A paper by Bohm and Jacopini in the Communications
of the A.C.M. in 1966L provided a foundation
for a new discipline of programming. They proved
that any logical system can be reduced to a

combination of three basic logic forms. These

forms are called sequence, :election, and

iteration. A sequence is one operation after
another; a selection is the making of a choice

126

between two or more alteratives; and an iteration
is the repetition of something until some

terminating condition is met.

More complex logic is created by including these
structures within each other. For example,

consider an algorithm in which the main logic

structure is a sequence of three things, the first
of which is a selection and the last an iteration.
The selection chooses between two sequences, each
of which contains an iteration, which in turn

contains a sequence, one element, of which is a
selectioa, etc. At each level, the structure

conta:n,- only these' three basic forms. Each of
these contains one entry and one exit, the logic
cannot wander off in some hard to follow path. The

discipline of limiting one's logic design to these
simple structures is called "structured

programming," and the programs which result are

called "structured programs." Other concepts that

have developed in conjunction with structured

programming are "top-down design", "structured

design", "Chief Programmer Team", "structured

walk-throughs", and "proving program correctness,"
some of which are often included in the meaning of
structured programming. For a more complete

discussion of these and examples of how they have
improved software development, see N and

Kelly, Top-Down Structured Programming.

These new programming disciplines have become
generally widely accepted in industry and higher
education. The Pascal programming language was
developed by Niklaus Wirth around 1970 to give a
tool for better teaching of modern programming

concepts than was possible' with existing

programming languags. In particular, it was

designed to be able to teach structured programming
concepts in a natural way.

History Repeats Itself

The New Software Crisis.

Now we are entering the software crisis of the

1960s afresh. The problem we now face is that the
widespread multiplication of personal computers in
the last 5 years, all of which come equipped with
some version of BASIC as the default (or in some
cases, the only) programming language, is leading
to a new generation of software developers

'unfamiliar with the above history. BASIC was

developed in the early 1960s prior to the advent of
modern structured programming principles, and

143



www.manaraa.com

therefore these principles had no influence on its
design. Although one can do structured programming
with any language, BASIC does not naturally
encourage structured programming and naturally
leads the notice programmer away from structured
programming principles. Its design structure
encourages' obtuse linear low-level coding with
arbitrary branching.

Since the distribution of personal computers has
exceeded the computer professicaal community's
ability to provide adequate training, many of the
new users are being self taught or are being taught
by others who are largely self-taught. This is

leading to a generation of new programmers who are
not aware of the progress the field has made in
software design principles in the last twenty
years. As George Santayana said once, "Those who
cannot remember the past are condemned to repeat
it."

A Solution to the New Crisis.

One solution to this crisis is to develop tools for
teaching structured programming concepts on

microcomputers to all age levels, especially the
younger children who will soon become the next
generation of programmers. The concepts of

structured programming or structured programs are
not difficult and could easily be understood by
children if given the right tools. The basic logic
structures of sequence, selection, and iteration
are understood by children before they reach
elementary school. Consider the following
sentences: "Put your toys away, put on your
pajamas, and then we will read a story," a

sequence; "If the weather is nice on Saturday, we
will have a picnic," a selection; and, "Write your
spelling words 10 times each," an iteration.

Over the past three years we have been working on
such tools.

6 A special language for use in

teaching structured programming concepts to

children has been developed. This language, called
Antfarm, has been designed according to the

following criteria, which, if met, could make it a
very useful tool to introduce structured
programming concepts:

1. The language would only include the basic
structures of sequence, selection, and iteration,
i.e. no unconditional transfer ("GOTO"), but would
include a complete set of these basic structures.
2. The language would be as close as possible to
the English with which the children were already
familiar, and the vocabulary would consist of short
simple words learned early in school.
3. The language would focus on program logic
structures, which are deemed harder to understand,
by eliminating any consideration of data
structures.
4. The situation of the language would be fun and
imaginative, providing high motivation to work with
the it.
5. The language processor would be implemented in
as transportable a way as possible.

The Antfarm language uses the text screen and
therefore is not limited to hardware with special

. t
127

graphics. The processor has been written in UCSD
Pascal and therefore will run on the widest variety
of processors and machines. A Forth version is
also being developed for use on smaller machines.
The screen is a farm on which an "ant" lives and
raises food. Everything the ant does uses energy,
and therefore it must eat some of its crops to stay
alive. It can plant interestingly shaped fields,
dance, march, explore, find its way around, and so
has proven to be a highly interesting environment
in which the children can work. Whereever we have
used it, the children have been very intrigued and
highly motivated. Goals 4 and 5 hayed been
achieved successfully. The following section shows
how the first three goals were achieved.

The Antfarm Language

The Antfarm Setting.

With Antfarm, the screen is a farm on which an ant
colony lives and raises food. The ants consume
energy and must be fed to stay alive. The ants and
the other symbols are all made of typewriter
characters and do not restrict the language to use
on special graphic hardware. All movement is in
terms of the rows and columns of the text screen.
The ants can dance, march, explore, have lunch, and
draw rudimentary pictures by planting seeds. One
student even programmed a hurdle race with three
ants, and in another program an ant finds its way
through a maze.

The ant looks like this, depending on orientation,
where the "*" is its head:

\*/

0

/1\

*1 \ /

*X0 -

/ \

-x
0-

Figure 1

The body characters represent the ant's weight,
energy supply, and change with each command. "XO"
4.s the maximum, and it represents 400 units of
energy, or enough to do 400 commands. The seeds
grow into plants as follows:

Y
P

seed
germinated seed
starting to come up
young sprout
tall plant with branches
flower
full grown mature food

Figure 2

The Antfarm Commands.

Basic Commands. The basic commands in Antfarm are
MOVE, one row or column forward, BACKUP, one row or
column backward, TURN LEFT, rotate 45 degrees to
the left, TURN RIGHT, rotate 45 degrees to the

right, PLANT, put a seed down where the head is,
EAT, consume whatever is under the head, and WAIT
or NOTHING, which has the ant do nothing but use up

144



www.manaraa.com

one energy unit and spend one time unit.

These commands or any others can be listed one

after another making a sequence, such as MOVE PLANT
MOVE TURN LEFT.

Program Logic Control: Iteration. Two forms of
repetition are allowed, the common counting loop
and the conditional loop. Both begin with the word
DO or the word REPEAT and end with the condition
for loop termination. In -he case of the counting
loop, this is a natural followed by the word

TIMES. In the case of the conditional loop, this

is either the word TO or the word UNTIL followed by
the condition. The ant has a rich set of

conditions to chose from, which contributes to the
captivation of the language and its power in

illustrating program logic structures. These

conditions include the ability to check position,
e.g. ROW number, PAST COLUMN number, NOT PAST ROW
number, orientation, e.g. FACING N, NOT FACING SE,
appetite, e.g. STUFFED, NOT HUNGRY, smell, e.g.

SMELL FOOD, NOT SMELL DIRT, and sight, e.g. SEE

PLANT LEFT, NOT SEE JUNK AHEAD. In addition
conditions may be combined with AND or OR.

Program Logic Control: Selection

Selection is implemented with the same word most
common in English and other programming languages,
IF. There are two forms, "IF condition THEN
commands END-IF", and "IF condition THEN commands
IF-NOT commands END-IF". In the latter, ELSE,

IFNOT, and OTHERWISE are accepted as synonyms for
IF-NOT. In either form a comma is a synonym for
THEN and a semicolon or REGARDLESS is a synonym for
END-IF. The condition is exactly the same as the
condition allowed for loop termination. Two

examples of selection commands are

IF FACING N , TURN LEFT ELSE TURN RIGHT ; MOVE MOVE
IF HUNGRY AND SMELL FOOD THEN EAT REGARDLESS MOVE

Program Logic Control: Loop Exit. Another flow of
control structure is STOP, which terminates the

loop if it is used in one. An example of use is

DO MOVE IF NOT SMELL FOOD , STOP ; EAT 10 TIMES

which is a counting loop with the possibility of
premature exit due to running out of food to eat
before the count is exhausted.

Subprogram Definition. Another major consideration
in modern program development is that of building
the total program out of relatively small modules.
The main program is simply a set of logic

structures to put the major modules together in

their logical order. Each of these modules is also
just the set of logic structures needed to combine
the modules out of which it is made, and so forth,
until the structures being combined are simply
fundamental commands in the language.

Antfarm forces the development of modular programs
by restricting each module to no more than 80

characters, one line on a crt or two lines on an
Apple II. The facility provided for building
program modules is that of teaching the ant new

commands. The format of this command is "LEARN
command-name definition". An example is:

LEARN REVERSE DO TURN RIGHT 4 TIMES

The command the ant is to learn is named REVERSE.
After the ant is given the command REVERSE, it will
perform DO TURN RIGHT 4 TIMES.

Top-down Design in Antfarm. Since words do not
have to be defined before they are used in a
definition, the ant can be taught a complex program
by the methodology of top-down design. The

following is an example of teaching the ant to
plant a gardan, which has the shape of the outline
of a square, by the principle of top-down design:

LEARN SQUARE DO SIDE 4 TIMES
LEARN SIDE ROW -OF- PLANTS CORNER
LEARN ROW-OF-PLANTS DO PLANT MOVE 5 TIMES
LEARN CORNER TURN RIGHT TURN RIGHT

After teaching the ant all of these commands, the
ant may be instructed to to make a square simply by
typing the command SQUARE.

Antfarm Examples.

The next program is an example in which the ant
makes itself oriented toward the north, pointed

toward the top of the screen:

LEARN FACE-NORTH IF NOT FACING N THEN
TURN-NORTH ;

LEARN TURN-NORTH IF FACING-EASTERLY THEN
TURN-TO-LEFT IF-NOT TURN-TO-RIGHT ;

LEARN TURN-TO-LEFT DO TURN LEFT UNTIL
FACING N

LEARN TURN-TO-RIGHT DO TURN RIGHT
UNTIL FACING N

LEARN FACING-EASTERLY FACING NE OR
FACING E OR FACING SE

In this example, both the "IF condition THEN

command" and the "If condition THEN command IF-NOT
command" forms were used. Also this command
illustrates that named conditions can be learned,
FACING-EASTERLY in the example. This allows a
powerful hierarchy of logical conditions for

program structure control and provides a basis for
introducing the concept of a function in the

student's subsequent education.

The following is another example in which the ant
finds its way through a maze using the algorithm of
always staying against the left wall. The maze is
made of plants just two columns apart so the ant
can use its rather near-sighted vision to see the
walls. There is food at the end to signal

completion of the maze.

128 145



www.manaraa.com

LEARN FOLLOW-LEFT-WALL DO GOLEFT
UNTIL OUT-OF-MAZE

LEARN GOLEFT LOOK-FOR-LEFT-GAP
MOVE MOVE AGAINST-WALL?

LEARN LOOK-FOR-LEFT-GAP IF NOT
WALL-ON-LEFT THEN TURN-TO-LEFT ;

LEARN TURN-TO-LEFT DO MOVE MOVE TURN
LEFT TURN LEFT UNTIL WALL-ON-LEFT

LEARN AGAINST-WALL? IF WALL , DO TURN
RIGHT TURN RIGHT UNTIL NOT WALL ;

This example shows powerful uses of selection and
iteration in expressing program logic. Notice the
form "IF X THEN DO SOMETHING UNTIL NOT X" in the
definition of AGAINST-WALL? This is equivalent to
the form, "WHILE NOT X DO SOMETHING", which
illustrates the ability to build different logic
forms from a few simple ones. The former is

probably more common in natural language, as in,

"When the bell rings, if you haven't finished, keep
working until you are finished," and, "After
school, if it is raining, wait there until it stops
raining." This example also shows the benefit of
mnemonic names being used, especially the names
used for the learned conditions, OUT-OF-MAZE,
WALL-ON-LEFT, and WALL. These are defined as
follows:

LEARN OUT-OF-MAZE SEE FOOD AHEAD
LEARN WALL-ON-LEFT SEE PLANT LEFT
LEARN WALL SMELL PLANT

This illustrates that not only can the ant be
taught command sequences as modules, but it can
also be taught conditions as named modules as wel).
This in a sense gives both procedures and
functions, although functions are limited to type
Boolean.

Antfarm for teaching structured programming.

These few examples illustrate the potential of
Antfarm to teach the basic concepts of structured
programming. As we have used Antfarm, we have
found it to be very effective in teaching concepts
of structured programming, not only to children but
also to college students and adults. Other
professionals familiar with structured programming
have also been impressed with its potential when
they have had the opportunity to observe Antfarm.

Experience with Antfarm

An Elementary School Antfarm Class.

In the fall of 1981, Antfarm was used one day a
week for eight weeks at Grissom Elementary School
in Tulsa, Oklahoma. There were eight classes, each
limited to 10 students on a first come first served
basis as part of an enrichment program available to
all students. The classes were about 35 minutes
long. One computer was available and that was one
the author brought to the school for the day and
took back home after Cie last class. Because of
the severely limited computer time available, the
instructor did all the typing and went over the
students' programs verbally when there were serious
shortcomings the students needed to correct.

129

The students all responded very enthusiastically to
this project and began to grasp the concepts of
program structure, even though the computer time
was severely limited. The best work was done by a
student who created a program of about 19 modules
which made the ant draw (plant) the shape of a
Christmas tree and then wait for it to grow up. He
only needed help on the latter :art and two simple
errors. It clearly showed top-down structure.
Also one student compared notes with his older
brother who was taking a high school BASIC class.
They agreed that the younger one had learned more
about programming with Antfarm than the older one
had with BASIC.

Use of Antfarm in Summer Camps.

A Two-week Camp at ORU. During the summer of 1982,
the Oral Roberts University School of Education ran
two two-week camps for kids from 5 to 17 years of
age using their new microcomputer laboratory. Each
student had 15 hours in the camp, half of which was
spent on the computer and the other half receiving
instruction. All students began with Antfarm;
however, for the second week, the older students
switched to a Pascal system called Computer Power,
produced at the University of Tennessee under the
direction of Prof. Mike Moshell in order to provide
materials for teaching Pascal in high schools.

The two five-year-olds that attended learned
something about the preciseness of computers. They
were able to give the ant a sequence of commands to
make it do what they wanted and quickly saw the
consequence of wrong commands when the ant did

something different from what they had planned.
However, they were not able to get to the point of
being able to compose learned programs. This level
of abstraction requires a more mature mind. We
found that at about eight years of age the children
seem to have developed' enough of an idea of

abstraction to be able to define simple programs
for the ant.

All students, no matter how old, definitely learned
some good foundational principles with Antfarm.
The older ones seemed to be able to carry the ideas
from Antfarm over to their work with Pascal quite
easily, although, we believe more time spent with
Antfarm would have benefitted them. The results of
this experience confirmed the previous results:
they enjoyed it very much and were able to put

together logical program sequences of varying
complexity.

A Summer Camp Conducted at OU. The University of
Oklahoma College of Education also conducted a

computer camp in the summer of 1982, under the
direction of Evelyn Gatewood. The students in this
camp attended 3 hours each day for two weeks.
During this time they were given experience with
BASIC, Antfarm, and LOGO. In the Antfarm segment,
the students, especially the younger ones, seemed
to grasp the concepts more quickly than with either
of the other two languages. The vocabulary and
language structure was simpler and more easily
understood. It was noted also that t'he children

were more fascinated by having an "animal" to take

146



www.manaraa.com

care of than by just making:pictures. Some of the

children became very protective of their ant,

making sure it didn!t starve, sometimes by

overfeeding it, -:f1 perhaps7they:mre_apt to do with

imnsehoId pets well. Th.-,,Ite:n.7w---,sonal interest

their ant =0:_ the ct-LLOrm=ora-motivated and
seemed , better=-oommr-rarton between the

cLild zr , .-muter.

cults _ College S Ildents.

We have also used Antfarm for a period of about one
week in our Introduction to Computing class at Oral

Roberts University. We have found that this

experience helps the new students understand the
concepts of program structure better prior to

studying it in Pascal. It also seems to serve as a
good tool to wean students who have programmed in
BASIC prior to entering the course away from the
unmodular, low-level, arbitrary branching style of
programming to which they had become accustomed.
In both cases the students were more quickly able
to begin to develop modular structured approaches
to program design than without the brief experience
with Antfarm.

Other Languages for Teaching Structured Programming.

There are several other languages that can be used
to teach structured programming, including Pascal,
Karel the Robot, and LOGO. Pascal was designed by

Niklaus Wirth 5 specifically to teach

programming. It remains the primary tool for this
in higher education.

1
Computer

10
Power, developed by

Mike Moshell, Robert Aiken, '
1 and a team of

others at the University of Tennessee, makes Pascal
suitable for teaching at the high school and

possibly junior high school level.

Karel the Robot was developed by Richard

Pattis
14 to introduce structured programming to

his university classes in very much the same way as
we have used Antfarm. Like Antfarm, Karel the
Robot leaves out the concept of data structures in
order to focus attention on the logic structures,
and the language consists of commands to a robot to
move around it's environment. It implements only
structured programming constructs, and gives a

graphic situation in which the student can see the
effect of his commands on the the Robot.

LOGO was developed by Seymour Papert
12

'
13 as a

tool to use with children to study their patterns
of problem-solving. Although it was not designed
for teaching programming, it does contain much of
the structures needed to teach structured

programming.

In comparing Antfarm with these, the following
points can be made. Antfarm is simpler than any of
these, yet gives more powerful program logic

structures. Also, it is more English-like and
gives the student a more imaginative environment
in which to work. The simplicity and

immaginativeness makes it more suitable with
younger children than any of the others, and the
powerfulness of it's logic structures make it a
challenge to older minds. The fact that it forces
the learner to make modular, structured programs is

130

1

the key to enable it to contribute to the solution
of the new software crisis.

Conclusions

It is possible to teach structured programming to
children in a way that they enjoy and which lays a
good foundation for future programming. We have
seen Antfarm do this. Antfarm does indeed achieve
the goals set out for its design. It is fun; it
allows only structured programs; it is based on
simple English words; and it is simple enough for
young children. It is our hope that Antfarm, or
things like it, can achieve widespread use as

introductions to programming and forestall the

present crisis in programming by making it possible

for potential future programmers to begin their

computer careers learning to make modular

structured programs.

References

1. Bohm, C., and Jacopini, G., "Flow diagrams,
Turing machines and languages with only two

formation rules," Communications of the ACM, vol.
9, no. 5 (MAY 1966), pp. 366-371.

2. Cohen, Harvey A., "Oznaki and Beyond,"

Proceedings of the National Educational Computing
Conference, Iowa City, IA, 1979, pp 23-24.

3. Dahl, O. J., E. W. Dijkstra, and C. A. R. Hoare,
Structured Programming, Academic Press, New York,
1972.

4. Dijkstra, Edsgar, "GoTo.Statement Considered

Harmful," Communications of the ACM, Volume 11,

Number 3 (March 1968), pp. 52-54.

5. Jensen, Kathleen and Niklaus Wirth, Pascal User
Manual and Repo, Springer-Verlag, New York, 1973,
1976.

6. LaFrance, Jacques, "Shall We Teach Structured
Programming to Children?", Proceedings of the

National Educational Computing Conference 1980,

Norfolk, VA, 1980, pp. 261-265.

7. LaFrance, Jacques, "Reorienting Students to

Structured Programming with Antfarm", Proceedings
of the 1982 Western Educational Computing
Conference, San Diego, CA, 1982, pp. 35-42.

8. Lieberman, Henry, "The TV Turtle: A LOGO
Graphics System for Raster Displays," MIT, A. I.

Memo 361, June 1976.

9. McGowan, Clement L., and John R. Kelly, Top-Down
Structured Programming Techniques,
Petrocelli/ Charter, New York, 1975.

10. Moshell, J. M., G. W. Amann, and W. E. Baird,
"Structured Gaming: Play and Work in High School
Computer Science," Proceedings of the National
Educational Computing Conference 1980, Norfolk, VA,
1980, pp. 266-270.

141



www.manaraa.com

11. Moshell, Michael, Proj. Dir., Computer Power: A
First Course in Using the Computer, Gregg Division,
McGraw Hill, 7ew York, 1982.

12. Papert, Seymour, "Teaching Children Thinking,"
MIT, A. I. Memo 247, October 1971.

13. Papert, Seymour, Mindstorms: Children,
Computers, and Powerful Ideaa, Basic Books, Inc.,
New York, 1980.

14. Pattis, Richard E., Karel the Robot: A Gentle
Introduction to the Art of Programming, John Wiley
& Sons, New York, 1981.

15. Santayana, George, The Life of Reason, pg 284.

16. Solomon, Cynthia J. and Seymour Papert, "A Case
Study of a Young Child Doing Turtle Graphics in
LOGO," MIT, A. I. Memo 375, July 1976.

17. Tomek, Ivan, "Josef, Programming for

Everybody,", ACM SIGCSE Bulletin, Volume 14, Number
1 (February 1982), The Papers of the Thirteenth
SIGCSE Technical Symposium on Computer Science

Education, Indianapolis, IN, February, 1982, pp.

188-192.

18. Watt, Daniel H., "A Comparison of the

Problem-Solving Styles of Two Students Learning
LOGO: A Computer Language for Children,"
Proceedings of the National Educational CoLputing
Conference, Iowa City, IA, 1979, pp. 255-260.

131

148



www.manaraa.com

AN EVALUATION OF A LOGO TRAINING PROGRAM

M. Elizabeth Badger

Massachusetts Department of Education

This paper describes the evaluation of a
computer-based school program which util-
ized the turtle geometry and sprite fun-
ctions of the Logo language. The study

used both observational and quantitative
methods to measure the effect of the
program on: 1) pupils' familiarity with
basic geometric concepts; 2) pupils'
understanding of Logo commands; and

3) the relationship between the two.
Attitudinal and organizational factors
were also considered. Although gen-
erally positive results were noted, the
author expresses some reservation about
the cognitive benefits of unstructured
activities. She suggests that the
strong visual appeal of the Logo pro-
grams may obscure their potential use
as "problem-solving environments".

In Mindstorms, Seymour Papert 1. argues for a new
conception of education and mental growth. Given
the opportunity to use computers and, more parti-
cularly, to use the MIT-developed system called
logo, children could develop an intuitive sense
of geometry, physics and the procedural thinking
that underlies problem solving. Not only would
the graphical nature of the system appeal to
children's imagination, but it would serve as
visual reinforcement and feedback to their mental
explorations.

Among educators, there is general agreement that
Logo has features that make it especially appro-
priate as a conceptual tool. In comparison with
other readily available languages, it is inter-
active and well-structured, allowing the user to
define and manipulate sub-procedures. It contains
good graphics, with very simple body-centered and
Cartesian coordinates; and it is designed to be
conceptually easy. 2 On the other hand, there is
little specific evidence for its effectiveness in
the class. The evidence that has been offered
has been the product of a special environment,
i.e., programs sponsored by the Artificial Intell-
igence laboratories of MIT and Edinburgh. There
exists little guidance for the teacher or admin-
istrator who asks the question: What intellectual
benefits can I expect to derive from introducing

132

Logo into the ordinary class?

This paper represents an attempt to answer this
question, it describes a program that was
carried out in two Cambridge, Mass. schools and
was conducted by a group of individuals who were
not experts in the Logo language. The evaluation
itself is primarily illuminative, with some
reliance upon test results to confirm its more
subjective findings.

The Program

The program took place in the winter of 1982,
when the Cambridge School Volunteers proposed to
teach a 5-week course in Logo to the 6th grade
classes of two Cambridge schools. The majority
of the volunteers were Harvard students who were
experienced in programming languages; however,
few had had previous experience with Logo. In

preparation for teaching, they were given a short
training course in Logo, as well as vartuus Logo
materials that had been produced by the MIT-
sponsored project in the Brookline Public Schools
They were also asked to keep a journal of class
progress. This was to be used, not only as a
vehicle for suggestions and cautions, but to
insure a continuity during the program.

The Schools

School A (Classes Al and A2).

The two schools differed in population, c4rriculum
and environment. In large part, the pupils in
School A were newly arrived in the United States
and Cambridge. All but 7 of the 32 pupils in the
6th grade were receiving some kind of extra help
duq to language or learning problems. Because of
this, teachers tended to stress the basics.. Most
of the mathematical teaching concentrated on
computation, with little reference to more general
mathematical "concepts". The children stayed in
their own self-contained classrooms and were
taught most subjects by their classroom teacher.
As a result, except for the occasional deliverer
of a message, there was little movement in the
corridors. At School A, the 8 Apple microcompu-
ters were arranged in a rectangular array in one
corner of a large library. Each class was brought
to the library by its teacher and, for the most
part, each teacher stayed to help supervise the
work done.

149



www.manaraa.com

School B (Class 81)

School B is surrounded by Harvard and Lesley
College. Part of its student body came from the
immediate neighborhood and tended to be the
children of professionals; part was brought by bus
from other areas of the city. Each teacher among
the older children is considered a subject special-
ist, has covered a wide range of topics with his
pupils and was eager to house the 6 Texas instru-
ments microcomputers at the back of the classroom.
The 24 6th grade pupils in the class were divided
into two groups, and the afternoon of each day was
devoted to Logo. During this time, their teacher
met his assigned mathematics classes in another
room in the building. The 6th grade group that
was "off the computer" would either go elsewhere
for instruction or would remain in the room with
pre-assigned seat work.

The Microcomputers

The two types of microcomputers also differed in
ways which had consequences for the teaching in
the two schools. The Logo language is built into
the TI microcomputers. As a results, pupils at
School B had access, not only to turtle geometry
which allowed them to draw figures and patterns
on the screen, but to the sprite program which
permits the programming of motion and speed. On
the other hand, they could not easily save their
programs. The tape device proved to be a cumber-
some procedure and was barely used. Consequently,
the procedures for individual programs were
usually typed anew at the beginning of each
session.

In contrast, Logo is not a feature of the Apples,
but must be read in through the use of a disk.
This limited the scope of activities for the
children in School A because the disk contained
only turtle geometry. However, the use of the
disk drive had certain advantages. It allowed
children to save their own programs on personal
disks and allowed for later printout. This
feature was used extensively by all the pupils
at School A.

The Pre-Test

In order to assess the pupil's familiarity with
various mathematical concepts, a test was admin-
istered at the start of the program. It was com-
posed of a series of questions concerning area,
angles, coordinates and permutations. Standardized
mathematics achievement test results were also
collected.

From the pretest responses, it was evident that
the pupils in the two schools differed greatly in
their mathematical knowledge. For example, al-
most none of the pupils in School A knew what an
angle was. When asked to estimate size, many
hased their Judgements on the length of the arms.
Most left these questions blank or wrote "don't
understand". In contrast, most (91%) from School
B correctly drew 900 and 450 angles, and over
half were able to recognize a 900 angle that was
drawn at an unfamiliar tilt.

133

In addition to these differences in mathematical
experience, there was a definite progression in
their standardized mathematical achievement scores.
When grade equivalent scores were ranked (a total
of 45 were available), the pupils from School B
had, on the average, higher scores than those from
School A. Within School A, the two classes also
differed. The average of the ranks of the three
classes are listed below (1 indicates the highest
score achieved; 45 the lowest):

Class B 16

Class Al 31

Class A2 23

How the Program Went

The program at School A took place every morning
from 11 to 12:30. Each class was allocated 45
minutes, with 2 pupils per computer. There were
usually at least 2 tutors present, as well as the
class teacher.

Using the model of computer ds "tutee", the pupils
were encouraged to explore the computer capabili-
ties. They seemed to learn the basic commands very
quickly and on the first day the tutors' journal
noted, "High optimism. A few know Back. All

know Left, Right, Forward." Within a few days,
however, some of the tutors seemed perplexed at
the amount of raw energy that the computers seem
to have released. The pupils themselves were
delighted in their new-found power when they
found that the computer would respond immediately,
and in marvelously unexpected ways. Type in some
numbers and commands, and the turtle would zip
around the screen, building up a constantly
changing pattern that could be changed even more
by varying the color.

The tutors on the other hand, worried about the
extent of their understanding. It was the
holistic impression that seemed to capture the
pupils' attention, not the component parts.
Sensing their lack of focus, one of the class-
room teachers mimeographed sheets listing the
basic primitives and some nested repeats. The
pupils copied these into their notebooks and on
to the computer, but tutors continued to wonder
if the REPEAT instruction was understood. The
children loved large numbers and used them for
everything---REPEAT 765, RT 675, FD 786,etc.
It was unclear whether or not they had any con-
ception of the role of each command in this
grand design. Their encitement and energy set
up so much static that it was hard to see that
they were actually progressing intellectually.

In an attempt to focus their attention on the
procedures involved, cards giving instructions
for making designs were introduced in the third
week. These seemed to work fairly well. The
children liked them and enjoyed constructing the
small designs. Perhaps as a result of the
design cards, the tutors noted that about 50%
started using procedures and almost all had
settled down. Also, during this period each
pupil was given a disk on which to record in-
dividual programs. These provided a focus for

151



www.manaraa.com

activity because designs could now be saved. They
enjoyed this and began to share programs with each
other. Many of their programs were copies of or
modeled after the design cards, but some children
used the design cards as a take-off point for their
own explorations.

However, on the Monday of the fifth and last week,
the tutors noted that some were getting bored.
"Several didn't even want :heir disks today.
Others seem to need new ideas, to be encouraged
to explore further." Someone in the second group
found out how to make the computer "beep". This
spread and led to intermittent beepings through-
out the sessions. The tutors' comments grew
plaintive: "Lots seemed bored. We need some-
thing new. Perhaps more guided instruction
at this point? A lot of use of background color
change. Some kids still don't have a grasp on
the basic turtle commands. Telling left from
right is a problem for at least one of the girls."

School B

The program at School B is less easy to des-
cribe. Possibly because the program itself was
less structured, it was harder to see where it
was going. Membership in the two groups working
on the computer was not fixed but changed accor-
ding to outside scheduling. This caused con-
fusion at the beginning of the sessions, and
the tutors noted that the classes tended to
be "unruly". At any time during the computer
period there were pupils coming in and out,
some working at their desks on other projects,
some with no discernible work to do. In fact,
at times some children did not work on the
computer at all during the scheduled period.
However, this did not visibly bother them,
possibly because there was the opportunity to use
the computer at leisure and in relative privacy
after the rest of the school had left for the
day. In fact, a kind of computer club grew up
for projects after school and some of the boys
used their knowledge to teach Logo to the 7th
and 8th grades. Possibly because of this, set
time was less important to the children.

The Post-Test Results

As the program developed, an insistent question
began to emerge. That was: how much did the
children understand whet they were doing? At

School A, motivated by the promise of printed
results, the children produced a multitude of
designs.

At School B, without a means of recording their
work, they seemed to have been captivated by
the activity of sprites. At the end of 5 weeks
of daily work on the computer, did the pupils
have a sense of computer programming in turtle
language, or had they become mesmerized by the
visual potential of the computer?

These considerations led to the construction of
a post-test which was composed of four parts.
In it pupils were asked to: 1) write a series

134

1 .

of turtle commands to produce a given series of
figures; 21 draw the figures that would be pro-
duced by a given procedure: 3) draw and estimate
the size of a series of (same as pretest);
4) list all possible permutations of 4-colors
(similar to pretest).

Part 1: Given a Figure, Write a Procedure

There were 4 variations of this type of question.
Pupils were askeu to write procedures that would
produce a set of irregular stairs, a triangle, a
rectangle and an angular figure. Answers were
judged in terms of the correctness of 1) direction
of angle; 2) size of angle; 3) length of line.
Results are as follows:

Percentage Correct

Class B
Class Al
Class A2

direction

79
31

47

size

79
31

67

length

79

8o

Class B 75 08 71

Class Al 56 06 50

Class A2 73 07 67

Class B 8o 75 79
Class Al 56 44 25

Class A2 73 73 27

Class B 17 54

Class Al 06 44

Class A2 06 25

Two interesting findings emerge from these re-
sults.' One is the extent to which Class A2
resembles Class B in its percentage of correct
responses. With little previous experience in
muring and rotation, a large percentage of
Class A2 was able to give the correct values for
the procedures. In contrast, the pupils in
Class Al showed a lack of understanding of many
of the computer commands, despite the fact that
they had used these figures often in their designs.
Their responses to the first question, in parti-
cular, showed that a large number of children had
no clear sense of turtle commands (e.g. FD 3,
RT 5, LT 180, FD 4 ...). Secondly, the large
percentage of errors in regard to size of angle
on items 2 and 4 represents a problem inherent
in the turtle language. Although each internal
angle within an equilateral triangle is 60°, the
turtle must be programmed to go around the exter-
ior of the triangle. Its turn, then, is not 60°

but 180° minus 60°. Few children realized this
and nerhaps would have come to an intuitive.
rec ton only by actually walking around an
equ. aral triangle.

Part 2: Given a Procedure, Draw a Figure

This group of items was desigrld to measure
pupils' ability to differentiate between
different commands. If reflected the evaluator's
concern that children were not aware of the

15-j



www.manaraa.com

effects of the component parts of a procedure.
The three procedures given were:

a) REPEAT 4 FD 40 RT 90 FD 10 LT 90
b) REPEAT 4 FD 40 RT 90 FD 40 LT 90
c) REPEAT 4 FD 40 RT 45 FD 40 LT 45

As in the case of the previous set, responses were
judged in terms of the correctness of direction
of angle; size of angle, and length of line, with
the following results:

Percentage Correct

direction size length

Class B 71 88 92

Class Al 25 69 25

Class A2 33 87 67

Class B 50 79 79

Class Al 13 63 19

Class A2 33 80 53

Class B 42 42 46

Class Al 06 13 31

Class A2 33 27 40

Most pupils recognized RT 90 as the command for a
right angle; far fewer were successful with a 45'

angle. Most of the attempts had no relation to
the instructions given and seemed to indicate that
the pupils had little idea of how to incorporate
change in direction with an angle other than 90°.
In fact, there were very few "near misses" on the
last qUestion. It seems that children either
understood the gestalt or did not.

When correctness for angle size, direction and
length were totaled throughout the questions as a
whole, the following average scores were ob-
tained:

direction size length

(1-6) (1-7) (1-7)

Class A1(n=18) 1.9 2.4 2.3

Class A2(n=18) 2.8 3.7 3.1

Class B(n=24) 4.0 3.9 4.9

The generally low scores of the pupils in Class Al
reflects the specificity of their learning. For

example, although approximately 2/3 drew a
right angle in response to RT 90, only half of
those pupils were able to respond correctly to
the inverse operation (i.e., a command of RT 90
in response to a right-angled figure). These

children also showed little understanding of
relative length, and their sense of direction
was particularly poor in the interpretation of
procedures. However, because these concepts were
embedded in command fundtions, their confusion
about the effect of the functions undoubtedly
contributed to the results.

Part 3: Angles.

As noted previously, pupils in School B had been

135

taught to recognize and draw angles of various
sizes, while the children in School A had no
experience with angles before the training pro-
gram. During the program, the pupils in Class A2
had received some instruction from their teacher,
and this appeared to affect their performance.
On the post-test, 19% of Class Al and 33% of Class
A2 could draw a 90°angle. The same percentage in
Class A2 could recognize a right angle in an un-
familiar tilted position, although only one
pupil in the other class could do so. Not

surprisingly, correct responses to the angles
questions were closely correlated to the success-
ful description of procedures. Of the five
highest scores on the procedures questions, four
were produced by pupils who recognized and drew
90° and 456 angles.

Part 4: Permutations.

A permutation question had been given on the pre-
test, so it was possible to compare results.
Success rate rose among the pupils in School A,
with 6 giving the complete set of permuations
(in contrast to 1 on the pre-test). A corres-
ponding increase appeared at School B (from 2
to 11). All pupils who gave the entire set of
permutations showed evidence of an orderly pro-
gression through the range of possible combina-
tions.

Teachers' Appraisals

As the programs differed in the two schools, so
did teachers' attitude toward it. The teacher
of Class Al thought that some children, par-
ticularly those who were receiving learning
disability tutoring, got some positive feelings
and a sense of accomplishment. However, she
saw little carryover to their classroom work.
Pupils saw it as an "isolated program." With
few exceptions, their attitude and achievement
in the program were predictable on the carryover
of positive attitudes. Noting that some of the
children who were not scholastically tops did
very well on the computer, she saw this new con-
fidence carried over into the class. She cited
two Spanish-speaking boys who were below average
in general academic work. On the computer,
possibly unhampered by the problems of verbal
communication, they seemed to flower. Working

in a purposeful, competent way, they showed an
aspect of themselves that could not have been
predicted. Another boy, who was usually anxious
and impulsive in the normal course of school
work, found a new self-confidence. In general,

she believed that pupils felt more positive.

Structure also concerned the class teacher at
School B, but his criticisms were directed at the
physical set-up rather than at the teaching
methods. As discussed previously, the split of
the class into two groups resulted in half the
class remaining in the room doing project work
while the others were at the computer. This

caused a feeling of resentment among those who
were scheduled to remain at their desks. They

were interested in seeing what was happening and

152



www.manaraa.com

found it hard to settle down. The idea developed
that some had to do tedious work while others were
having fun. (This was not strictly true, since
each half was scheduled for daily computer time).
In spite of this, their teacher was very en-
thusiastic about having the computers within the
classroom. As a math specialist he could see their
potential for mathematical learning, and he used
the more enthusiastic of the 6th graders to teach
Logo to the 7th and 8th grades.

Asked if he could see such a course as a permanent
feature in the curriculum, he answered,"Definitely
yes to turtle geometry." On the whole , the class
felt great enthusiascl for the computers. "They
couldn't get enough of it It gave them some-
thing to look forward to. The things that
went before were less of a chore." Fascination
with the computer appeared to bring about a new
seriousness of purpose to school work in general.

Tutors' Appraisal

The tutor organizer, who was himself a computer
enthusiast, was more cautious in his appraisal.
Indeed, he questioned a fundamental premise of the
training, that computer programming could be used
as an introduction to problem solving activities.
He believed that, in the program, the children not
only failed to reach the level of programming
ability that would allow them to attempt problems,
but they were presented with no strong incentive
to develop the necessary attitudes. He attributed
this to the "bang per buck" effect of Logo.
Problems involving recursive designs and line
drawings can be seen as tame and difficult when
compared with the startling visual effects so
easily achieved with random input and massive
repeats. Milder, more esoteric goals that in-
volved frustration, could be looked upon as a
case of diminishing returns. There is little mo-
tivation to persist in the face of difficulty
when immediate success can be obtained almost
effortlessly.

He also suggested that there are certain features
of Logo that are unneccessarily confusing. For
example, in Logo both length and rotation are
signified by a combination of letters (FD, RT, etc.)
and numbers. There are no aids to distinguish
between the two, although they signify qualita-
tively different operations. If symbolic represen-
tation were used as commands, children might be
more aware of the fundamental differences between
the two.

Pupils' Appraisals

The pupils were asked for their reactions to the
program. These were generally favorable, leaving
little doubt that they enjoyed it. Aside from
specifies inherent in the two langauages (turtles
vs. sprites), the comments from the two schools
were similar and are amalgamated below.

What was most fun about learining to use the
computer?

. You feel like an inventor.

. You find out things, like if you told the
computer to go LEFT 20, you won't know what
would come out.

. When I make a real neat procedure and
people say---Ohl Can I have that pro-
cedure on my disk?

. When'the turtle keeps going off the com-
puter and makes funny lines.

In what ways do you feel smarter?

. When I make or learn something new by
myself.

. Being able to do something that is pretty.

. Because I did the difficult one, the
EXPLOTION.

Summary and Conclusions

What was accomplished? What could have been
improved? Does Logo make a significant contri-
bution to children's understanding of mathematics?
There is no doubt that the schools differed in
fundamental ways---the preparation of the children,
the atmosphere to which they were accustomed, the
expectations that teachers held for them, and
the computer set-up itself. Conclusions that one
might draw on the basis of one group were often
contradicted by evidence from the other. Further-
more, the organization of the program, relying as
it did on the enthusiasm of untrained tutors,
could not be called ideal in any sense. However,
some points emerge:

1. Work with Logo did affect some basic
learning. For example, pupils improved
in their ability to recognize and describe
length and a basic angle (900). However,
there is evidence that this learning was
not generalized. For instance, although
69% of Class Ai (who had received no formal
training in angles) were able to write
a Logo procedure to tell the turtle to
draw a 90° angle, only 19% could draw it
directly with pencil and paper. Further-
more, pupils who had not had previous ex-
perience in measuring a variety of lengths
failed to notice changes in the FD command
from one procedure to another. It seems

that their understanding of these concepts
was embedded in a particular context, namely
turtle geometry.

2. Attitudes toward Logo material may be
affected by previous learning experience.
Children who had a history of independent
work and explicit teaching of the math
concepts involved in turtle geometry
and sprites showed more sustained intellec-
tual involvement than those who had not.
On the other hand, some low achievers
and children with reading disability also
gained new confidence that was justified
by performance.

136

153



www.manaraa.com

3. Although the pupils enjoyed their work
with computers, it is unclear whether or
not they felt a sense of personal control
in terms of being able to program the com-
puter to do a variety of tasks or designs.
For many children their "computer experience"
was essentially affective and aesthetic in
character rather than intellectual. This
is not necessarily invalid; the disadvantage
to this approach is its limitations. Since
the computer is not essentially an aesthetic
tool, in order to explore its visual ca-
pabilities one must engage in a cognitive
effort. An understanding of the processes
is an essential condition for exploration.
Otherwise one is stuck at th' affective
level which, because it depends upon visual
excitement, loses its appeal with re-
petition. By the last week, it seemed
that the computer had lost its appeal
for some children, and this appeared to be
related to their lack of cognitive in-

volvement.

References:

1. Papert, Seymour. Mindstorms.1980. New York:

Basic Books.

2. Howe, J., Ross, F., Johnson, K., Plane, F.,
Inglis, R. Learning Math Through LOGO
Programming: The Transition from Labratory
to Ciassroom. 19-82. Department of Artificial
Intelligence, University of Edinburgh.

137



www.manaraa.com

EDUCATIONAL COMPUTING POST HASTE. A CASE STUDY

Deborah E. Blank

Electronic Learning Facilitators
9510 Linden Avenue, Bethesda, MD 20814

Enthusiasm for educational computing
can lead to the purchase of computers
before plans for their integration into
the curriculum have been considered. This
case study details the evolution of a
computer education curriculum that was
designed to accommodate two factors.
1) the computers were already in place,
and 2) the principal of the school wanted
every faculty member and student involved
in hands-on computing as soon as possible.

INTRODUCTION

How quickly can an elementary school
devise a plan for hands-on computer
education for every student, particularly
when the faculty is untrained and the
computers have already arrived? An
independent group of computer educators
was asked in May, 1982, to design a
kindergarten through eighth grade computer
curriculum and prepare teachers to help
students learn about computers. This paper
will describe the curriculum that was
produced, how a faculty was trained to
teach it, and how its implementation is
proceeding.

The setting is a parochial school
located in a medium-sized northeastern
city. Most of the 500 students come from
middle to upper-middle class homes. The
principal is totally committed to compu-
ter literacy for all of her students, and
is bolstered by parental support that
guarantees that all wishes will come true.

The school's board of directors had
purchased eight Apple II Plus microcomputer
systems; two of them were being used occa-
sionally tc run software, and the remain-
ing six were sitting idle. Another
component of this idyllic situation was a
faculty that was eager to learn about
computing - even if it meant learning
orb with, or from, their students.

The principal set these requirements
for the computer curriculum:

1) All students (K-8) had to have
hands-on computer time for at least half

138

of each school year.
2) The computer lab would be staffed

by regular faculty, and computer literacy
activities would be carried out in every
classroom.

3) Students were to use computers
for as many purposes as possible.

4) The curriculum would be imple-
mented in September.

DEVELOPING THE CURRICULUM

Design of the curriculum proceeded
according to these basic principles:

1) Knowledge of the cognitive
development of children must be reflected
in the curriculum goals and activities.

2) Computers are tools, not a sub-
ject to be studied, and should be integra-
ted into the existing curriculum.

3) Computer programming is a
valuable activity for children because it
encourages systematic problem-solv-ng and
logical thinking.

The next step in designing the
curriculum was to identify goals for the
entire project. These area

1) To help students, teachers, and
staff develop a sense of control over
computers.

2) To help students, teachers, and
staff discover computer applications that
are useful to them.

3) To encourage students to develop
an appreciation of computers as tools
for life-long learning.

4) To encourage the development of
problem-solving skills that can be applied
to all facets of living.

5) To stimulate thought and discus-
sion 'VI(mg students, teachers, and staff
about: i;orre ridvantages and disadvantagi
of use in school and in soWtY

) tO generate interest in the
field of co:.puter science and related
careers.

Once these goals were established,
the concepts that were to be the basis for
the classroom and lab activities were

155



www.manaraa.com

defined. The curriculum was divided into
two parts: Computer Literacy and Problem-
solving. The programming language LOGO was
selected for grades kindergarten through
four, and BASIC for grades five through
eight. Concepts were written for each
grade level for both sections; many of
the concepts were repeated several times
throughout the total structure so that
knowledge and skills would become increas-
ingly sophisticated as students progressed.
Samples of the concepts are listed below:

Computer Literacy Concepts:
Divel Ks Computers can do things over

and over again without getting tired.

Level 1: People need to share compu-
ters.

Level 2. Programs are sets of instru-
ctions that tell the computer what to do.

Level 3: People can learn the same
things in different ways; learning from a
computer is one way.

Level 4: Vocabulary to describe
computer parts is extensive and constantly
growing.

Level 5: Word processing requires
the use of a program.

Level 6: Commercial software can
be improved by thoughtful development
and programming.

Level 7: Many electronic games are
single-purpose computers.

Level 8: Computers are significantly
altering the way we live.

Problem-solving Concepts:
Level Ks Computers follow instruc-

tions given by people.

Level 1: People must use special
words to give instructions to computers.

Level 2: Programs are made up of
one or more procedures.

Level 3: A computer screen is a
grid - all drawings are actually made by
connecting straight lines.

Level 4: Some programming languages
can be used to write interactive programs.

Level 5: Each programming language
has a special vocabulary and syntax.

Level 6: BASIC is a highly inter-
active language that is user-friendly
and good for writing educational software.

Level 7: Problems to be solved using
computers can be broken into smaller sub-
problems that operate under the control of
the main program.

Level 8: Solutions to computer prob-
lems are arrived at using algorithms.

Classroom and computer lab activities
had to be planned to correspond with
concepts. Because teachers would have

139

a minimal amount of training before they
began instructing students, each activity
was written as a complete lesson plan. An
important feature of each plan was the
identification of skills from other subject
areas that are practiced during the activi-
ty. These listings helped alleviate
concern that other subjects were not
receiving sufficient attention because of
the new emphasis upon computer education.
The goals, concepts, and lesson plans were
combined into a curriculum guide that was
provided for each teacher.

SELECTING SOFTWARE

Since the scKool had a rather loosely
organized general curriculUm courseware
selected could not be made to match spe-
cific objectives. Teachers requested '.f.e
purchase of math drill and practice pro-
grams and some educational games. The
remaining software was selected to provide
examples of the varied usot. of computers
for instructional purposes and to F;ery
as the basis for some critic: thinking
activities (such as software evaluation)
by students in the upper grades. A word
processing program and a typing tutorial
were purchased for use by the upper gm:es,
and the LOGO language for the younger
children. It was suggested that teachers
select their own courseware as the year
progressed, since the full software
budget had not been spent. In audition,
several magazines were ordered, and an
assortment of books to provide technical
information and ideas for using computers
in the school.

SCHEDULING

Rather than expecting newly trained
teachers 'co program in both LOGO and BASIC,
the decision was made to teach LOGO to
the younger children in the fall, and
devote the spring to teaching BASIC to
the older students. Each kindergarten
through fourth grade class was scheduled
to spend 45 minutes per week in the lab
with a maximum of two children per compu-
ter. Fridays were reserved for lab use
by students who needed to use drill and
practice programs or for enrichment. All
students were to participate in classroom
computer literacy activities throughout
the school year.

Both the principal and the teachers
agreed that more computers would allow
for year-round use by all students, and
that their purchase should be a priority
budget item. Because the principal felt
that she could not afford to employ a
full-time computer lab teacher, she
decided that the lab would be staffed by
faculty members who would spend one hour
per day teaching hands-on computer uoe.
The remaining portion of their school day
would be spent with their regular classes.
This meant that the lab teachers, as a

15G



www.manaraa.com

rule, were not instructing their own
students in the lab.

STAFF DEVELOPMENT

The faculty returned to school a few
days prior to the opening of the fall
semester. Every teacher was expected to
participate in two days of computer
training. All but a few were enthusiastic,
and all were somewhat intimidated by the
equipment and scope of the curriculum.
Two faculty members had had computers in
their classrooms for several months, and
had begun learning some BASIC. The remain-
ing 23 teachers had no experience with
computers.

Four trainers worked with 25 teachers,
four administrators, and several parents
for two seven-hour days. Eight of the
teachers had been selected to staff the
lab, including the two who knew some
BASIC. Since these teachers would soon
be teaching programming one hour per day,
four days per week, they spent almost two
full days with one trainer learning LOGO.
These eight teachers became known as the
"Intensive 8," and met for short periods
with the larger group to be introduced to
the curriculum guide and to preview soft-
ware. The remaining teachers spent their
days as follows:

1/2 day learning terminology and how
to operate the computer to run
courseware

1/2 day previewing and evaluating
courseware

1/2 day (primary teachers) learning
LCGO in the lab (taught by the
"Intensive 8")

1/2 day (upper grade teachers) learn-
ing BASIC and word processing

1/2 day planning "what do I do on
Monday?" reviewing those por-
tions of the guide that they
would begin teaching the next week

By the end of the second day, both
teachers and trainers were tired but satis-
fied. Several teachers remarked that the
specificity of the activities in the guide
would help "pull them through" the first
weeks of teaching.

INFORMING PARENTS

During the evening following the
first day of training, parents were invi-
ted to interact with the computers and
learn about the new computer curriculum.
Many parents came, and many stood with
arms folded while a courageous few played
educational games and moved the LCGO
turtle around she screen. The questions
that ware asked after the presentation of
the curriculum focused on the type of

140

1-7,me computer to purchase to supplement
the school's curriculum, and upon the
widespread concern that time spent learn-
ing about computers would, by necessity,
mean less time learning about other
subjects.

2VALUATING THE-CURRICULUM

During early October, approximately
one month after the curriculum was imple-
mented, one of the trainers visited the
school for an informal meeting with the
"Intensive 8." At that point there was
both good and bad news. The good news
was that the teachers had exceeded their
own expectations and were able to instruct
LOGO with a fair degree of confidence.
The children were very excited, and were
progressing rapidly. The unhappy news
was that the schedule that called for
a different teacher in the lab each hour
was a disaster. There were two major
problems: the teachers had no time to
prepare for their programming classes
(their one-hour preparation time was used
to plan for their regular subjects), and
their arrival at the lab was always rushed
and disorienting. (Several parent volun-
teers were assisting in the lab, but their
schedules were erratic.) Teachers were
also concerned about having to teach
BASIC in January when they were just
mastering LOGO.

To help address these problems, the
principal agreed to:

1) Hire (on a tuition-for-services-
rendered basis) one of the parent volun-
teers who had a programming background.

2) Provide training in BASIC prior
to the Christmas break, and allow teachers
to take the computers home during that
period.

Two complete, formal evaluations will
be done during the next six months. The
focus of the evaluations will be upon the
proficiency of the teachers, and the value
of the curriculum guide in helping them
achieve their computer education goals.
The results of these evaluations will be
described at the NECC conference.

157



www.manaraa.com

LOGO

Carolyn Markuson
Joyce Tobias
Martin Saltz
James Gottlieb
Bobbie Gibson
Roy Moxley

Steve Tipps
Hal Evans
Glen Bull

Terry Schwartz
Mary King
Steve Taylor
Susan Walker

Pete Davidson
Leah Rampy

Rochelle Swensson
Barbara S. Hilberg

ABSTRACT: LOGO A Three Year Sequence, Grades

Carolyn Markuson, Joyce Tobias, The Public Schools
of Brookline; Brookline, MA 02146

Seymour Papert created a learning environment,
where learning becomes as natural a process as
walking and talking, all with a new technology:
the microcomputer. Why is LOGO such a unique
language for elemantary grade children? What
characteristics of LOGO enhance the total learning
environment challenging and honing the problem
solving capabilities of young children teaching
logical thinking skills and creativity at the same
time encourages children to test their ideas and
receive immediate response? How can spatial and
number relationships, as well as geometric
proportions, become part of a child's
consciousness?

LOGO has been taught in Brookline schools
since the 1978 pilot program sponsored by MIT and
the Nat:tonal Science Foundation. Today, it has
evolved into a threeyear sequence for all children
in grades 4, 5, and 6. The curriculum developed to
support this program, the inservice training
program developed for classroom teachers, and the
decisions required to select a version of LOGO best
suited to the needs of this yearlong educational
experience will be presented.

ABSTRACT: Development of a Program Designed to Use
LOGO and a Floor Turtle in a Nursery School
Environment: Trials, Tribulations, and Triumphs

Martin Saltz, James Gottlieb, Bobbie Gibson, Roy
Moxley, West Virginia University, Morgantown, WV
26506

With some knowledge of microcomputers in the
schools and funds available to buy the needed
et./64L(Olt, the frector of the West Virginia
Nursery Schofil (College of Human Reso0r47,3 an

141

Education) decided to develop a program introducing
LOGO and a Floor Turtle to a group of nursery
school youngsters. The Director and others at the
College of Human Resources and Education became
involved in developing a curriculum.

This presentation is designed to:
1) discuss the process used by a group of

educators while developing a school
program involving LOGO and Terrapin
Turtle in a nursery school environment;

2) present an account of the program as used
by teachers and children in the
classroom;

3) report on the behavior of adults and
children as the program was developed and
used; and

4) evaluate and suggest modifications to the
program based upon observations made
during the developmental phase.

The two presenters were among those initially
involved in the developmental phase of this course.
They will present the basic information through a
lecture. This lecture will be augmented by slides
which will show faculty, staff, children, and
parents involved in the project. Audience
interaction will be invited and an annotated
bibliography of reference and research material
used during the course development will be
available.

ABSTRACT: LOGO Instructional Development Project

Steve Tipps, Hal Evans, Glen Bull, University of
Virginia School of Education, 405 Emmet St.,
Charlottesville, VA 22901, Terry Schwartz, Mary
King, Steve Taylor, Susan Walker, Pete Davidson,
Albemarle County Schools

The University of Virgins School of Education
and Albemarle County Schools joined in a
cooperative effort to develop and monitor LOGO in
fifteen fourth grade classrooms. The major
components of the project were:

158



www.manaraa.com

Inservice training conducted by two
University professors over the fall year
of the project. The goal of inservice
was proficiency with LOGO.

Implementation--carried out by the teachers
with records of progress and change in
the actual classroom. Journals and
weekly reports were kept.

Evaluation--cooperatively done with both
standardized testing for possible
cogni.ive and attitude change and
specific testing for LOGO proficiency.

The project began in the summer of 1982 and
has gone throughout the year. Teacher had two
months of training before taking the computers into
the class. Inservice continued throughout the
year with teachers discussing implementation
questions and learning new language skills as they
worked on programming projects.

Testing was done early with the children
involved in the project. Specific instruments were
the Cognitive Abilities Test, the Fennema
Mathematics Attitude Test, and Test of
IntrinsicExtrinsic Classroom Motivation. Post
tests will consist of the same tests and exercises

in LOGO and problem solving.
From the records and experience of teachers in

this year's project, instructional suggestions will
be compiled for expansion of the project into fifth
grade.

ABSTRACT: The Programming Styles of Fifth Graders
Using LOGO

Leah Rampy, Rochelle Swensson, School of Education
#337, Indiana University, Third & Jordan,
Bloomington, IN 47405

Twelve fifth grade students from a local
elementary school participated in a sixweek long
class at Indiana University designed primarily 1)
to introduce students to the LOGO language and 2)
to study the programming styles exhibited by
students learning LOGO. The classes involved large
group instruction, time to work on the computer on
instructorsuggested as well as studentinitiated
projects, and opportunities for students to
demonstrate their programs and to exchange ideas.
One Apple IIplus microcomputer was available for
every student. Undergraduate elementary education
majors, trained in LOGO, served as tutorobservers
for the students. The observations suggested
similarities and diTferences among the
participating students' approaches to programming.

A secondary concern of this study was to
examine the effect of cognitive style on
programming style. Researchers in the Brookline
LOGO Project (1979) had argued that students'
cognitive styles were reflected in their approach
to programming but apparently no attempt was made
to measure the cognitive style of the students
involved in that project. In this project,
students were selected on the basis of extreme
scores on the Children's Embedded Figures Test, a
measure of field dependenceindependence.

142

Because of the growing concern about a
possible gender gap in computer literacy, a final
focus of this study was a comparison and contrast
of the programming styles of boys and girls.

The NECC presentation will present a brief
summary of the findings of project with
regards to 1) the programming styles of fifth
graders using LOGO; 2) the relationship of field
dependenceindependence to programming styles; and

3) the relationship of gender to, programming

ABSTRACT: Modifying Papert's Vision: LOGO Lessons

Barbara S. Milberg, Electronic Learning
Facilitators, 9510 Linden Avenue, Bethesda,
Maryland 20814

Seymour Papert e:Ivisions children discovering
LOGO in a total LOGO environment, which is freely
accessible to them throughout the day. While this
is the ideal, very few schools at present have both
the commitment and the funds necessary to provide
this. A reasonable alternative is the LOGO class
held for a specified time either within a school
program or as an after school activity.

The project presented here describes a series
of LOGO classes, offered by Electronic Learning
Facilitators to children, ages 5 through 12, both
during the summer and after school during the
school year. The success of the program was
dependent on two factors: 1) the format, which
provided for a balance of structure and discovery;
and 2) supplemental materials, which allowed
children without computers at home to continue to
explore LOGO concepts outside the classroom
setting.

The children were divided roughly into younger
and older groups, working two to a computer. All

groups in the introductory class met for a total of
10 hours, the summer groups meeting on consecutive
days, the fall and winter groups once a week.
Followup classes were also available.

Because of time limitations, teachers made
brief presentations of new concepts to the class
followed by time for children to experiment
individually. A series of verbal, physical, and
spatial relationship activities preceded and
accompanied computer use. There was a strong
emphasis on writing procedures and problem solving.
Supplemental materials, such as Program Puzzlers
and Playing Turtle, were developed for distribution
to children to be used outside of class. These and
other materials developed for the program will be
described and demonstrated.

15%i



www.manaraa.com

ALTERNATIVE APPROACHES TO PROVIDING COMPUTING FACILITIES

Dr, Mary Lucy Sennett
Richard V. Murdach

Pat Kelly
Richard W. Evans
Mary M. De Boer

ABSTRACT: CompuShare: A SchoolCommunity Project

Dr. Mary Lucy Sennett, Deer Creek School, Box
2086, Arcola, MS 38722

Over the past few years the message "no funds
available" has echoed through the halls of all
levels of academia. Unfortunately, the trends seem
to predict an even more dismal financial future.
In the midst of this period of financial chaos, we
are also faced with volumes written on the
significant difference microcomputers can make in
education. However, there is one simple fact that
must be faced. It takes money to purchase
microcomputers, If the funds are not available,
the current literature becomes lost rhetoric.

Project CompuShare is a program designed to
develop a cooperative venture between small rural
schools and small local business enterprises. The
major objective of the project is to obtain free
microcomputers for the schools from donations from
small local businesses. The businesses involved
will also realize both short and longrange
benfits from participating in the project.

The priorities of Project CompuShare include:
(1) To establish a workstudy program where a

member of CompuShare would pay a student
minimum wages to do comuter work for
their business. The work could be done
on the computer that the business donated
to the school.

(2) To develop an overall training program
for students in the use of microcomputers
in business applications.

(3) To provide an interchange of ideas and
support between the school and its local
business community.

Tne presenter will discuss guidelines of the
project and will elaborate in detail on the
benefits and problems that result for both the
school and business by participation in Project
CompuShare.

ABSTRACT: The Central Illinois Computing
Consortium

Richard V. Murdach, Director, Central Illinois
Computing Consortium, 1444 Maine Street, Quincy, IL
62301

During the 1981-82 school year an overwhelming
majority of school districts in central Illinois
identified the use of microcomputers for
instructional and administrative applications as

143

their number one need. The Western Illinois Center
for Educational Improvement served as a
coordinating agency to provide districts resources
to serve the growing need for microcomputer
information and inservice. It soon became
apparent that individual districts would not be
able to solve this problem independently without
wasteful duplication of efforts and financial
resources. However, if a number of school
districts were to pool their collective resources,
these needs could met be more effectively at less
cost. Through the WICEI, a committee was formed to
gather data and information concerning ways in
which districts could collectively meet their
individual needs for microcomputer support. The
result of that effort is the formation of the
Central Illinois Computing Consortium.

The Central Illinois Computing Consortium is
designed to provide vitally needed educational
services and technical assistance to school
districts, nonpublic schools, vocational and
special education cooperatives, community colleges,
and other educational agencies in the
fourteencounty region of the Western Illinois
Center for Educational Improvement. The computer
consortium will provide districts with inservice
and staff development opportunities, technical
assistance, software evaluation, membership in the
Minnesota Educational Computing Consortium,
collective bidding for hardware ands software, and
access to a library of educational software in a
highly efficient and costeffective manner. Any or
all of these services wiould be available to
districts who join the Central Illinois Computing
Consortium.

The presentation will concentrate on the
benefits, development, and organization of an
educational comuting consortium.

ABSTRACT: A Relocatah': Computer Laboratory

Pat Kelly, Computer Resource Teacher/Coordinator,
Carroll County Board of Education, Westminster, MD
21157

Federal funds have made it possible for
Carroll County to establish the position of
Computer Resource Teacher/Coordinator in order to
create a Relocatable Computer Laboratory. The goal
is to travel around to every Middle school in the
county and provide some "hands -on" experience for
each seventh and eighth grade student. It is one
way of beginning to meet the rapidly developing
need to provide "computer literacy" to our

160



www.manaraa.com

students. In addition, instruction is provided for
teachers and administrators in special workshops.

While this may not be the ideal solution to
meeting this need, it offers an alternative that
helps close the gap between the need to raise
computer literacy levels and the high cost of
purchasing sufficient hardware to do so. Many

unanticipated difficulties were encountered in
preparing schedules and purchase orders, purchasing
hardware, and developing the curriculum. The
presentation will share with others what has been
learned, to assist them in avoiding pitfalls and
oversights.

ABSTRACT: CALL: A Multipurpose Educational
Computer Facility

Richard W. Evans, Associate Director, The Learning
Center, SUNY College at Farmingdale, Farmingdale,
NY 11735

The ComputerAided Learning Laboratory (CALL)
at the State University of New York College at
Farmingdale is emerging as a very cost effective
support mechanism for students and faculty at the
college. CALL utilizes twelve Apple II+
microcomputers linked with a ten megabyte Corvus
hard disk and Constellation network. This advanced
hardware configuration provides educational
computing support to the college with great
flexibility at low staffing and maintenance costs.
The staff has created a turnkey instructional
program which allows students new to the facility
to quickly learn its operation and gain access to
its courseware. Since the ten megabyte disk holds
the equivalent of 64 mini diskettes of software,
there is no need to maintain and handle a library
of floppy disks. This allows the facility to
maintain minimal staffing generally a workstudy
student to maintain records and assist students in
the selection of courseware. In addition to
reducing staffing costs, the network configuration
also reduces maintenance costs: the weakest links
in our hardware configuration are the floppy drives
required to mount courseware on the storage disk.
The ability to avoid the use, of floppy drives for
student use has made it possible to operate all
twelve microcomputer stations with zero downtime
since the assumption of fulltime operations in
Spring, 1982.

The facility offers a wide variety of
educational computer support to the campus. As

part of the College's Learning Center, CALL
provides students with both basic skills support
(reading, writing, and mathematics) and tutorial
assistance in content areas. Courseware is
available in Physics, Chemistry, Biology,
Sociology, Psychology, Mathematics, Secretarial
Science, and Spanish, as well as in basic English
structure, reading skills, and mathematics.
Student use of the facility for these purposes has
grown dramatically since the facility began
operation. A continuing program of evaluation
reveals that students react very favorably to the
important aspects of CALL's operation such as its
General Functioning, Potential, Proctoring
Assistance, and the Interest and Effectiveness of

its courseware (these results are all highly
significant with p<.001).

In addition to students' independent use of
CALL for basic skills and tutorial purposes, the
facility operates in a number of classroom modes to
support instruction. Special classes in Physics,
Spanish, and English composition (utilizing the
APPLEWRITER word processing program) make organized
use of the facility with very positive results. It

is anticipated that this use will soon expand to
include laboratory exercises in Chemistry, Biology,
and Psychology. Another role played by the
facility 1.3 that of providing computer literacy
workshops to area educators and to the college's
faculty. Workshops as well as individual
visitations are continually held, and it is
expected that the facility will have a generative
effect in increasing the college's use of
educational computing.

144

ABSTRACT: Cost Effective Implementation of a
Microcomputer Program in the Elementary School

Mary M. De Boer, Assistant Director, The Learning
Center, SUNY at Farmingdale, Farmingdale, NY 11735

Seven alternative microcomputer implementation
plans for a New England School District were
examined to determine the most cost effective
approach. Areas of major concern in choosing a
program were centralized vs. decentralized labs,
curriculum specific vs. general CAI software, and
age/grade level of students. The key factors used
to determine overall.program cost were training
time, hiring of new staff, hardware, and any
additional costs (such as busing) resulting from
plan requirements.

This particular school district had 13
elementary schools with a total enrollment of
5,583.. They had made a recent purchase of 20
microcomputers and had available some limited
software programs but had no implementation plan.
In addition they were greatly affected by budget
cutbacks yet wanted to provide a quality
educational program utilizing the microcomputers
for as many of their students as they could.

The following seven plans with their projected
costs, exclusive of hardware,costs, were proposed
and examined:
PLAN 1: To place microcomputers in the Resource

Rooms, implement computer literacy/general
CAI for grades 4-8, 9 weeks, 4 cycles/year
costs: yr 1 $18,900, yr 2 $17,500

PLAN 2: Place microcomputers in classrooms,
scattered throughout the schools at
various grade levels
costs: yr 1 $19,200, yr 2 $17,500

PLAN 3: Set up one or more centralized computer
labs providing general CAI
costs: 1 lab, yr 1 $34,000, yr 2

$33,500; 2 labs, yr 1 $60,000, yr 2

$59,500
\PLAN 4: Place microcomputers in libraries. This

plan was immediately rejected since the
costs were enormously prohibitive, as the
school district had no library staff
members.

161



www.manaraa.com

PLAN 5: Implement curriculum relevant CAI programs
with microcomputers in the classrooms
covering various grades
costs: yr 1 $35,000, yr 2 $30,500

PLAN 6: Curriculum relevant CAI with microcomputers
in centralized labs
costs:1 lab, yr 1 $34.500, yr 2
$33,500; 2 lass, yr 1 $60,520, yr 2
$59,520

PLAN 7: Curriculum relevant CAI with microcomputers
in the Resource Rooms
costs: yr 1 $35,000, yr 2 $30,500

General CAI and computer literacy were chosen
over a curriculum relevant approach because of the
history of difficult and unsuccessful
implementation,of curriculum relevant CAI in
elementary schools. Plan 1 was chosen because it
provided quality computer literacy/general CAI
exposure to a large number of students, while it
did not strain the school district's budget. The
higher cost in year one was incurred due to
training time of staff during the initial
implementation phase; year two includes
maintenance costs.The grades 4-8 were chosen on the
basis of a minimum of nine hours exposure for each
student, with a priority for older students to
better aid in their preparation for high school.

145

162



www.manaraa.com

DISTANCE TEACHING OF SOFTWARE ENGINEERING

Darrel Ince
The Open University

United Kingdom

w. S. Matheson
The Open University

United Kingdom

As part of a major programme of scientific
and technological updating, the Open
University is developing a novel Masters
Course which deals with the industrial
applications of computers. The course is
intended for practising programmers,
engineers and technical managers who work
In a real-time environment and who are
finding their work transformed by the
micro-computer.

The course is intended to alleviate a major
problem which is currently facing British
industry over the retraining of existing
personnel. There are now a large number of
personnel working in areas such as process
control, avionics and command and control
systems, who require updating on the
software and hardware aspects of
microcomputer systems. Unfortunately,
these personnel often occupy critical
positions in their company and cannot be
released for the 12-18 month period
necessary for the study of a conventional
Master degree. We hope that the Open
University, an institution set up to
provide degree-level education for the
house-based student, will be able to
respond to this challenge, and provide a
model which can be used in other shortage
areas where there is a need for scientific
and technological updating.

The first part of the paper will describe
the work of the Open University. The
background to the course will also be

described and the structure and aims of the
course outlined.

The second part of the paper will describe
one of the major modules of the course,
software engineering. This module, which
will be taken by the majority of students
who enter the course, takes the view that
coding represents only a small part of the
program development process, and that other
activities (analysis, specification,
design, maintenance) are, at least, equally
important. The module will consist of a
number of components:

(i) Course texts which deal with parts of
the software life cycle.

(ii) A number of industrial, real-time
software case studies.

(iii) A home experiment kit which consists
of a stand alone micro-computer which can
act as a terminal to the Open University
mainframe network, for 'hands-on'
experimental work.

(iv) a video tape which shows the progress
of an actual software project using a large
number of personnel.

The paper will conclude with a discussion
of some of the difficulties encountered in
providing such a module to the postgraduate
student studying at a distance.

146

163



www.manaraa.com

District Planning for Computer Use in K-12

Glenn Fisher
Alameda County Superintendent of Schools Office

Hayward, CA 94541

ABSTRACT
An outline for a K-12 computer literacy

scope and sequence model will be discussed
by Gary Bitter. Included will be computer
awareness and computer programming details.
A brief implementation model for curriculum
will be discussed.

Don Rawitsch will discuss the following:
1) In creating an instructional computing

plan, instructional expertis'.! is more
important that computing expertise.

2) Although implementation factors such
as equipment, materials, and training take
up the most time in the planning process,
these items should not be discussed until a
rationale is developed for why the district
thinks it should be involved in computing.

3) The district must determine the
relationship of computing to its
curriculum, considering both how computing
can be integrated into the present
curriculum, and what new curriculum areas
might be suggested by computing.

4) Computer literacy is much more
effectively developed in s ddents when it
is planned as a cumulative effect of
activities throughout the curriculum, as
opposed to being set aside as a single
course.

5) The purchase of computing equipment
should be determined based on educational
goals more than by hardware features and
cost.

A variety of questions to consider will
be addressed by Pristen Bird.

Among these are:
What do we want to do with computers?

147

. For which students? staff?

. What courseware is appropriate?

. Do we need to develop our own software?

. Can we afford to?

. Which brand(s) should we buy?

. What monies will be committed?

. How will we train staff?
The chair will discuss the role of the

administrator in this process. District
planning is a political process and
requires support of staff, Board,
administration, and parents. It should
parallel other curriculum planning in the
district. Staff development is an
important part of a plan.

The plan should extend over time to
demonstrate commitment and the possibility
of change and input. There should be room
for serendipity and learning at school
sites within the district plan.

The administrator is the crucial element
in successful implementation.

PARTICIPANTS:

Gary Bitter
Arizona State University
Tempe, AZ 85287

Pristen Bird
Instructional Computing Consultant
Department of Education
Tallahassee, FL 32301

Don Rawitsch
Director of User Service, MECC
St. Paul, MN 55113

164



www.manaraa.com

Information Technology and Its Impact on
the United States - Overview and Implications

Sponsor: ICCE

Linda Garcia
Fredrick Weingarten

Office of Technology Assessment
U. S. Congress

Washington, D.C. 20510

Linda Roberts
Office of Library and Learning Technologies

U. S. Department of Education
Washington, D.C. 20202

The "information revolutionbis profoundly affecting American education and training --
creating new demands for instructional services and, at the same time, providing new
opportunities for improvement and delivery of such services. The new information
technologies can help all educational institutions meet these new demands. Many are
already being effectively used in education and training. However, OTA has ientified a
number of barriers to their use -- their high initial cost, the lack of high quality
programming, and the shortage of local personnel with adequate training. Whether or not
new information technologies will fulfill their potential will depend, in part, on the
kinds of actions that the Federal Government takes. What is needed is a broad approach
that takes into account the changing needs for education and training, considerations (IF
equity, and changing institutional roles.

148



www.manaraa.com

THE ELECTRONIC BLACKBOARD

USING A MICROCOMPUTER AND LARGE-SCREEN TELEVISION AS A LECTURE AID

JAMES E. CLARK
Department of Economics
Wichita State University
Wichita, Kansas 67208
Telephone 316-689-3220

ABSTRACT

This paper will describe and demonstrate the
development, use, and benefits of programs that use
an Apple microcomputer and large-screen projector
television as the primary lecture aid (replacing the
traditional chalkboard or overhead projector) in
large lecture sections of college Principles of
Economics classes. Some of the benefits of using
the Electronic Blackboard are: 1) its attractiveness
to students; 2) its ability to interweave text with
graphics and simulations; 3) its legibility, even
in the back of large (250+ seat) classrooms; 4) its
ability to use the Apple's high-resolution colors
to highlight and tie together key concepts. The
Electronic Blackboard can be used to prepare lec-
ture materials before class, and also can be used
in a "live" mode to display text and graphics
created during class; examples of both typus of
presentations will be shown.

ORIGINS OF PROGRAM

The impetus for the Electronic Blackboard
program came from a National Science Foundation
CAUSE (Comprehensive Assistance to Undergraduate
Science Education) grant entitled "Interactive
Microcomputing in the Classroom." The purpose of the
grant is to encourage the use of microcomputers in
classroom settings for creating demonstrations, sim-
ulations, etc., that can be easily manipulated to
answer "what-if" questions from students. Funds from
the grant have been used to purchase 19 Apple II+
microcomputers and seven Kloss Novabeam projector
televisions with large (4' x 6') screens. On a com-
petitive basis, 22 faculty members at Wichita State
University have been selected to receive summer
stipends for the development of software to imple-
ment the objectives of the grant. To date, the
following disciplines have been involved, either
through summer sub-grants or voluntary participation:
astronomy, biology, chemistry, economics, electrical
engineering, industrial education, industrial engin-
eering, mathematics, and physics.

Many excellent modules have been produced by
participants in this grant, ranging from simulations
of queuing and other random processes to the graph-
ical depiction of the evolution of the universe; some

of these programs were demonstrated at NECC 1982.
1,2

While these modules, and similar ones created else-

where, have been valuable to students,
3

they have
not made full use of the microcomputer's ability

149

to enhance instruction, particularly in the large-
section classroom. The Electronic Blackboard is a
step further in integrating the microcomputer into
the classroom.

ADVANTAGES OF THE ELECTRONIC BLACKBOARD

Compared to chalkboards and overhead projectors
(the traditional lecture aids for large classes), the
Electronic Blackboard has several advantages that
make using it worth the necessary investment in
equipment and preparation time. Among these are:

Attractiveness to students

The current generation of students are accus-
tomed by a lifetime of experience to watching the
movement and color of television shows; the black -
and- white, static pictures produced by chalkboards
and overhead projectors are, by contrast, very
boring and unexciting. The Electronic Blackboard
can promote student attentiveness and learning by
providing the color and motion to which students
have become accustomed and attracted. 'In addition,
since the Electronic Blackboard embodies up-to-date
technology and resembles (faintly) an arcade game,
students are more likely to pay attention in class
to material presented on the Electronic Blackboard.

Le 1.1)lit

When properly prepared, text and graphics pre-
sented on the Electronic Blackboard are much more
legible to students than are the same materials
written on a chalkboard or overhead projector. This
is especially true for students who are forced by
large class sections to sit in the far reaches of
several-hundred-seat lecture rooms. Proper presen-
tation does require that attention be given to clear
and unconfusing screen layouts (this is also neces-
sary for clear presentations on chalkboards and over-
head projectors). To insure legibility, it is also
necessary to use non-standard character sets. The
Electronic Blackboard uses both modified, all-white,
standard-size upper and lower case characters, as
well as slightly larger upper and lower case letters
with true descenders; this larger character set
greatly improves legibility, especially in large
classrooms. Details on the character sets used may
bn found in the section below on Program Description
and Capabilities.

1 6



www.manaraa.com

Color

The ability of the Apple microcomputer to create
colored lines and images has been harnessed in the
Electronic Blackboard to make presentations both
clearer and more interesting. In particular, complex
presentations involving graphical analysis (common in
economics, and_in many other disciplines) can be made
much clearer, and associated elements tied together,
with a careful use of color. While colored diagrams
can be created on chalkboards and overhead projec-
tors, such diagrams are typically quite messy, and
very difficult to modify to show the effects of
changes.

Animation

The one area where the Electronic Blackboard
represents the greatest improvement over its tradi-
tional counterparts is the microcomputer's ability to
manipulate rapidly large amounts of information, and
to clearly display the results. While this ability
is most obviously applied to purely numerical infor-
mation, it can also be very effectively applied in
classrooms where the relevant information concerns
the location of a line on a graph, or the position of
an image on the screen. The microcomputer can be
easily used to create, display, and manipulate numer-
ical and graphical examples, simulations, and so on,
in ways and at speeds that are simply not possible
with the traditional tools. This is especially true
in cases where students ask questions which need
substantial calculations to answer. The Electronic
Blackboard is designed to allow easy insertion of
modules representing graphical and numerical
examples, simulations, and other similar types of
materials; several examples of such modules will be
presented, along with examples demonstrating the
other advantages of the Electronic Blackboard.

STUDENT REACTION TO THE ELECTRONIC BLACKBOARD

The author has used the Electronic Blackboard as
the primary lecture aid in teaching two large class
sections of Principles of Economics during both the
Fall 1982 and Spring 1983 semesters at Wichita State
University. While final course evaluations are not
yet back, some preliminary evaluations are available.
Student attitudes toward the use of the Electronic
Blackboard, as expressed both in class discussions
and in outside conversations with the author and
other faculty members, have been almost unanimously
favorable. Comments show that students feel that
text materials presented on the Electronic Black-
board are more interesting and easier to learn from
than would be the case if the same materials were
presented using traditional methods; the reaction to
graphical materials has been even more favorable,
with stress placed on the increased understanding
that is generated by the used of color and motion.
In addition to classroom use, demonstrations of
materials prepared on the Electronic Blackboard have
been presented to conferences of persons interested

in computer-based education
4

and to economIt7

tors
5
, with highly enthusiastic and positive recep-

tions.
Along with its benefits, several problems have

arisen with the use of the Electronic Blackboard.
Due to the design of the screen, the intensity of the
image from the projector is diminished when the
screen is viewed from a large angle; with the present
equipment, the Electronic Blackboard requires
several projectors and screens for classrooms that
are wide relative to their depth. Also, prepared
text materials appear on the Electronic Blackboard
much faster than they can be written on a chalkboard
or overhead projector, creating a tendency for the
instructor to present materials faster than students'
note-taking can keep up.

For lecture materials prepared in advance of
classes, creating materials for the Electronic Black-
board takes several times as long as does preparing
the same material for writing on a chalkboard or
overhead projector. At present, preparing one class
hour's worth of material takes between two and three
hours of time for the Electronic Blackboard, with
considerably more time necessary for complex
graphics; this compares to the approximately half-
hour usually required to prepare an hour's worth of
chalkboard presentation. The benefits of the Elec-
tronic Blackboard seem (to the author) to be worth
the time involved, especially since the materials
created can be reused in future classes, with any
needed modifications made fairly rapidly. An
authoring system for the Electronic Blackboard is at
present being developed that should substantially
reduce preparation time.

PROGRAM DESCRIPTION AND CAPABILITIES

The core program of the Electronic Blackboard is
written in Basic and is based on the concept of
organizing the material to be presented into "pages;"
one page is normally one full screen of material.
Within each page, the program writes a section of text
onto the screen, then waits for the space bar (or
firing button on paddles or joystick) to be pressed
before writing the next section of text. Section
length can be anywhere from one character to an
entire page, and can be varied for each section.
"Turning pages"' (clearing the screen and starting a
new section of text) is also accomplished by pressing
the space bar. The instructor is thus always in
control of how fast the material is presented. If

desired, it is possible to have more than one
screenful of text a particular "page;" the screen
can be scrolle? to make room for new text without
erasing the entire screen. It is also possible to go
back to devious pages or to move forward by skipping
pages at any time.

Text and graphics are displayed on the Apple's
high-resolution screen through the use of Image
Printer (a machine-language graphics program soon to
be available from C & C Software). As used in the
Electronic Blackboard, Image Printer can very rapidly
write upper and lower case letters, numbers, and
symbols anywhere on the Apple's high-resolution
screen (regardless of byte boundaries). Character
sets available include a standard-size (7x8 dots)
all-white character set that is much clearer than the
Apple's standard character set, an enlarged (9x12
dots) white character set with true descenders, and a
small (6x6 dots) character set with only upper case
letters and numbers. Other character sets in other
sizes can be created if the user desires. For use in

150

161



www.manaraa.com

large classrooms, legibility is best with the large
character set, although the standard-size characters
can also be used, and are appropriate for tables,
labels, and so on.

The maximum amount of material contained in an
Electronic Blackboard program is limited by the
amount of meuory available. The Image Printer
routines and character sets fill the space below the
Apple's high-t:esolution graphics page 1; if both
high-resolution graphics pages are to be used, the
space available for programs is from 24576 to 39590
for a 48K Apple with MAXFILESI set. This is enough
space for 15-20 average pages of text with colored
underlining. Longer presentatioas can be created by
having one program end by running the next program.
This can be done without disturbing the text or
graphics being displayed, so that the instructor can
be explaining the present display while the next
program is loading.

The organization of the program into "pages"
makes it easy to add modules of graphics displays,
simulations, etc., into the program (Image Printer
is also an excellent way co create graphics displays
and animation). Each page begins with an even-
thousand line number (page 1 starts at line 1000,
page 13 starts at line 13000, etc., so that by
appropriate numbering a module ca be executed at
the appropriate time in the program. Modules
created outside the Electronic Blackboard can be
renumbered and merged into the Electronic Blackboard
using any good commercial program editor.

Graphics and text can be very effectively inter-
woven by putting graphics on one of the Apple's high-
resolution pages and the corresponding text on the
other high-resolution page. At any time, the Elec-
tronic. Blackboard can flip between the two pages by
pressing the "1" and "2" keys.

Also available is a nondestructive pointar (an
arrow shape) that can be placed on the screen to
point to, key terms and illustrations. The position
of the arrow can be controlled from the keybord, or
by a joystick or paddles.

The Electronic Blackboard can be used not only
to present materials that have been prepared and
stored in advance, but also can be used "live" to put
text and graphics on the screen. At any time, the
instructor can move from a prepared page in the
Electronic Blackboard to a "blank page" routine that
permits the instructor to put upper and lower case
text, numbers, and symbols anywhere on the screen by
typing at the keyboard. Key terms can he underlined
in color on the blank page by using keyboard com-
mands to specify the color and the endpoints of the
line. More complex graphics can be drawn "live"
through the Electronic Blackboard's interface with
the Apple Graphics Tablet.

All of the features of the Electrotic Black-
board discussed above will be demonstrated during
the paper presentation.

CONCLUSION

This paper has discussed ani demonstrated the
advantages of using an Apple II+ microcomputer and
large- screen projector television as a replacement
for the traditional chalkboard and overhead projector
as the primary lecture aid for large classes. The
advantages of this approach are it,. att-ictiveness to

151

students, its legibility, and its use of color and
animation to clarify complex materials and maintain
student attentiveness. The Electronic Blackboard
program, created to implement the concept, has been
described and demonstrated, and experience so far
with using the program to teach Principles of Econ-
omics has been reviewed. The Electronic Blackboard
represents another step forward in utilizing the
abilities of the computer, and the microcomputer in
particular, to improve the quality of education.

ACKNOWLEDGEMENTS

My initial work on developing the Electronic
Blackboard, and on modules for teaching Principles
of Economics, was supported by NSF CAUSE grant #SER-
80-04784. I would like to thank Dick Cornelius
(project director), Mel Zandler, and the other
faculty at Wichita State University who participated
in the CAUSE grant, for help, encouragement, and
good examples.

Apple, Apple II+, and Apple Graphics Tablet are
trademarks of Apple, Inc. Image Printer is a trade-
mark of C & C Software.

REFERENCES

1. Cornelius, Richard, "User Power; A Discussion
and Real-Time Demonstration of Valuable Programming
Features," NECC 1982 Proceedings, pp. 95-96.

2. Cornelius, Richard, "Microcomputers and Large-
Screen Projectors in Science Lecture Halls," NECC
1982 Proceedings, p. 231.

3. Bowman, Barbara, and Randy Ellsworth, "Micro-
computing in the College Classroom and the Effects on
Student Attitudes Toward Computers," presented at the
Annual Meeting of the Association of Psychological
and Educational Research in Kansas, Emporia, Kansas,
1982.

4. Clark, James. E., "The Electronic' Blackboard,"
presented at the Third Microcomputers in the Class-
room Conference, Wichita, Kansas, 1982; presentation
to IEEE Student Branch, 'achita State University,
1982.

5. Clark, James E., "Using Microcomputers and
Large-Screen Projectors for Teaching Principles of
Economics," presented at the Annual Meeting of the
Joint Council on Economic Education, Kansas City,
Missouri, 1982.

168



www.manaraa.com

RESULTS AID LESSCNS FPCM ? STUDY
OF PFArERS' CCNTPCL OF PATE CF TEXT PRESEPTATION Or CONFUTER SCREENS

Werner Feibel

Educational Technology Center
University of California

Irvine, Calif. 92717

AEFTRACT

In an effort to begin eNploring the factors
important for effectively using the capabilities
of the computer to present text, two ;E,Idies have
been carried nut.Results from the first one are
reported. In t4is study, students in introductory
college pnysics courses read tnree texts, presented
via computer screen. After ea.h session, students
were tested on the text content, and were
interviewed regarding their reactions to the texts
and the presentation on screens. During one of the
sessions, each student was given control over the
rate at wnich text appeared on the screen,
including en option to stop the text at any point.
While no significant differences were found

between tne control and no-control conditions,
several tendencies were observed, and several
useful lessons for research in this area were
gained. These are discussed.

Introduction

As the computer comes co play an increasing role
in schools and other learning situations, issues
relating to the most effective pedagogical uses of a
new tool and medium must be dealt with. To date.
most of the research on these issues has concerned
the.use of the computer as a tool for testing
learners' understanding of material presented, for
providing them with additional opportunities to work
with the material, -- e.g., in the form of drill and
practice -- or for presenting tutorials on certain
topics in the curriculum (although this use of the
computer is still much less prevalent than its use
for drill and practice).

Cuestions relating to the computer as a medium for
presenting curricular material. -- i.e., as an
alternative to media such as books or films,
particularly the former -- appear to be getting much
less attention. To some extent this may be due to an
implicit assumption that the resolution of most of
these questions will take the same form it did in
books. Several considerations, however, suggest that
this may not be appropriate; moreover, it is by no
means clear that ventions and tendencies
common for the printed page are the most effective
ones possible, even for that medium.

152

There is a growing body of research literature on
variables to be considered in formatting text on the
pages of a book; these variables range from
comparisons of different type styles to the most
effective ways of laying out material on the page --
e.g., whether to justify margins, and how to use
indentations and spacing to provide the reader with
additional information anti help for most effectively
identifying major concepts and points (see, e.g.,
Partley, 1980). While this research has not provided
any clear-cut results to date, it has served to 'all
into question a number of conventions and
assumptions, and also to emphasize the complexity of

the issues involved.

If we expect to get on the right track quickly
with the new, electronic medium, such factors must
be considered in the context of presenting text and
pictorial information with computers. Furthermore.
additional considerationicenter the picture -- many
of which have been discussed by Alfred Pork in his
"Textual Taxonomy" (1981). In particular, the
consequences of certain differe between the

computer and the book must '
tai, -1 irRo account.

Two types of differences, te. oral and spatial will

be considered here.

In contrast to the information on a book page,
which is static and completely present when the book

leaves the printer's, the computer screen can be
filled at a rate that the reader can select. This
would give a reader the option of interacting with
the material in a manner very different from a book.
In addition to such peripheral possibilities as
using this option to exercise and perhaps increase
her reading rate, controlling tne rate of
information presentation could enable the reader to
view material in a much more active manner -- e.g.,
by stopping the text presentation and trying to
anticipate where a certain argument is leading, then
testing her expectations (and thus, to some degree,
her understanding of the material) by letting the
subsequent text appear on the screen. Related to
this is the possibility of animating diagrams and
illustrations; the student could formulate
hypotheses about a given sit :zstion and could

actually view a simplified esentation of
experimental results relati to ',tie situation and

discussed in the reading.

16J



www.manaraa.com

resides tnese temporal factors, a second set of
spatially-based differences between book page and
computer screen as media concerns the cost, and
therefore the use, of empty space on the
presentation field. Plank space on a book page costs
money, and is tnerefore generally avoided in this
medium. One consequence of this is the relatively
dense packing of print on the page. Wnile
economically advantageous, this may prove to be
pedagogically detrimental. plank space on computer
screens, however, is free; this opens up many
possibilities for using space on the presentation
field to provide supplementary information about the
relative importance of different parts of the
material, as well as facilitating the formation of a
visual image of the probable content
interrelationsnips because one can easily scan a
body of information repeatedly.

Thus, the luxury ci` free space can make various
presentation possibilities more attractive. Dividing
text into natural phrasing, thereby providing what
is likely to be a more natural pace and chunk size
for the intake of information, is one way of using
space to possible pedagogical advantage. Formatting
text in a way tnat makes clearer the hierarchical

relationsnips in the material also opens up a large
set of possibilities. Vnile the latter,
hierarchical, formatting depends directly on the
actual content for its effectiveness, natural
pnrasing simply attempts to capitalize on processes
and tendencies implicit in various informal learning
contexts, but conspicuously absent in our
educational system teyond the first few grades. I
refer here to the use of meter for passing on oral
literature and information, the timing that makes
some speakers much more memorable and effective than
others, and tne use of motoric activity and rhythm
to teach various skills and concepts -- (see, e.g.,

the work of Furth & Wachs, 1576, and that of
Creenfield & Childs, 1(376). We explored the
possibilities of using such a resource to fuller
advantage in learning settings.

As one step toward helping to clarify these issues
and making decisions based on as mu:i. information as
possible, we are carrying out two studies, in a
project funded by the rational Science Foundation,
to investigate som4-'&f the variables relevant to the
use of the computer as a medium for presenting
textual material. Tne first study investigated the
effects of giving students control over the rate of
text presentation on tneir comprehension of the
material and on their attitudes toward the learning
situation. In the second study we investigated the
consequences of natural phrasing on these same
variables. I will present the results of the first
of these studies -- discussing hoth the data and
some of the lessons we have learned from this.
initial investigation. some of these results and
lessons have methodological implications for
research in this area, and I hope tney will be of
use in guiding others in their own studies.

153

Procedure

paterial3;
Portions of two chapters from a widely used

introductory physics textbook were used in the
studies. The goal was to find texts that were
relatively self-contained, that would be of
approximately equivalent difficulty, and that were
considered equally interesting by readers. The
actual texts were selected after pretesting them on
students in physics classes and selecting thn two
that students regarded as most comparable in
difficulty and level of interest. Certain, very
minor, modifications were necessary to make the two
readings sufficiently self-contained and
stylistically acceptable; however, these changes
were limited to the insertion of a few clauses, and
the deletion of some short discussions of material
related to other sections of the text. Cne reading
dealt with electromagnetic induction, and the other
covered the kinetic theory of gases. In addition, a
third text from a different textbook, on the law of
gravitation, was used in a practice session.

Tests designed to assess students' comprehension
of various aspects of the material were constructed
- - for the practice text and for the two readings
used in the study. Questions ranged from those
designed to determine the reader's recall of very
specific information -- e.g., whether a particular
phrase was used as a section heading, or where on
the screen something appeared -- through
understanding of various concepts -- e.g., defining
the basic ideas and terms presented in the reading
- - to grasp of the conceptual consequences of the
material -- as reflected in students' ability to
solve problems about tie concepts and to discuss the
significance of particular experiments for the topic
under discussion.

Finally, a set of questionnaires was developed to
obtain information about students' background with
physics and computers, their attitudes toward
computers, their study strategies and habits, and
their reactions to being able to control rate of
text presentation.

Equipment and Programs:
The texts were presented on a Terak F51CA personal

computer. To allow the reader to adjust the rate of
text presentation, Michael Potter, one of our
student coders built several speed control boxes,
which could be connected to the computer. The boxes
operated by moving a knob to a position
corresponding to the desired rate of text
presentation; in addition, a button could be pre!ised
to stop tne text at any point -- until the reader
restarted it by pressing the button again.

These boxes worked through a rrogram written by
Adam reneschan, another student coder. Tne program
translated settings on the box into timing delays or
interrupts in the main program; these controlled the
presentation of the text on the screen. resides
presenting the text on the screen, and drawing the
accompanying diagrams, the main program also allowed
the user to flip around to earlier or later sections
in the text. This flipping could be done easily, and

170



www.manaraa.com

students reported having little difficulty learning
now to move around in the text. Finally, a program
that recorded any changes in presentation rate and
wrote this information to a data file for later
analysis, became available during the study, and
this was used to record the actual changes for some
of the participants.

Participants;
Students were recruited from three introductory

physics courses, and were paid for participating in
tnree sessions. Yost of the students were majoring
in some field of science, although this was not a
criterion for selection. ef the 33 students (23
male's, 10 females) who partiCipated beyond the
practice session, 31 completed the study. Cnly two
males dropped out.

Method_

Students were tested over a six week period in a
repeated measures design, with three sessions per
student. When they arrived for their session,
students were placed in a room with the computer,
and the program was started for them. They were told
to read the material, spending as much time as they
wished on it. They were told that they would be
tested on the material at the end of the session,
and were permitted to take notes on the material.
When they completed the reading, they were asked to
give up their notes, and were given a test on the
material. After this was completed, they were
interviewed briefly about their reactions to the
reading -- both as content and with respect to its
presentation via computer.

The first, practice, session was not included in
any comprehension analyses. rather, this session was
used to obtain background information on the
students, and to give them practice reading text
from a computer screen -- including developing
familiarity with the means for flipping around in
tne text. Furthermore, the practice test
administered et the end of this session informed
students about the range of detail tney were
expected to attend to in subsequent readings.

After the first session, students were randomly
assigned to either a learner control or no learner
control condition for the next saession. Pecause of
equipment difficulties, the division for the second
session was IP no learner control and 15 learner
control. For the final session, students were put in
whichever of the two conditions they had not done in
their previous session. Pecause of attrition, the
third session consisted of 14 no control and 17
learner control participants. Crder of texts was
fixed; all students read about electromagnetic
induction in the second and about the kinetic theory
of gases in the third sessions. Thus, roughly half
the people had control over rate of presentation of
the electromagnetic induction text, and the rest
over the kinetic theory of gases text.

In the learner control condition, the student
could adjust the rate of text presentation, or stop
the text, at any point. Unfortunately, problems with
the control boxes made the hold button somewhat'
unreliable, and most students reported that

154

generally they did not use it beyond an occasional
attempt -- generally to simply try it out. The
control boxes permitted the reader to change the
rate from a very slow, letter by letter,
presentation of the text at one extreme, to a rate
comparable to a reading speed slightly faster than
the average reading rate for nontechnical material.
While this rate was regarded as sufficient, the
students' reactions to this provided one of the
lessons to be considered in research of this nature.

In the no learner control condition, the text was
simply thrown onto the screen, so that the entire
screen appeared in a couple of seconds. This rate
was much too rapid for anyone to read it as it was
coming out.

pesults

While test scores in a sufficiently large class
can generally be approximated quite well by a normal
distribution, such an assumption was considered too
risky in the present study -- because students
actually came from three different classes, so that
the underlying distribution would more probably
consist of a combination of normal distributions.
Consequently, analyses were done using nonparametric
tests -- particularly normal deviates tests (see,
e.g., Marascullo & McSweeney, 1977).

Cn the whole, the major analyses identified no
significant differences on the comprehension tests
as a function of learner control. While differences

in performance were generally in the expected
direction, these differences were not sufficiently
large to permit rejection of the null hypothesis.
Thus, mean proportion correct on the text about

electromagnetic induction was C.565 (s.d. = 0.163)
for the learner control students, and 0.529 (s.d. =
0.188) for the no learner control students;
similarly, for the reading on the kinetic theory of
gases, the figures were 0.654 (s.d. = 0.180) and
0.593 (s.d. = 0.150) for the learner control and no
learner control students, respectively. Since

Winsorization -- truncating the range of scores by
discarding a certain-number of scores at each tail
of the sample distribution, in order to get rid of
outliers -- made no substantial difference, the full
set of available scores was used in analyses, to
take advantage of the additional degree's of freedom
available When working with the full sample.

The fact that the learner control individuals did
score higher on both texts is encouraging, and
speaks in favor of investigating this variable
further -- particularly since the same students read
both texts. This latter point makes it unlikely that
the mean differences are attributable to the
individuals or to the texts, since the relative
standing of the two groups switched for the texts,
and since the common denominator in the better

performances was the learner control. Nonetheless,
since the results only approached significance, they
must be considered merely suggestive.



www.manaraa.com

In the learner control conditions, students who
checked more positive adjectives to describe their
exrr' -"- ',mputers tended to score slightly
hi ,Y1 students less positively
in rs. The difference for the

t w-7 > aLput 11, but again in favor of
students witri positive experiences with computers.
The samples in the learner control conditions were
too small to make it feasible to use this attitude
information as a covariate in analyses.
Nevertheless, these results make intuitive sense,
and it will be helpful to explore the more general
questions of the conditions under which computers
facilitate learning or understaning in people with
different experiences with computers.

Physics background did make a difference, as is to
be expected, with those in the more advanced
introductory course and those who had taken more
physics courses performing better on the average;
however, these differences again failed to reach
significance. Moreover, this factor did not play a
role in the grouping, since there were no
differences in the make-up of the two groups (i.e.,
control with first reading versus control with
second reading). The greater heterogeneity
introduced through this broader range of physics
background may have contributed to the overall
results, however, since the increased range of
performance attributable to theme differences in
familiarity with the subject matter would be
expected to increase the variance of the performance
figures.

Post hoc examination of subsets of comprehension
test items (i.e., specific memory, definitions,
concept memory, and problem solving) did not permit.
an unequivocal identification of the particular
aspects responsible for observed differences. In
part this was due to the much larger proportions of
ties in scores on these item subsets -- because of
the r -h smaller possible range of values. There did

be any consistency in the types of
iLems where the two groups differed -- something
that might possibly be examined more systematically
in a design where interactions can be studied
directly.

Two other data are relevant here, since they also
provide hints for subsequent research. First, many
of the students in the learner control conditions
said they found the continuous appearance of text on
the screen distracting; most said they simply set
the box to maximum and then waited for the screen to
fill before actually reading the text. Related to
this is the fact that many students mentioned the
novelty of dealing with text presented in such a
sequential and temporally variable manner. This
novelty was not always perceived favorably. A more

lue raised by such reactions is considered
bel

A second datum of interest concerns the finding
that several of the students who considered
themselves slower than average readers -- most of
these being students with English as a second
language -- found the learner control box useful.
Again, however, theme findings provide only
suggestions for future studies. They cannot be
considered primary results of the present study --

155

both because the number of people who considered
themselves slow readers was too small, and because
English as a second language was not explicitly
inclo as a ffIc'-- in the present study.

Discussion

Overall the results of the first study were
inconclusive regarding the effects of learner
control of text presentation rate on subsequent
recall and understanding of the material.
Nonetheless, several indications and lessons did
result from the study.

First, for our purposes, the finding that
performance on the two texts was comparable is
encouraging for us, since it supports our intention
of using the same texts in the second study. The

average performance scores do not prove that the
texts are comparable, but they do make such a claim
plausible.

Other issues arising from the first study will
help us in the details of running the second study.
as well as providing some guides for other
researchers in the area. First, the trends reinforce
the importance of avoiding samples that are too
heterogeneous. Possible solutions for this
difficulty include either ensuring that all
participants are drawn from the same classes, or
designing the study to permit separate analyses for
different groups within the sample.

Tne indications of differential effects of learner
control as a function of attitudes about computers
suggests that such information be obtained and
either built into a multiple factor design as a
grouping variable, or that the study be planned so
as to permit the use of such information as a
covariate in the analyses.

A more important and more general issue arises
from students' reactions to the consequences of
controlling presentation rate. College students
belong to a group whose reading and study habits are
largely developed, and likely to be relatively
entrenched. In particular, this is a group whose
members have all been reading for over a decade --
almost exclusively (if not entirely) from a printed
medium. Thus, these people have invested a great
deal of effort and practice in mastering the process
of obtaining information from the printed page. Most
college students are relatively proficient at
reading, and they are quite likely to consider this
aspect of their education as more or less completed.
Therefore, hindsight suggests it should not be
surprising to find them somewhat disconcerted and
negative when required to deal with a situation that
demands adjustment in some of these habits and in
the expectations they have built up about the
"behavior" of text.

The individuals who responded more favorably to
this new situation -- those who considered
themselves slow readers (and thus presumably feel a
certain dissatisfaction on this score) and those who
have been reading English for a shorter time than
native speakers -- are students Whose habits can be
regarded as still changing, or at least more

172



www.manaraa.com

amenable to change. These are people more likely to
be receptive to the possibility of modifying their
reading habits or of taking advantage of situations
tn- can facilitate the process of gaining
iniormation for t .

P.n important implication of this consideration --
if correct -- is that such factors' as control over
rate of text presentation might be more profitably
studied in individuals whose habits are still in the
process of being perfected -- e.g., younger students
or learners for whom particular reading situations
are still relatively novel. In a sense, this
implication can be considered a special case of the
more general issue of the diffusion of a new tool or
context -- something generally much easier with
people who have less of a stake in what was
previously available.

Such habits should be less influential in the
second study, however, since there even those who
consider themselves sufficiently competent readers
will be dealing with a process very similar to
activities in which they commonly engage --grouping
information in a manner that seems natural.

The present study -- despite its inconclusive
results -- does indicate several questions and
directions in need of research. Before we make hasty
and ultimately untenable decisions about the manner
in which computers should be used in learning
situations, we must be certain we can make those
decisions from a reasonable and sufficient knowledge
base. While I nave been unable to add much specific
information to that base, I hope I have provided
some insight into some of the priorities and
difficulties that must be considered as we move
toward the computer age.

156

Acknowledgments

Tnis research was funded by the rational Science
, Indation, through their Research in Science
Education progr,, '1TSE Grant I SED - 8112378)

any thanks to Kristina Hooper, Cynthia Powell,
and Ruth Von Plum for their invaluable suggestions,
insights and efforts. Thanks also to Michael Potter
and Adam Feneschan for their efforts in making the
speed-control box and writing the programs for the
study. Without the efforts of these people, the
project would never have come to fruition.

Pibliography

Pork, A. Tex tual Tax nomy . Unpublished paper,
Educational Technology Center, University of
California at: Irvine, 1981.

Furth, H.C. & V'achs, 11 Tninking Goes to School:
Piaget's Tneory in Practice. Mew York & London :
Oxford University Press, 1974.

Greenfield, & Childs, C.P. Weaving, color
terms, and pattern representation: Cultural
influences and cognitive development among the
Zinacantecos of Southern Mexico. Paper presented
at the First International Conference of the
International Association for Cross-Cultural
Psychology. Hong Kong, 1973.

Hartley, James (Ed.) The Psychology of Written
Communication: Selected readings, New York:
Fichols Publishing Co., 1980.

Marascuilo, L.A. & McSweeney, M. ;!on- Parametric and
Distribution-Free Fg.thosis for the Social Sciences.
Monterey, Calif. : ['rooks/Cole, 1977.

173



www.manaraa.com

An Experimental Comparison of Discovery and Didactic Computerized Instructional
Strategies in the Learning of Computer Program:4,6=g

Brian McLaughlin

Aion of Computer Research and Technology
::-Eitional Institutes of Health

Bethesda, Maryland 20205

Abstract
This study compared the effectiveness of

instructional strategies for teaching computer
programming. College students, pretested for Locus
of Control and cognitive ability, were assigned to
use short instructional computer programs
characterized by either a "discovery" approach or
an expository "programmed instruction" sequence.
All instruction and testing was administered by the
computer. In general, expository instruction led
to better posttest recall of basic programming
facts while discovery instruction resulted in
better performance on extrapolation tasks and
actual programming. Discovery instruction led to
higher self-confidence about newly learned
information and a greater willingness to continue
instruction. Students with an Internal locus of
control performed better under discovery
instruction, while External locus of control
students did better under expository instruction.
This interaction was remarkably consistent across
eleven cognitive and affective outcome measures.
An instructional program based on this research has
been implemented on an Apple micrwromputer.

Rationale
The psychological theories of Piaget and

Bruner suggest the value of exploratory
discovery-oriented instructional experience. The
theories of Skinner and Aue.,bel emphasize more
systematically controlled expoeitory instruction.
Ambiguity and controversy hft?e long surrounded the
comparison of instructional methods based on these
two schools of thought. A core epistemological
rationale for the discovery approach is the
Piagetian notion of a learner interacting with the
environment, .actively constrcting knowledge
through continuous application and reorganization
of personal cognitive structures. In contrast, the
notion more cften associated with the didactic
approach suggests a more passive, dutiful learner
who incrementally copies or absorbs new knowledge
from an outside source. These two approaches might
be broadly characterized .as differing in their
relative emphasis on "learning bY doing' versus
"learning by being told."

Despite its far ranging implications for both
educational theory and classroom practice, the
discovery versus didactic controversy has been only
minimally illuminated by decades of empirical

research. Bruner1 asserted his broad claims for a
discovery learning approach in the spirit of an
hypothesis. In 1961 he stated that the hypothesis

157

"is still in need of testing. But it
hypothesis of such important human implicE.iut,

that we cannot afford not to test it...". Twenty
years of research have demonstrated the

difficulties in testing Bruner's "hypothesis". Yet
many important issues raised by the discovery -

didactic controversy remain unresolved. By
examining and improving upon methodological
difficulties encountered in previous discovery
learning research, this study aims to demonstrate
the utility of a rigorous experimental approach to
this intractable area of educational research.

Most experimental research comparing discovery
and expository instruction has used some variant of
"example-rule" methodology. The learner is given
examples and must infer or "discover" the
underlying rule. The narrow focus of this
artificial laboratory implementation of discovery
leRrning has unreasonably constricted the

nperationalization of discovery processes. In this
'tudy, a computer program was used to generate a
discovery 'Z'-.7.-ning environment which provided

ol,portUnities for "messing about "7 and had

sufficient openness to accommodate the fuller
exercise of intellectual and cognitive capabilities
implied in broader conceptions of discovery

learning11'14'6.
Another methodological weakness hampering

previous studies has been the all-too-common focus
on a single instructional outcome, typically an
achievement posttest. Proponents of the discovery
approach have suggested a tantalizing array of
resulting educational benefits. In this study, the
effectiveness of instruction was assessed on a
variety of cognitive, affective-and motivational
outcomes.

A third methodological difficulty has been the
need for more sophisticated hypothetical models of

complex instructional situations. As Cronbach3, 4

has repeatedly advised, it ie crucial to carefully
describe the specific instructional elements being
investigated, the type of material being presented,
the characteristics of the individual learners, and
the nature of the outcome variables. In this
study, specific instructional strategies were
implemented as specific algorithms and routines in
an instructional computer program. Focusing on a

single subject matter area (computer programming),
an Aptitude by Treatment Interaction (ATI) design
was used to assess the relative effectiveness of
instruction on learners With differring individual
characteristics.

174



www.manaraa.com

Method
A minicomputer was used to teach introductory

computer programming to 81 college undergraduates

using either a discovery'or didactic instructional

strategy. Learners had no previous computer

programming experience. The didactic strategy used

an expository programmed learning sequence. The

question-answer-feedback format of this approach is

representative of many current instructional

applications of computer assisted instruction

(CAI). The discovery strategy used a computerized

discovery learning environment incorporating

instructional heuristics and epistemological

assumptions of the discovery approach. The

discovery environment consisted of short model

programs which could be learner-modified and

executed. During (deliberately slowed) program
execution, the computes screen displayed simulated

dynamic computer transactions. The amount of

personal initiative required of discovery learners

was varied by prohibiting or encouraging learners

to initiate their own changes in the model

programs. In all discovery treatments, the visible
immediate feedback provided by executing programs

and program variations provided the opportunities

for learning.
Instructional treatments (each approximately

one hour nufstion) were compared for

effectiveness on eleven outcome dimensions (derived
from these: multiple choice posttest items,

program generation tasks, confidence ratings,

Continuing Motivation measures9, risk-taking

measures, and general rating scales.) Two

individual difference variables were examined for
possible Aptitude by Treatment Interactions:

Internal-External Locus of Control
13

, ( IF " ); and

(2) a measure of cognitive ability ("Ability",

based on the SAT Verbal score and an algebra word
problem test.)

Data Analysis and Results
Data analysis was performed using stepwise

multiple regression techniques as suggested by

Cronbach and Snow4. There were four experimental
treatments (N=20 for each treatment group):

1. Discovery High Initiative (learners made

own changes)
2. Discovery Low Initiative (learners made

only suggested changes)
3. Discovery Optional Initiative (learners

made own and/or suggested changes)
4. Expository Programmed Learning (branching

programmed instruction sequence)
Treatment effects were partitioned into the

three orthogonal treatment contrasts of most

theoretical interest. Independent variables were

entered in the prediction equation in a

predetermined order: Ability, IE Locus of Control,

pretest covariates (deri-ed from an identical

training session given all subjects), treatment
vectors, then second order interaction vectors, and
finally third order interactions. Using this

"step-up" regression strategy, the increase in R
squared due to each successive term was tested for

statistical significance with F ratios constructed
using the error term of the final full model. The

results are summarized in Table 1.

(1 )

158

Aptitude by Treatment Interactions were

interpreted using graphic representations and the

Johnson-Neyman technique8 '12. An example of such

an interpretation is illustrated in Figure 1.

Posttest Effort represents the subject's response

to a final rating scale: "How seriously did you
try to answer all the previous questions?". After

being residualized on other significant predictors

(in this case, a better (faster) training score

predicted higher reported effort), Posttest Effort
was separately regressed on IE and Ability. The

resulting disordinal interaction obtained for IE is
sketched in Panel 4 (bottom right quadrant) of

Figure 1. Construction of a Johnson-Neyman (p<.05
level) region of significance indicated that for

subjects with IE scores less than 8.9, discovery
instruction was significantly more effective while

for subjects with IE scores greater than 16.2,
Programmed Learning was more effective.

Interpretation of significant three way

interactions (Ability by IE by Treatment) was aided
by three dimensional figures. For example, the

results for Confidence in Right Answers (confidence
ratings after each posttest item were averaged

separately for items answered correctly and

incorrectly) are, illustrated in Figure 2.

Comparison of corresponding corner points of the

two surfaces in Figure 2 helps summarize the

character of the interaction:
1. Discovery was more effective for Internal

low Ability subjects and External high Ability

subjects.
2. Expository instruction was more effective

for Internal high Ability subjects.

3. The most striking difference between the
two surfaces was the exceptionally poor performance

of Internal low Ability subjects under expository

instruction.

Summary and Conclusions
The differences among discovery treatments

were more suggestive than dramatic. However, these

within discovery comparisons did demonstrate the

practicality of comparing variations in the

discovery approach. Experimental control over

instructional elements of discovery instruction
offers numerous departures for further research and
promises continuing refinement of a computerized
discovery approach.

In contra& to within discovery comparisons,

the differences between discovery and expository

programmed learning were substantial. These

results can be summarized in five general

conclusions.
1. Expository instruction led to superior

reception and recall of basic programming facts and
rules. Discovery instruction led to better

integration of newly learned material as evidenced
by superior performance writing programs and on

multiple-choice posttest items requiring
interpretation or extrapolation. It is interesting

to note that if all cognitive outcome items had

been lumped together as a single achievement
posttest, the differential performance on each

subskill would have gone undetected. The failure

to separate posttest items of different types may
be one contributing reason to the dearth of

.17,



www.manaraa.com

Table 1

Increase in Percent of Outcome Variance Accounted for by Each Term

(Values Below 1.0% Not Displayed)

Outcome

Measure P N

Neat 81
Transfer

Far
Transfer

81

Gen
81

onCiPageMa 78

;A b
oaihteiss 76

inVOge. 76

Risk Taking 81

PffliFit
a

74

CM
c

78

Inforlig2Rgi

TakUppellar
b

Pcate
Instruction

lime

78

76

81

60

Full

Model A I P TI T2 T3 AT1 AT2 AT3

1

30.6P 16.74 XXX 1.7 4.1P 3.1

32.3q02.7q 5.7p5.7P XXX 8.3q 2.6

32.1q125.7q XXX 4.5P

24.5 7.0P 9.1q 1.7

41.7q 16.6q 7.24 6.94 2.1

34.0p 11.84 3.4 2.0 9.51;

38.8q ;17.2q XXX 2.8 1.6

29.81)1 4.7P 5.4P 1.1 2.5

32.4P 14.2g 4.6P

25.6 2.1 2.9 4.6P 9.84 1.7

31.1p 5.6P 1.6 4.8P 2.3 3.9

30.6P 1.2 XXX 1.0 2.6 5.5P 6.7P

34.IP 15.5
q

XXX 5.2 1, 1.3 5.6

IT1 1T2 IT3 AI AIT1 AIT2 AIT3

1.4

1.7

4.2

3.21

3.6

Significance of F Test : p=p<.05 qr.v.01 ma = Not in Model
A = Ability I = Internal-External Locus of Control (IE)

P = Predictor: a=Training Score b:Pace c:Key Count

T1 t. Nigh Initiatve Discovery versus Low Initiatve Discovery
T2 Optional Initiative versus Mean of High and Low Initiative Discovery
T3 t Programmed Learning versus All Discovery

1.7

XXX

XXX

XXX

1.9

XXX

XXX

XXX

XXX

XXX

XXX

1.2

2.8 XXX XXX XXX

6.4P 2.9

12.4q XXX XXX XXX

2.5 2.3

XXX XXX XXX3.5

4.8P

14.0

2.2

XXX

1.9

XXX

XXX

1.8

XXX

XXX

XXX

XXX

XXX

XXX

4.6P

XXX

3.7

XXX

XXX

XXX

5.9P

XXX



www.manaraa.com

Figure 1

Separate Regressions of Ability and IE on Posttest Effort.

6.0 t

E
5.3

F

Fo 4.5 pg+

R

T
3.8

2

Within Discovery

DO

NI

+
+2

Prgrm'd Lrning vs Discovry

4

1 +
1

+ +
X +1

Ability

+
i

1

i

4
1

1

1 PL

o' D

PLI
t
1

1

1

1

+ + + + +
2 1 X +1 +2

Ability

6.0

5.3 t

F DH

o

F BE

3.8

2

(Int)

Within Discovery Prgrm'd Lrning vs Discovry
t

t PL
DI

N
4.

.

.

1

pLf
.

,

.

.

+ + + + 1 + + + +
6 10 14 18 2 6 10 14 18

IE !(Ext) (Int) IE (Ext)

Posttest Effort : high="tried hard to answer all questions correctly"
low=udid not care about answering questions correctly"

Each X and Y axis unit = 1 standard deviation
Int = Internal Locus of Control Ext = External Locus of Control
DH = Discovery High Initiative
DO = Discovery Optional Initiative
DL = Discovery Low Initiative
PL = Expository Programmed Learning
D = Combined Discovery (DH, DO & DL)

160



www.manaraa.com

6.5

3

0

Figure 2 Regression of Ability and IE on Confidence on Right Answers

FroBrammed Learning

6

5

4

5

5

5

Combined Discovery

43.6

U

6.5

5.5,t

4.50

C

C
0
U

2.6

k,11110,410
,4$tot°

Sot'

Resealed regression equations: Programmed Learning Y' 4,118g +.85Ability +.191E -.44Ability x IE

Combined Discovery Yis4.63 +,27Ability -.O1IE +.17Ability x IE

Note: each scale unit represents 0.5 standard deviations.

178



www.manaraa.com

consistent findings in previous dtudies of
discovery learning. The results of this study

strongly support the work of Mayer
10

in emphasizing
the differential structure of cognitive outcome.

2. Diucovery instruction led to higher
self-confidence ratings, but only on correctly
answered posttest items. This is interpreted as
indicating superior cognitive discrimination after
discovery instruction. This critical ability to
discriminate levels of certainty about new
knowledge is seen as an important (and neglected)
educational outcome.

3. Discovery instruction led to higher levels
of expressed interest in continuing computer
programming instruction in additional educational

settings. This supports Maehr's9 conceptualization
of Continuing Motivation as generalizing beyond the
liking of instructional method to increased
interest in instructional content. This finding
also supports the motivational implications of
discovery learning as expressed by other

researchers1,5 Discovery instruction appeared
more capable of "turning-on" learners than did
expository instruction.

4. The results on affective and motivational
outcomes indicate that lower Ability learners
benefited more from discovery instruction than from
expository instruction. Additionally, in contrast
to many previous findings, lower Ability learners
showed the same level of cognitive achievement
(relative to higher Ability learners) regardless of
discovery or expository instruction. Thus this
study suggests that discovery can be an effective
and promising strategy. for teaching computer
programming to lower Ability learners.

5. The results for IE Locus of Control showed
that Internals did better under discovery
instruction while Externals did better under
expository instruction. This interaction was
particularly evident on motivational and affective
measures but was remarkably consistent across all
eleven outcomes. These findings confirm the
relevance of Internal-External Locus of Control as
an important variable in educational research.

In summary, this findings lend definite
empirical support to important expectations of
discovery learning theory. Despite the relatively
short duration of instruction, a substantial number
of significant treatment differences were observed.
The use of computerized learning environments is a

--
flexible and promising research approach for the
controlled investigation- "of instructional
processes.

An instructional, program based on this
research has been implemented on an Apple
microcomputer. The program, named Sherman,
provides self-instruction in the Pilot programming
language using a discovery oriented approach. It
requires an Apple He computer or.an Apple II with
64K and an 80 column board.

References

1. Bruner, J.S. The act of discovery.
Harvard Educational Review, 1961, 31, 21-32.

2. Cronbach, L.J. The logic of experiments on
discovery. In L. Shulman & E. Keislar (Eds.)
Learning by discovery: a critical appraisal.
Chicago: Rand McNally, 1966.

3. Cronbach, L.J. Beyond the two disciplines of
scientific psychology. The American Psychologist,
1975, 30, 116-127.

4. Cronbach, L.J. & Snow, R.E.
Aptitudes and instructional methods. New York:
Irvington, 1977.

5. DeCharms, R.
Enhancing motivation: change in the classroom. New
York: Irvington, 1976.

6. DiVincenzo, R.M. Forming a theoretical synthesi3
for viewing discovery learning instruction.
School Science and Mathematics, 1980, 80, 218-226.

7. Hawkins, D. Messing about in science.
Science and Children, 1965, 2, 2-6.

8. Kerlinger, F.N. & Pedhazur, E.J.
Multiple regression in behavioral research. New
York: Holt, Rinehart, & Winston, 1973.

9. Maehr, M.L. Continuing motivation: an analysis
of a seldom considered educational outcome.
Review of Educational Research, 1976, 46, 443-462.

10. Mayer, R.E. Different problem-solving
competencies established in learning computer
programming with and without meaningful models.
Journal of Educational Psychology, 1975, 67,
725-734.

11. Papert, S.

Mindstorms: childrent_computers, and powerful ideas,
New York: Basic Books, 1980.

12. Rogosa, D. Comparing nonparallel regression
lines. Psychological Bulletin, 1980, 88, 307-321.

13. Rotter, J.B. Generalized expectancies for
internal versus external control of reinforcement
and decision time. Psychological Monographs, 1966,
80, (No 1, Whole No. 609).

14. Strike, K.A. The logic of learning by
discoVery. Review of Educational Research, 1975,
5, 461-483.

Note: this article is a summary of the author's
doctoral research at The Catholic University of
America. The dissertation based on this research
was among five finalists for the American
Educational Research. Association's Outstanding
Dissertation Award for 1982. The instructional
computer programs used in this study were
originally 'developed by the author to run on a
PDP-11/34 minicomputer.

162

17J



www.manaraa.com

CHECKING LAB CALCULATIONS

William F. Pelham

Physics Department, Towson State University,
Baltimore, Maryland 21204

Abstract

Computer programs were written, as APL func-
tions, that checked every single calculation made
as part of the required laboratory work in a two
semester General Physics course. Both the values
and the roundings of the results of the calcula-
tions were enamined. Students reported individu-
ally, in an interactive mode, and received
immediate evaluations; records were kept of their
entries and successes. A description of the work,
the bases of the programming, and some results of
a six semester trial are given.

Students attending a required laboratory
session in General Physics courses are presumed
to know the purpose of the work to be performed,
to have read the directions, and to understand
the theory behind any calculations to be made.
Typically, some instructions are given them
before starting work, particularly on the use of
equipment, and the experiments are then conducted.
After the work is completed, a written statement,_
following the raw data, giving the "results" of
the experimental work is prepared in the labora-
tory notebook. The notebooks are periodically
submitted for evaluation, and the contribution to
the course grade of the laboratory work is
largely based on these evaluations.

Almost all the laboratory exercises involve
using the data in calculations; these vary in
complexity, but are usually quite simple in form.
It is in doing the physics, relating the data to
the physical concepts being used, that students
have trouble. Using the wrong force, or the
wrong current, for example, will give numerically
wrong results that may not look suspiciously dif,.
ferent from the right ones.

When the notebooks are evaluated, often by
student assistants, every calculation is not
repeated and there is, thus, the possibility that
erroneous results, derivinr,, from faulty physics,
will remain undetected. The power of the labora-
tory to reenforce and explicate the lecture can
be, clearly, compromised. A way to minimize
undetected calculation errors is to have a com-
puter perform the same calculations, using the
student's own data, and compare results. This
gives an immediate evaluation and has the advan-
tage of doing it while the work is still fresh in

163

mind. A commitment was made to develop systema-
tic procedures and computer programs that would
check lab calculations. The remainder of this
paper will describe the general plan for doing
this, pedagogical decisions made, several results
of a six semester trial, and some conclusions.

General Plan

Every single calculation performed by every
single student would be checked for numerical
correctness and proper expression. Proper
expression means the correct number of significant
digits in the result of a computation as deter-
mined by the rules of significant digits and the
uncertainties of the contributors to the computa-
tion.

In an interactive mode, then, a student would
enter raw data, carrying only one uncertain digit,
and the results of the requested computations.
Thn computer would perform the same computations
and compare its results with those of the student.
Questions requiring discursive answers could be
askai at appropriate points. When all questions
were answered, or the student elected to stop, the
computer would prepare a summary of the student's
success and it, along with everything the student
entered, would be stored. The instructor may
examine the stored material for grading purposes
and for helping students see where they went
wrong.

Pedagogical Decisions

Before programming could start, certain ques-
tions needed answers. The list that follows gives
most of the quesOons and the answers used in
guiding the construction of the programs:

1. When in the computing session, if ever,
should a student be told whether his and the com-
puter's results agree? Immediately? At the con-
clusion of the session?

Answer: Immediately; first, whether the
numerical result is corrert and then whether there
is a significant digit error.

2. Should a student be given a chance to
correct an erroneous result, and if so, how many

times?
Answer: Yes, unlimited times.

18o



www.manaraa.com

3. Should the student be given the computer's
results?

Answer: No for the numerical part, yes
for the rounding, but only on request and with a
concomitant loss of credit.

4. May a student redo all or part of the
report during the current session or a later one?

Answer: Either way. A count will be
kept of the number of recordings of the report.

5. May a student stop before a report is
completed and finish it at a later date?

Answer: Yes.

6. Should there be a penalty for late
reports?

Answer: Yes.

7. Should the computer attempt to provide
instruction?

Answer: No.

Programming

The entire operation was to be run on the
available UNIVAC 1100/10 computer through dial-up
access with DECWRITER II terminals; the terminals
were not, and could not be, located in the labora-
tory. APL was to be used to write all the pro-
grams (henceforth called APL functions) because it
seemed especially convenient for the task being
considered. Doubtlessly, the special features of
APL affected the programming strategies used, but
that is probably the case whatever the programming
language.

Some features of APL and how they were
employed will now be given:

a) The APL environment itself, with its
ability to have numerous functions, sitting in an
easily retrievable workspace, that can be called
as utility functions by a master function. All
the digit counting, rounding and file usage were
handled this way.

b) APL random access files into and from
which multi-dimensional arrays can be written and
read as a single variable. Each student's report
was stored and retrieved, with one instruction, as
a 3 dimensional array containing 3-2 dimensional
matrices of, typically, 26 rows and 6 columns each.

c) The ease of locating and selecting data
elements from both character and numeric vectors
and matrices. Each student entry was a character
vector and it was examined for errors, and the
digits of each number counted before conversion,
via the execute operator, to numeric data. The
summary of the student's success was also simpli-
fied by these features of APL.

d) The ability of APL to perform parallel
processing facilitates the entering and handling
of repetitious data. When 5 runs were made, all 5
calculations were done simultaneously with one
instruction, greatly shortening the function.
Indeed, the compactness of APL results in short

164

functions, a kind of dense pack of instructions,
albeit sometimes hard to read in detail, but rela-
tively easy to follow as far as the flow of thought
is concerned.

As hinted above, each student entry was
examined for the number of significant digits and
the place value of the uncertain digit. Up to 5
items (an arbitrary decision) were entered on one
line, so entries were stored, temporarily and in a
file, as 6 column matrices. Each calculation got
its own row. One matrix was used to store data
and results, one to store numbers of digits, and
one for place values; these were catenated into a
3 dimensional array before storage in an APL file.

Security was maintained by having the func-
tions that read from and wrote into 'the file
locked. Locked API. functions cannot be listed by
anyone including the locker. The file name, con-
sequently, remained unknown to the students. To
know what was in the locked functions meant that
unlocked copies had to exist somewhere out of stu-
dents reach, and.they did. To get at them
required a knowledge of 4 different keys and the
instructor's personal ID. If one was not experi-
enced in APL, it also meant the ability to decipher
the UNIVAC APL Users Guide.

The master functions, one for each lab exer-
cise, were stored as elements in a UNIVAC program
file and written with digraphs rather than the
special APL symbols. This was done originally to
avoid filling an APL workspace, but turned out to
be advantageous in that the UNIVAC Editor could be
used to correct and update functions, a much more
efficient method than using the available APL
function editing procedures. When it came time for
a particular master function to be used, it would
be added to the runstream, inside the APL pro-
cessor, as a file element with the UNIVAC ADD com-
mand. Since an APL command was also in the file
element, the reporting process was initiated auto-
matically upon completion of the ADD.

A sample of a student report together with a
few annotated lines of programming will be found
in the APPENDIX.

Results of Trials

As the reporting system began to be used by
the first of the total of 350 students, unsuspected
problems arose, some of which could be corrected
and some of which await solution. Perhaps the
most frustrating occurrence for students was to
make a typing error of a sort that would cause the
execution of the function to be suspended; this
happened often in the beginning. In APL, if a
statement cannot be executed, an error message is
printed and the number and content of the unexecut-
able line follow. The system then waits. Things
are not stopped, however, merely suspended, and
the function can be restarted at any line with an
appropriate command. All variables remain intact.
Attempts to instruct the students how to restart
the function were not completely successful. (They
were to type $GGOBACK whereupon the responss would
be "To Where?" Their reply was supposed to be the

181



www.manaraa.com

question number to which they wished to return.)
The main problem seemed to be a lack of recogni-
tion that the function had been suspended. None
of the students was familiar with APL. A special
error detection function was written to help this
problem and it has somewhat. Other solutions will
be attempted.

Another unexpected problem was that many stu-
dents refused to believe the computer. They were
right and the computer was wrong. They would
repeat the same entries over and over sometimes
with slight changes. They would claim that their
lab partners had gotten the exact sequence of
entries declared correct that, for them, were
declared wrong; and reams of paper,
they would finally slap the print-out down on the
instructor's desk and essentially dare him to
prove them wrong. He virtually always would and
it was almost always because the students had made
physics or digit mistakes.

The above circumstances inevitably arose with
the less able students. The good students, who
had everything right before they started, breezed
through the reports. The unsure students would
start skipping about, calculator in hand, changing
earlier entries until, after a while, they lost
track of what data the computer was using to make
its calculations and consequently accused it of
being in error. By the end of the second semester
of the course, the general level of the discipline
necessary to track through the print-outs had
improved, but the full acceptance of the need to
be completely logical about a sequence of steps
was not universal.

Another unwholesome situation developed when
% differences were being calculated; students were
instructed to express the results of such calcula-
tions to only one digit (the fact that they would
round 0.62% to 1% and throw up their hands at 13%
didn't help matters). When the computer would
tell them for, say, the fourth time that their 5%
was wrong, they would resort to trial and error:
first 4, then 6, then 3, then 7, and so on. Some-
thing will have to be done about this.

Good things happened, too. Misunderstandings
were brought to light, even with better students,
that the reading of a lab notebook would not have
detected. There was a drive to get it right,
instilled by interacting with the computer, that a
red X in a notebook would not create. Consulta-
tion with the instructor to see why the computer
called them wrong, and the subsequent acceptance
of the correct result provided considerable satis-
faction to many students.

Upon informal inquiry, it seemed that the
better students liked reporting their results on
the computer. For students poor in physics and/or
for those few who seemed permanently bewildered by
the process of using the computer, computerized
lab reporti;ly cost them hours of time; a reduction
of this waste is needed and will be attempted.

165

Conclusions

Some of the answers to the pedagogical ques-
tions given in an earlier portion of the paper may
have to be changed. Unlimited ability to make
changes, in particular, seems to be in need of
revision. This is what ultimately uses the stu-
dents' time; perhaps an automatic review of
entries or a referral to the instructor after a
few tries is what is needed.

Writing the functions and continuously
improving them is sometimes tedious, but is not
unpleasant and is rec3mmended. A rethinking of
the entire scheme seems now due, particularly with
a view to making it easier to add and subtract
questions; if other faculty members, not adept in
APL, are to use the reporting system, it is essen-
tial that tinkering with the questions be as easy
as possible.

Merely checking the results of calculations
is, obviously, not the whole of evaluating a stu-
dent's learning in required laboratory exercises.
Other aspects of laboratory work (preparedness,
quality of work, follow-up) can be part of a com-
puter managed laboratory. The insistent nature of
the computer's responses and the motivation to suc-
ceed that it induces suggest that learning will be
improved through computerization of laboratory
work. To have a "go-no go" test of preparedness
to perform a lab would, however, require on-line
computation in the laboratory and, most likely, a
so-called "open" laboratory schedule; i.e., a
schedule that permits students tc work in the
laboratory at virtually any time. The work being
reported can easily be adapted to the open lab con-
cept and was undertaken with that possibility in
mind.

Appendix

First, some printout of a typical student

interaction. Q1 is straight data input, Q2 is the
result of a calculation, correct, in this case, Q6
shows some student errors and Q7 shows the reintro-
duction of previously entered information.

> @ADD CML.REPORT20306
ap1/1100 level 7r1bv2 tue 03/01/83 16:20:39
clear ws
good day garrett , if you are all
set to report a lab, type ok, if not, type stop.
>OK
it is 2 days after the lab was performed, and you
are:

on time in reporting.
this is to report lab 6
type done to stop, delta to change place.
type y to have sigdigs evaluated, n not to (with
lower grade).
>Y
Q1:first, we'll check the calculation of the
friction
force. enter fup, fdown (in newtons) and theta, in
radians.
>1.62 .539 .524
Q2541:give the friction force in newtons.
>.

182



www.manaraa.com

calculations all ok
sig digs all ok
Q6: give the change in potential energy, in j, as
the block moves between the two beams, run 1, run
2.

>.2320. .2020
incorrect values are 2nd
do you want to reenter it (them) (y or n)?
>Y

>.222
there is a sig dig error in the 2nd entry(ies)
do you want to replace it(them) y or n?
>N
do you want to know the correct form(s), y or n?
>Y
2nd entry should have 4 digits.
Q7: and now the ke change + the friction work, in
j, run 1, runt.
>OLO

print old entry? y or n.

2.200,1 2.20e&l
calculations all ok
sig digs all ok
last chance to make a change. type done or delta.
>DONE
done--your work has been recorded
you will now be automatically signed off apl.
sign off system or @add report another lab.
apl terminated

Next are the master function lines associated
with Q7.

80:Q7:'Q7: AND NOW THE KE CHANGE + THE FRICTION
WORK, IN J, RUN 1, RUN2.
81:PL$S'7'
82:NUM$S2
83:ENTER
84:$QACT
85:ANS1$SKF$SENT
86:ANS$S-/PQ$S.5$XSLM[3]$X(SLM[2]%1[2 1])*2
87:ANS$SANS,-/WR$S.5$XSLM[3]$X(SLM[2]%T[4 3])*2
88:ANS$S ANS+FF$XSTAR
89:i$S$C /PQ RNDNP $L/MT[4;1 2],MT[3;2]
90:N$SN,$C/WR RNDNP $L/M1[4;3 4],MT[3;2]
91:WW$S(FF$XSTAR) RNDNP MT[2;1]$LMT[5;1 2]
92:ANS$SANS ROUNOP N$SWW$CN .

93:ITEM$S8
94:RETEST
95:N SIGCHECK 'AA'
96:KF$SANS1

Bear in mind,that APL goes from right to left.
Line 85 is the student's entry called KF and ANSI.

Lines 86, B7 and 88 calculate the "correct" result
from data entered earlier; it is a 2 element vec-
tor, unrounded, called ANS.

Lines 89, 90 and 91 compute rounding informa-
tion and line 92 rounds ANS correctly. The func-
tion RNDNP takes the quantity to the left of its
name and rounds it to the number of digits to the
right of ics name ($L/ selects the smallest number
of digits from the group of 3 to its right); the
function returns the place value of the rightmost
digit of the rounded quantity. ROUNDP rounds the
left quantity to the place value given on the

166

right and returns the rounded number. Lines 86

through 92 are doing the same calculations on two
numbers simultaneously.

183



www.manaraa.com

TEACHING UNDERGRADUATES TO THEORIZE THROUGH THE USE OF A
COMPUTER SIMULATION OF KIDNEY FUNCTION.*

by David L. Wilcox

Biology Department, Eastern College
3t. Davids, Pennsylvania

Abstract

Using a simulation of osmoregulat-
ion, ninety seven physiology students in
four different classes engaged in student
research projects, deducing model struct-
ure through open ended experimentatidn.
They each developed theories, designed
experiments, interpreted results, and
reported to the class in journal format.
Each class made considerable progress in
deducing model structure, developing such
typical traits of the scientist as doing
extra (no credit) experiments and part-
isanship of certain theories. They de-
bated their opinions concerning kidney
control mechanisms with great enthusiasm,
and they learned a considerable amount
about kidney function.

Introduction: Creativity and Simulation

Often we are victims of our own
success in the teaching of science. Be-
cause the current "state of the art" in
science changes so rapidly, we spend most
of our time explaining current formulat-
ions, and our students know little of the
thrill of discovery. However, a number
of writersl have demonstrated that the
quality of independent student investi-
gation such as publications, senior theses,
or even science fair projects, are dis-
tinctly better predictors of students'
future productivity in their discipline,
than such, traditional measures of student
ability as the SAT, GRE, or college grades.

Directed student research is, of
course, costly both in institutional funds
and in instructional time, and it may re-
duce the content which students will mast-

. er. It seems likely, however, that net-
glecting of the needs of our more creative
students may be even more costly, and may
reduce the number of really creative
students who choose to enter or remain in
science2.
*
Under partial support of N.S.F. LOCI
grant: SER 79-00115.

A partial solution to this problem
may be the use of simulations in investi-
gative labs. Simulations provide a power-
ful substitute for certain investigations
for which one does not have the time, equip-
ment, expertise or moral right. Due to the
speed of the process, and to the limited
number of variables which can interfere
with the experimental process, the computer
simulation of biological systems may be
used to give the student experience in the
process of scientific discovery within the
time constrants of a single course. Such
open-ended experimentation introduces stun
dents to scientific thought at a level not
usually experienced before graduate school.
In a time of limited educational funds,
simulation may be the only affordable way
to allow students to repeat an experiment
and learn from their errors3.

Simulations may be used as laboratory
exersizes in various ways, ranging from
simple demonstration to the design of new
mathematical models. A few notable examples
include: the demonstration of system con-
trols, the deduction of system relationships,
an effort to control the system, the deduct-
ion of parameter values, the identification
of unknowns, the upgrading of present models,
and the design of new models.

The Design of the Kidney Simulation

The project being reported in this pa-
per used a simulation of mammalian fluid
balance as a system for open ended labor-
atories. The program was originally de-
signed to run on an Alpha-Micro mini-com-
puter with time sharing capacity, using
five CRT terminals and a TI 810 printer.
Each CRT is assigned 32,000 bytes of dynamic
memory.

In writing the "Kidney Project"
simulation, I used the MENTOR simulation
system, designed at Eastern College. (A
short version of MENTOR has recently been
written for the Apple II.) MENTOR consistsfq
of a modular base upon which models using L
sets of difference equations may be sim-
ulated. Besides its availability to us, its
most important advantage was its very high

167



www.manaraa.com

flexibility in experimental design, nec-
essary if students are to effectively form
and test their own hypotheses. In MENTOR
simulations, the user (student) sets the
length of the experiment and the time in-
terval between observations, chooses the
observations, changes the number and the
size of the experimental groups, sets
times at which values may be changed, and
assigns the values for any and/or all of
the simulated system's parameters. This
flexibility allows an almost infinite num-
ber of possible experiments. In addition,
the MENTOR system supports its simulations
with a package of 'utility' programs to
analyse and graph data, advise on exper-
imental design, and store or copy data
files. Additionally, the interactive
nature of the system enables a student with
ten minutes of introduction to work on a
simulation without supervision.

The computer program, "KIDNEY", sim-
ulates a terrestrial mammal's homeostatic
controls of fluid and salt levels. As the
compartment model in Fig. 1 shows, the
model has four interacting "flows" of
material: the two substances controlled,
fluid volumes and amounts of sodium; and
the two controlling hormones, anti-diuretic
hormone and aldosterone. I assumed that
the water reabsorbed from the nephron
comes from two locations, the convoluted
,tubules (including the aldosterone sen-
sitive site in the distal convoluted
tubule) and the collecting duct. Sodium
reabsorption I assumed to be a function
only of the first location.

Fig. 2 shows the major variables of
the model linked in a signal flow diagram.
Flows and levels of sodium are given in
percentage (meq.). Cardiovascular con-
ditions control hormone synthesis, and the
hormonei in turn control reabsorption.
Clomerular filtration oas a function of
blood volume and several other cardiovas-
cular parameters.

The model has 41 parameters, and can
be reduced to eight differential equations
(Appendix 1) representing the blood levels,
the amounts in the intake and urine col-
lection "jars", and the hormonal levels.
Observable variables given students include
the sodium concentrations and fluid volumes
of the intake, the blood, the glomerular
filtration, the flow in the convoluted
tubules, site specific reabsorption and
the urine. The model also includes di-
urnal changes in CFR, and tolerance limits
for blood volume.

KIDNEY has been used to allow my
physiology classes to pursue a semester
ion, class research project. Each class
had the goal of deducing the structure and
the control loops of the kidney model.
Starting from scratch, every conclusion
had to be supported directly from their
data. At monthly intervals, each student

168

independently designed, ran, and "published"
an experiment in an in-house journal, "The
Kidney Project Record". Each paper thus
became primary literature for subsequent
student research. Students could also
write "letters to the editor" for extra
credit. Following each set of papers, the
class discussed their current understanding
of the model.

Results of the Use of the Kidney Program

Variation in and between classes
usually makes the evaluation of an educat-
ional innovation very difficult. However,
this project produced products which could
be analysed and evaluated as concrete
entities, student scientific papers. The
results clearly demonstrate the scientific
process going on in the class.

Fig. 3 shows three figures from a
student's papers (Brauch, 1979), summariz-
ing the current thinking of 'the class at
3 points during the semester. Her diagrams
clearly show the development of theory in
the group of students. There was an aver-
age of eight new relationships "discovered"
with each new set of papers. Although
total knowledge increased, it was not by
a smooth accumulation of data. Even in
this simple system, students sometimes
disagreed in their interpretations of
data, and there were some "contradictory"
results.. Even "test" experiments might
not resolve debates, and new parameters and
complexities were discovered.

A good illustration is the changing
view of the relationship between intake
rate and the blood volume. The student
researchers initially thought this a
simple, direct relationship (Fig. 3a).
By the second paper this consensus had
broken down, and for most of the rest of
the semester my class had two "schools
of thought" about the effect of fluid
intake rate on blood volume (Figs. 3b
and 3c). The confusion came from neglect
of the indirect effects of salt intake vs.
water intake. Instead of immediately
correcting them, I let them argue. Fig. 4,
which shows the final understanding of
several of the students, demonstrates the
results. Eventually, most of the class
was convinced by the "negative feedback"
school (which was correct). The speed of
simulated studies allowed the experimental
process to continue long enough to be self
correcting. This pattern of changing
thought is remarkably similar to the ideas
of Thomas Kuhn on the process of science4.

By the end of the study when the
illustration in Fig. 4 were prepared, most
of the students had learned to weigh data
and reject useless hypotheses, as seen
in the reduction of total complexity be-
tween Fig. 3c and Fig. 4a, b, and c. A
few students, however, seemed unable to do

185



www.manaraa.com

B -GFR-->TV-->UVkj...

PTR-

CDR

BNA-1GFNA-tAR2NAtii
ItPTR-

-SADR*ADH -LADH* -SALDO)ALDO-LALDO-*

Fig, 1 A model of Kidney Function: Fig. 2 A Model of Kidney Function:
Material Flow

Signal Flow

BV total blood volume
BV = total blood volume

IV = rate of water intake
IV = rate of water intake

GFR glomerular filtration TV = tubular flow rate
UV urine production rate B% = percent blood sodium
BNA = total blood sodium

I% = percent sodium intake
INA . rate of sodium intake

ALDO = aldosterone level
GFNA tubular load of sodium JAR = volume in intake jar
UNA a sodium excretion GFR = glomerular filtration
ALDO aldosterone level UV . urine production rate
SALDO . ALDO synthesis rate T% = percent tubular sodium
LALDO . ALDO degradation rate U% . percent urine sodium
JAR V volume in intake jar ADH = antidiuretic hormone level
JAR V . volume in collection jar

TV

PTR

. tubular flow, rate

isotonic reabsorption

CDR . water reabsorption

JAR NA = sodium in intake jar

JAR NA . sodium in collection jar

PTR = reabsorbed sodium

ADH . antidiuretic hormone level
SADH = ADH synthesis rate

LADH = ADH degradation rate

i G



www.manaraa.com

NQ Ins}
3

et-f F 11. J:\o- :$

it /
/ I 'Blood vet. 0--)

-1.. - - -/
I

I
i / TZA....ia.-

I
I

+
V/4. I Fit t...k.

---
I I th;nc No. t 4 i

-41

I r- ft
. .

, . \. \
, . \. /\ % r

.1 ADR Adosvona t'
Fig. 3 Changing Views of Kidney Function

(.0
Stan,r,Nary ePCkee

d;adireerrAni
Or.e 0k...rear< kg r

A.,,:.!env.,I Wievican Ira uck

170

in a Physiology Class Using Open-
Ended Simulation to Deduce System
Function.
papers)

a. Summary of 10
b. Summary of 10
c. Summary of 10

(Figures from student

student papers: Oct. 15
student papers: Nov. 1

student papers: Nov. 21



www.manaraa.com

(a)

Fig. 4 Four Final Views of Kidney Function
iu a Physiology Class Using Open-
Ended Simulation to Deduce System
Function. (Figures from student
papers)

171 188



www.manaraa.com

this (Fig. 4d), retaining most of the
postulated relationships of Fig. 3c.

Although the class developed a generrl
consen,:us concerning the model kidney,
areas of disagreement still existed at the
time we terminated the project with a dis-
cussion of the real model (Fig. 2). As
an example, consider the four views of
the direct control of ADH expressed in
Fig. 4. One student (Fig. 4b) was correct,
one added two non-existant or remote re-
lationships (Fig. 4a), and two of them
(Fig. 4c and d) missed the direct link
entirely. If the project had continued,
this disagreement would have led to debate
and research aimed at discovering the roles
of blood volume and blood sodium in trigg-
ering ADH release.

The last observation is of great im-
portance for evaluating the use of sim-
ulations as student research systems. By
the end of the semester, more than forty
individual investigations had been re-
ported without completely explicating the
dynamics of the model system. In fact,
the class never moved beyond signal flow
diagrams to the next logical step, writ-
ing their own model equations.

Model systems of the complexity of
the kidney model (six differential
equations) are very unlikely to be ex-
hausted by student research. Such com-
plex models will be as opaque to the
student's understanding as the biological
systems on which they are based, and if
accurate, will be equally beneficial in
teaching the dynamics of the system. In
fact, since the student will be able to
observe at least ten fold more events,
many of them impossible in a student
laboratory due to constraints of budget,
time, equipment, and technique, a well de-
signed and accurate simulation could be
an even more effective experimental system
than the real thing.

Conclusions

This report demonstrates how a sim-
ulation of a biological system, such as
osmoregulation, may be effectively used in
the teaching of physiology as a system for
open ended student research projects.
Students were able to conduct significant
research as part of the course laboratory,
and they were able to analyse their data
and synthesize their new experimental
knowledge into significant scientific
models. In the process they evaluated
experimental results which would have been
impossible for undergraduates under
traditional laboratory conditions.

Beyond the limited use of computers
in specific disciplines such as Physiology,
I believe this study may also have sig-
nificance to a wider frameof reference,
i.e., the whole process of science educat-
ion. As our knowledge of the universe

increases exponentially, it becomes in-
creasingly difficult to train new scientists.
Equipment costs more, the "core" information
is far greater, more connections beiween
disciplines are evidently necessary, and
our educational resources are reduced. As
a result, students today are unlikely to be
able to use the tools of their discipline
at their own discretion until they complete
their terminal degree.

These problems can be met in part by
the judicious use of computer simulation.
Computers may simulate expensive equipment,
both training students in its use and sim-
ulating its output for student analysis.
Computers may also effectively demonstrate
complex phenomena, including cross dis-
ciplinary topics, which include processes
happening in time dimensions impossible for
the laboratory. In addition, computers
may give the student looking for a career
a taste of the investigative process, and
perhaps attract them into science. Last,
but surely not least in the America of
the 1980's, all this may be done at a
reasonable cost. There is no need to use
a large main-frame computer for effective
student oriented simulation. With care,
even the "home" microcomputers can produce
surprisingly sophisticated results.

Bibliography

1. Postlethwait, S. N. "Improvement of
Science Teaching." Bioscience 30:601-
604; September 1980.

2. Anderson, David E. "Computer Simulations
in the Psychology Laboratory."
Simulation & Games 13:13-36; March 1982.

3. Wallach, Michael A. "Tests Tell Us
Little About Talent." American
Scientist 64:57-63; January 1976.

4. Kuhn, Thomas S. The Structure of
Scientific Revolutions The University
of Chicago Press, Chicago: 1970.

172



www.manaraa.com

Appendix

Model of The Control of System Osmolarity

Parameters of Osmoregulation Model

Symbol Value Definition

1. Equations of water balance IV 20 Intake rate
Jar - Jar - IV Mi 150 Maximum intake rate
IV - Mi / (1 + K1 / ADH + BV / K2) ADH 100 Unite of ADH in blood
GFR - TPR / BV BV 1000 Blood Volume
TV = GFR / (1 + ALDO / K3) x 0.8 Jar 1000 Amount in the water jar
BV = BV + IV - UV + Met TV 120 D.C.T. flow rate
UV = TV (ADH / Cl + K4) / (ADH + K4) TPR 0.2 Total peripherial resistance

ALDO 100 Blood level of Aldersterone
2. Equations of salt balance GFR 160 Glomerular filtration rate
INa - 1% x IV UV 20 Urine production rate
BNa = BNa + INa - UNa U% 0.05 Meq. Na of urine
UNa - TNa = T% x TV B% 0.1 Meq. Na of blood
T% = B% / C2 T% 0.03 Meq. Na of tubular fluid
U% = UNa / UV I% 0.05 Meq. Na of intake fluid
B% .., BNa /BV K1 150 ADH level at which IV=M1/2

K2 500 BV level at which IV -M1 /2
3. Equations of hormone level K3 17.65 ALDO level:GFR/2 returns to BV
ADH - ADH + Sadh - Ladh C2 12 Conc. effect: collecting duct
ALDO = ALDO + Saldo - Laldo K4 175 ADH level: TV/2 returns to BV
Sadh - Mh /(1 + (K6 / B%) E10) Cl 3 Dilution: Distal cony. tubule
Saldo = M1 / (1 + (BV / K5)E10) Ll 0.75 Z loss of ALDO per hour
Ladh = ADH x Lh M1 150 Maximum release of ALDO
Laldo = ALDO x L) K5 1000 BV level: ALDO release=M1/2

El 10 Intensifier of ALAO response
Lh 0.75 % loss of ADH per hour

Physiology Simulation Usage Mh 150 Maximum release of ADH
KG 0.1 B% level: ADH.release = Mh/2

Semester Course Stdt. Hrs. Hrs/Stdt. E2 10 Intensifier of ADH response
Fall 1979 Gen. Phys. 10 120 12 INa 2 Total meq of Na in intake
Fall 1979 Human P&AI 22 110 5 BNa 100 Total meq of Na in blood
Spring 1980 Human P&AII 20 140 7 GNa 16 Total meq of Na in GFR

TNa 3.6 Total meq of Na in tubule
1979-1980 3 courses 52 370 7 UNa 2 Total meq of Na in urine

Riso Reabsorption: P.C.T.

Fall 1980 Human P&A 117 54 3.2
RH2O Reabscrption. Collecting duct
RNa Reabsorption of Na (total)

Spring1981 HumanP.SAII 17 142 8.4 BP 100 Mean blood pr. ssure
Spring 1981 Gen. Phys. 11 278 25.3 UJar 0 Volume: urine collection jar

1980-1981 3 courses 45 474 10.5

1979-1981 6 courses 97 844 8.7

173



www.manaraa.com

MICROCOMPUTER-BASED DATA ACQUISITION '21i NEUROBIOLOGY

by Richard F. Olivo

Department of Biological Sciences, Smith College
Northampton, Massachusetts 01063

Abstract

A microcomputer system for capturing
transient analog signals and displaying
them repetitively on at oscilloscope has
been developed for student use. The
hardware 13 based on Rockwell's AIM-65,
supplemental memory, and an analog-digital
interface that is described. The
software, in ROM, uses single keystroke
commands, any of whic..1 may be entered at
any time. Input modes include continuous
input, triggered input, averaging, and
rate histograms. Display modes include
scrolling and jumping,' both of which can
be frozen or have their direction
reversed, and slow output to a chart
recorder. Intervals between samples are
resettable in the range from 100 usec to
65 msec. The system has been used for
three years; students have found it
helpful, consistent, and easy to control.

introduction

Many traditional laboratory courses
can be made slightly easier or a bit more
productive through the use of micro-
computers, but a neurobiology laboratory
can be substantially transformed by
computerization. Neurobiology students
typically record sequences of action
potentials from nerve cells. Each action
Potential lasts only 1 or 2 milliseconds,
although the sequence of events ray extend
over several seconds. Thu action
potentials, amplified and displayed on an
oscilloscope screen, seem to flash by;
they can be glimpsed but not studied.
They are too fast to be written by chart
recorders, and although photography can
capture them, photography is too
inconvenient and too expensive for routine
use in a student lab. A microcomputei'
with an analog/digital interface, however,
can record these transient events for
repeated playback to an ostilloscope,
freezing the signal on the screen, or for
slow playback to a chart recorder, to
provide a permanent record. Several years_
ago, I reporte' on our preliminary plans
to use microcomputers in an, undergraduate

neurophysiology course [1]; since that
time, we have used the system for three
years, the analog interface and the
software have each been redesigned, and I
can report now on what I regard as a
tested and effective system for
computerized data-acquisition. Although
our system was developed for
neurophysiology, it can be used for any
data-acquisition task in which the
sampling interval is between 100
microseconds and 65 milliseconds; this
encompasses a wide range of laboratory
applications. I would be pleased to make
the software available to colleges or
universities that wish to duplicate our
data-aquisition system.

Hardware

At the time I designed our system,
Rockwell's AIM-65 microcomputer was the
most cost-effective choice for our
purposes. We wanted six set-ups, one for
each student group in laboratory, and thus
the cost of each one was very important.
Although a number of low-cost
microcomputers are now available, the
AIM-65 remains a good choice because of
its particular combination of features.
It includes a full keyboard for entering
commands, and a 20-character display for
prompts to the user; it has two
input-output ports, for connecting the
analog interface; and it includes a

crystal-controlled 1-microsecond clock and
16-bit interrupt timer, for accurate
timing of data-acquisition intervals. In
addition, the AIM is compact and does not
require a video monitor, which makes it
easy to integrate into an existing
laboratory set-up. The AIM's major
disadvantage by current standards is that
it has only 4K bytes of en -board memory,
and expansion memory boards frod various
vendors are slightly more expensive than
they ought to be. Nevertheless, a
complete system (AIM, 32K expansion
memory, and analog interface) costs about
$1000, which is much less than systems
based on other popular microcomputers and
very much less than commercially available



www.manaraa.com

data-loggers or digital oscilloscopes.

Although the AIM, enclosures, power
supplies and expansion memory all are
available from commercial vendors (some of
whom will even assemble and test the

package of components before shipping),
there is not (so far as I know) a

commercially available analog/digital
interface board that is inexpensive,
provides preamplification, and is capable
of fast analog/digital conversions. We

have built our, own interface, based on a

handful of integrated circuits that are
relatively easy to use. My design for

that interface, which incorporates
improvements suggested by Artner Chace of
Mount. Holyoke College, is shown in Figure
1. , The task of an analog/digital
interface is to convert voltages to their
digital equivalent, which is sent to an

input port of the microcomputer, and to
convert digital information from the
computer back into voltages for display on
an oscilloscope screen. In addition,
becaus'e voltage signals from
neurophysiological experiments are very

small (even after preamplification, they
are in he range of 10-100 millivolts),
our interface includes- a stage of

preamplification to bring the input
signals\ up to the size that the

analog-tO,digital converter expects (10

V); als, because we need to take in
trigger signals from stimulators and emit
pulses to synchronize oscilloscopes, the
interface board includes connections and
protection \circuitry for trigger and pulse
signals.

For analog/digital conversion,
chose integrated circuits from Analog
Devices, Inc. (Box 280, Norwood MA 02062)
that were relatively inexpensive,
performed well,\ and required a minimum of

external components. The analog-to-
digital converter (AD 570) accepts signals
in the +5 V to -5V range, and takes 25
microseconds to perform a conversion. To
boost input signals to the required range,
I added a two-stage amplifier based on the
commonly available 1458 (dual 741) op amp'.
The amplifier has a variable -gain control
(lx to 1000x in 1,2,5 steps) using a
10-position switch and a set of common
resistors (these and other parts can be
purchased from suppliers such as Radio
Shack or Jameco). If calibrated gain is
not needed, a 1-megohm potentiometer may
be substituted for the selector switch.
The preamplifier also provides a choice of
direct- or capacitor- coupling (AC/DC
switch), and it has an offset (zero)
control; again, these may be omitted for
ease of construction if they are not
needed.

175

The output (digital-to-analog)
conversion is provided by an AD558
integrated circuit, which produces
voltages from 0 to 10 V and settles to its
new output value within 2 microseconds
after it receives the data. Note that the
input circuit's range is -5 to +5V, while
the output range is 0 to +10V. For each,
the span is 10V, but the midpoint (the
equivalent of 0 V at the input) differs by
5 V. This means that the analog .output
will be stepped up on the oscilloscope
screen compared to the input. This has
not proven to be a problem for students,
but one could add a lx amplification stage
that offsets the output signal by 5 V to
give the output the same midpoint as the
input signal. The remaining components,
the trigger-in and pulse-out lines, are
protected from inadvertent connection to
large signals by a comparator (LM 311) and
by a resistor diode network,
respectively. The microcomputer expects
to see (and produces) TTL-compatible
pulses (0 or +5V), and if these are
available from the other laboratory
equipment -- and if the students. are
always careful -- the protection circuitry
could be omitted.

Although it generally is good advice
to buy rather than build equipment, that
option was not available for this 'system.

However, since the' two converters from
Analog Devices are so easy to use, there
is little difference between wiring a

cable between the ATM's application
connector and a board containing these
circuits, and wiring a cable to an

equivalent commercial board (if one were
available). The additional components
(preamplifier and trigger protection
circuitry) are necessary for our
application, but they may not be for
yours; if they were omitted, the

interface would be extremely simple to
construct. The total cont of the
integrated circuits is less than $40; our
complete interface, which is mounted on a

rack panel under the oscilloscope and
includes the.various features shown in the
diagram, costs well under $100.

Software

The software for the data-acquisition
system had to meet two principal-criteria:
it had to b3 fast, and it had to make the
sy3tem easy to use for students who had no
experience with computers. For ,ease of

Figure 1 (next page). Analog/digital
interface based on integrated circuits for
analog-to-digital (AD570) and digital-to-
analog (AD558) conversion.

1 9 '"?



www.manaraa.com

20

10K

SPDT INPUTe..."0

AC /DC 0.1

1K uF

x2

10K edioaNA/LfTr x10
x20.__,vv4_2j__.( x50100K

100K x100x100
x200
x500ANL--...x1000

our

+IN

-12V V-

CAl

6

1458

NC

14 PA0 DATA, LSB
4 PA1

3
PA2
PA5 2 ---=-1'
PA4

5 PA5
PA6

O 7 PA7 BU 8

NCA2H 21
(--
.4

N 9
PBO DATA, TSB
PB110

11 PB2
P12

13 PB4

16 PB5

17 PB6

15 PB7 MSB

18 CB1

19 CB2

1 18
2 17

3 16
4 , 15

5 14
6 13

7 12
8 11

9 AD570 10

NC

Ig
DIG COMMON
BIPOLAR OFF
ANALOG COM
ANALOG IN

1 16
2 15
3 14
4 13

5 12
6 11
7 10

AD558 9

SPDT
V OUT OUTPUT
VSENSE _
V SELECT
GND I 4-
GND

CS
+12V

CE

-t- 0.1
uF

GND

+IN

-IN

'12 V-

1 8

7

3 6

114311 5

+12

OUT

NC

NC

10K

30K

+5v

+12V

10K

-12V
10K +12V

1
GND

A POSER
N _12V

+12V
CONNECTIONS

+5V

176

OUTPUT
ro (CHART)

TRIG:1ER
LEVEL

10K ...TRIIN
4 -12V -I--

1N914

193.

PULSE
47K _E*0 UT



www.manaraa.com

use, the program is stored in permanent
memory (ROM), so that no loading from disk-
or tape is necessary, and no accidental
over-writing of the program can occur.
Program start-up and all subsequent
commands are by s±ngle keystrokes, and any
command may be executed at any time. The
command set is listed in the Appendix, and
will be discussed further below. Each
student receives a User's Guide, which
explains each command. The cover of that
Guide (Figure 2) also illustrates the
performance of the system; the photograph

USER'S GUIDE

mv-)H\ilvir

10 ms I ms

NEUROPHYSIOLOGY DATA
ACQUISITION SYSTEM

DEPARTMENT OF RIOLOGICAL SCIENCES SMITH COLLEGE NORTHAMPTON MA 01063

Figure 2

at the top left shows an example of analog
data (upper ..trace; the brief downwa2d
spikes are action potentials) and the

digitized echo of the same data from the
computer (lower trace). At the right, a

similar photograph of the oscilloscope
screen shows the original and digitized
data at a faster sweep speed. The chart
record below was obtained by playing back

the same data from memory at a slow rate;
not the accurate reproduction of the

analog signal.

177

The data-acquisition program is
writtenk in assembly language, and is
container' in a 4K ROM that plugs into a

socket on the AIM intended for Rockwell's
assembler. Although writing an assembly
language program of this size a

substantial task, it was clear to me that
the data-acquisition routines would have
to run at machine speed (eliminating the
possibility of working in BASIC), and it
seemed simpler to do everything in
assembly language rather .than trying to
mix high-level and assembly language.
have described elsewhere [2] an example of
an assembly language routine for acquiring
one byte of data. In retrospect, now that
FORTH is available for the AIM, I would
probably write the program in FORTH (which
makes it easy to include assembly language
routines) if I were to write it again.

The program has three major input
modes: continuous input, triggered input,
and averaging. These place data into
three separate buffers in memory. At
start-up, the available memory is
automatically allocated into three
non-overlapping buffers, but the
allocation may be changed by using the
VARIABLES command, and any buffer may be

assigned to any part of physical memory.
Our systems have 36K of memory, which
means any buffer could store up to 36,000
samples. In continuous INPUT mode, the

input buffer is filled repeatedly (with
the newest data over-writing the oldest)
until INPUT is halted or another mode is
selected. Each digitized data point is
echoed to the oscilloscope as it is taken.
INPUT mode is useful for capturing
spontaneous neural activity and responses
to hand-delivered stimuli (such as

mechanical prods or the application of
drugs). When an event of interest has
occurred, one halts INPUT mode and
displays the buffer, which contains the
last few seconds of data. When
electrically triggered stimuli are used,
however,' TRIGGER ,mode provides a more
efficient way of capturing the response
evoked by the stimulus. In TRIGGER mode,
the computer waits for a trigger pulse;
when the pulse is received, a pre-set
number of data samples is taken and
stored, after which the computer awaits
the next trigger pulse. The amount of
data stored in each sweep is determined by
a variable, which can be reset in units of
256 samples (1 page of memory); the
default value is 2 pages (512 samples).

The entire orientation of the system
is toward temporary storage of data, with
the expectation that data of-interest will
be written out to a chart recorder for a
permanent copy. This gives students their
data in its most useful form for further
analysis, and it also avoids the expense

194



www.manaraa.com

and complexity of disk or tape (either of
whinh, from my point of view, only,
postpones the moment when a hard copy must
be made). Data that have been captured by
the system can be played back by typing
the DISPLAY command, D. DISPLAY
automatically selects SCROLL mode if
continuous input was used, and JUMP mode
if 'triggered input or averaging was used.
In addition, SCROLL or JUMP may be entered
directly (and any buffer examined) by
typing S or J.

SCROLL is a particularly useful
display mode. The signal appears
continuously on the oscilloscope screen
but seems to slide across- it, like a
moving chart. The direction of travel can
be changed by,typing R, REVERSE (this is a
feature that was added to the system at
student request); the image .can be frozen
(or scrolling resumed) by pressing the
space bar; and the rate of scrolling can
be increased or decreased by pressing the

+ or keys. As a result, one can examine
data with very high temporal resolution
(our oscilloscope sweep speed is typically
2 ms /div), move forward or backward in

time at one's convenience, freeze time,
expand the oscilloscope sweep to examine
events of interest more closely, and
handle a large data-sample.

JUMP mode is the display mode
selected automatioally if triggered input
or averaging was the last input mode used.
One sweep appears frozen on the screen,
and then the system JUMPS to the next
sweep. Jumping can be halted (or resumed)
by Pressing the space bar, and the
direction of advance can be reversed by
typing R. The current sweep number is

shown on the AIM's display, an asterisk
appears if jumping has been halted, and an
R appears if jumping is reversed. Once
again, by freezing a sweep of interest on
the screen, experimental data can be
examined at length, the sweep can be

-expanded, one can back up to the previous
sweep, and so fortn.

In addition to these display modes
for an oscilloscope, two other display
modes produce slow output for a chart
recorder. EXCERPT (E) plays out the
segment of memory currently displayed on

the screen. WRITE plays out the whole
buffer, starting from the beginning.
Either of these can be used for making a
chart'record of data obtained from any
input mode. For convenience, the rate of
sending out data samples is slower for
EXCERPT than for WRITE, so that one chart
speed can be used to produce a high-
resolution (E) record or a temporally
compressed (W) overview. However, the

default va,,e of an; timer interval can be
changed using the VARIABLE command. For

178

our work, fast acquisition, fast
oscilloscope display,.and slow output to a
chart recorder make the-most sense, but
the software is wric.ten in such a way that
it can also be used for acquiring slow
data (approximately 16 samples per second,
Minimum), where it might be appropriate to
use a display rate much faster than the
input rata, and a chart writing rate that
is equal to the input rate.

Finally, the two special input modes
deserve some comment. AVERAGING resembles
triggered input in waiting for a trigger
pulse before acquiring a sweep of data,
but the data are summed with previous
sweeps rather than stored separately. The
average is calculated whenever- the number
of sweeps is an exact power of 2 (1, 2, 4,
8,... 256). At each sweep, the last
calculated average (rather than the input
signal) is displayed, while the AIM shows
the number of the current sweep and the
number of sweeps in the last average.
Averaging is useful for extracting an
evoked response that is hidden in a noisy
baseline, and students have used it more
often than I first expected. During
averaging, DISPLAY can be entered to show
the current average frozen on the screen,
and averaging can then be re-entered
without losing the accumulated data. The
second special input mode, HISTOGRAM, is
probably of more interest to

neuroscientists than to scientists in
general. HISTOGRAM sends to a chart
recorder a voltage proportional to the
number of events per seczmd, updated in
0.1-sec bins. It is uses': for_connting the
number of action potentials per second, an
important measure of neural activity. In
this implementation, events are detected
in software: any signal that crosses the
0-volt baseline (either in a positive or
negative direction, as set by the user) is
counted as an event, and the count is
updated every 100 msec. By using the zero
offset control, it is usually possible to

adjust an input signal so that only the
biggest events trigger the counter. A

pulse is emitted whenever an event is
detected; one can trigger the
oscilloscope from the pulse to observe the
input signal being counted, while the
chart recorder simultaneously writes a

record of the histogram.

Evaluation

The data-acquisition system has been
used in my neurophysiology course for
three years by undergraduates whose prior
experience with oomputers ranged from
extensive to none. Even the least
experienced students found the computer no
harder to use than the other equipment
they encountered, and all of them, were
eager to use the system since it let them

19'j



www.manaraa.com

538 their data clearly and gave them hard
copies to show others. The command set
seemed consistent and easy to understand;
the students controlled the system
properly right from the start, and readily
made it do what.they wanted it to do. As

a result, while previously students in the

course had at best obtained a few polaroid
photographs from some experiments, they
now routinely capture as much of their
data as they wish. They work more
quantitatively, and the level of the

laboratory now is better matched to their
other work in the course.

References

1. Olivo, R. F. (1980) Microcomputers as

laboratory_ instruments: two
applications in neurobiology. Proc.

National Educ. Computing Conf. Z:

81-85.

2. Olivo, R. F. (1981) An efficient A/D

interface. Compute! a (9): 140-142
(September 1981).

Appendix

Whem_the computer is first trged on:

N starts the data-acquistion program
and. sets default values. All
Subsequent operations are controlled
by the ,following commands:

Input modes

I Input. 'Continuous storage of data in
the input buffer. New samples over-
write the oldest previous samples.

T Triggered input. A single sweep of

data is stored after each trigger
pulse is received. Data are stored
in the trigger buffer.

A Averaging. Successive sweeps of
data, initiated by trigger pulses,
are averaged. The last average
calculated is displayed.

Histogram. Events that cross ground
level (with or - slope, as
,specified) arecounted, and the count
is output as a voltage every 100
msec. No data are stored.

179

Output modep

D Display. Automatically selects the
appropriate output mode and buffer,
determined by the last input mode
that was used.

S Scroll. Data from the buffer,
selected scroll across the screen, as
on a chart recorder. Usually used
with the input buffer.

J Jump. Successive sweeps from the
buffer selected appear one after
another. Usually used with the
trigger buffer.

W Write. Contents of a buffer are
output slowly, for writing by a chart
recorder. Outputs the entire buffer.

E Excerpt. The part of a buffer
currently displayed on the oscillo-
scope screen is output 'very slowly,
for writing by a chart recorder.

C Continue. Resume last display mode
from the current position; used
after Excerpt.

System control

Q Quit. Exit from the current mode;
this command is available at all
times.

(space) Pause. On input modes, suspend
data collection. On output modes,
suspend advancing through the buffer,
freezing the current data on the
screen. Typing (space) again ends
the pause.

R Reverse. Change the current
direction of scrolling or jumping.

+/- Increase or decrease the rate of
scrolling or jumping. May be typed
more than once.

Variables. Print current values for
memory allocations, timer intervals,
or constants, and permit their
alteration.



www.manaraa.com

COMPUTER LITERACY

Margaret Christensen
Dr.,Carla Thompson
Dr. Joyce Friske

Wiliam H. Pritchard, Jr.
Donald Z. Spicer
Ronald R. Bearwald

David J. Lewis

ABSTRACT: AlgehrS,_BASIC, and Computers: The
ABC's for NonScience Majors

Margaret Christensen, Widener University

Seven realistic problems lead students through
a semester of elementary algebra and computer
science in a new course we have developed.

As computers become less the exclusive domain
of the scientist or specialist and more the daily
companion of educators, social scientists,
humanists, and businessmen alike, the pressure to
become computer literate increases for all
students, including those who lack the mathematics
proficiency which is prerequisite to successful
completion of computer courses. Rather than
subject these students either to a computer course
which is devoid of math (if such is possible!) or

to a traditional, remedial college math course
taught in the same way that lost them before, we
have developed a course which combines computer
science and elementary algebra in a symbiotic

relationship.
Central to the course are seven problems which

require some thought, the use of algebra, and
computer programming in BASIC for their solution.
In the course manual the problems sections follow a
logical order of progression, in terms of material
covered and difficulty, and have solutions which
require only the use of material taught in that
section or in previous Sections of the course.

Students have responded enthusiastically;
they have clearly learned a lot; and the
instructor found the course a lot more fun to teach
than standard remedial algebra or computers without
math.

ABSTRACT: Computer Literacy in the TwoYear
College Curriculum

Dr. Carla Thompson, Dr. Joyce Friske, Mathematics
Instructors, Tulsa Junior College N.E. Campus,

3727 E. Apache, Tulsa, OK 74115

As the belief in the need to educate future
citizens in the operation, use, and impact of
computers gains support in educational circles, it
is becoming increasingly clear that all students
should be provided with educational opportunities
that allow them to become computer literate. This

need can be appropriately met at the junior college
level by offering computer literacy courses
designed for noncomputer science majors.

This presentation will focus on the
development and integration of a computer literacy
discipline area (CLT) into the twoyear college
curriculum. 1'r6S-enters will describe the role of
the CLT discipline ,area within the overall
curriculum and discuss the focus of CLT courses
with respect to specific needs-of twoyear college
students. Concerns associated with integrating
computer literacy couses into a noncomputer
science division will also be discussed.

In order to meet the computer literacy needs
of all students regardless of background or major,
the CLT curriculum was designed i- elative to three

areas: liberal arts students,
technical/occupational students, and education
majors. Course descriptions,,, aboratory
activities, and class projeCts will be suggested
for all computer literacy courses within the CLT
curriculum.

The session will conclude with an overview of
future perspectives for the twoyear college
computer literacy scope and sequence.

180

ABSTRACT: The Vassar College Computer Literacy
Program

William FL Pritchard, Coordinator, Computer
Literacy Program, Donald Z. Spicer, Associate Dean
of the College, Vassar College, Poughkeepsie, NY
12601

In January 1982, Vassar College with support:
from the Fund for the Improvement ofd Postsecondary
Education (FIPSE) initiated a computer literacy
program that has a number of unique features that
resolve many problems associated with computer
literacy in the context of ,a relatively small
liberal arts college. The thrust of the program is
to infiltrate computer usage into the curriculum of
the College as a whole. Therefore faculty
development, which provides sustained impact, is an
important component., In a core course a group of
participating faculty, together with students
sharing common interests, are. introduced to the
availability and use of computer resources that
support their discipline. To reinforce this
initial experience, participating faculty agree to
introduce computer usage into designated courses
taught in later semesters, and students who take
the core course are expected to also take at least
one of those' subsequent courses. While many_
aspects of educational computing can be managed on
micro and minicomputers, there are also many uses

197



www.manaraa.com

required to support diverse faculty interests that
cannot be cost efectively acquired 1-5, a small
college. Since the Vassar Computer Literacy
Program is intended to support a broad
cross-section of the faculty, the program makes use
of the varied software and hardware resources
available remotely through EDUNET. Data base and

information services such as DIALOG, Compuserve,
and The Source are also used.

A major aspect of the Vassar program is that
it is designed to be a model program that is
intended to be readily transportable to other
colleges. Therefore, the program is designed to
have relatively modest start-up costs. The major
continuing costs are for personnel and remote
teleprocessing.

Beginning Febraury 1893, the program will be
expaned to include more courses, an increased
number of faculty development workshops, and a
unique program of faculty ownership of
microcomputers. Under this grogram faculty will be
encouraged to purchase their own microcomputer
through joint support from a grant from the Sloan
Foundation, a College low-interest loan, and a
negotiated group buying plan with a vendor. It is

hoped that within the first year, approximately 25%
of the faculty will own a microcomputer.

The presentation in this session will
elaborate on the initial conception of the program,
explain the design of the core course, and discuss
the experience learned during the first year and a
half of implementation.

ABSTRACT: A Microcomputer Literacy Program

Ronald R. Bearwald, Assistant Superintendent,
Lincolnwood Scool District Number 74, 6950 East
Price, Lincolnwood, IL 60645

The Lincolnwood Schools have developed a plan
for mocrocomputer literacy which provides for the
instruction of every child in grades two (primary),
four (intermediate), and six (upper). This

instruction will be based on a sequential
curriculum which includes general cognitive, and
-affective goals as well as specific operational and
programming objectives.

General goal of the microcomputer literacy
program are:

- To develop computer literacy by teaching
importnnt computer related concepts,
increasing the awareness of the values
and applications of computers in our
world, and providing opportunities to
attain a certain level of competency in
performing fundamentaL computer
operations.

- To improve the overall cognitive and
affective abilities of each child by
developing structured and logical
thinking 'skills, positive attitudes, and
innate creativity.

Each student in the specifieed grades will
receive a minimum of four weeks instruction which
will take place in the following manner:
Grade 2: Students will come to the micro learning

area in groups of six. Each student will
receive four weeks of instruction; two

consecutive weeks during the first
semester and two during the second.
Classes will be twentyJfive minutes in
duration. The computer language used
will be LOGO.

Grade 4: Students will come to the micro learning
center in groups of twelve.\\Each student
will receive four consecutive "weeks of
instruction. Classes will be forty
minutes in duration. The computer
language used will be PILOT.

Grade 6: Students will come to the micro learning
center in groups of\sixteen. Each
student will receive\four consecutive
weeks of instruction. Classes will be
forty-five minutes in duration. The

computer language used will-be-BASIC.
Students will be grouped heterogeneously for

instruction. Additional opportunities will be
provided to students in the non-target grades on, an
individual, small group, and special-unit basis.
All students will have equal access to
participation regardless of ability 'eve?.

ABSTRACT:. Machine Language in Computer Literacy:
Strategy and Supporting Software

David J. Lewis, Department of Mathematics, Ithaca
College, Ithaca, NY 14850

181

A grasp of fundamental principles of machine
language is an important subject for computer
literacy in its own right. It can also serve as a
concrete introduction to other, topics such as
variables, the CPU, main memory, hardware vs.
software, high-level language processors, the
notion of a program itself, and many others.
Further, machine language experience illuminates
the otherwiCe murky gap between logic design and .-
high-level language. For these reasons computer
literacy courses at Ithaca College generally begin
with one to two weeks on Slic, a highly
interactive, full-screen, instructional simulator
for a simplified machine language we have developed
for the purpose to run on the Apple II.

Slic is a simple decimal machine like those in
many computer literacy and data processing texts.
What is important about the Slic processor is its
totally visible memory and animation of program
execution under student control. The accumulator,
program counter, all seventy memory locations, and
a display/reply "screen" remain on the Apple
screen, reflecting all events in the execution of a
program in "real-time".

Slic renders many concepts graphic that
students must ordinarliy infer, even with the best
of the available high-level language processors.
The, Slic intruction being executed is highlighted
in reverse video, and one can SEE a loop in action
as the program runs and a sum grows in the
accumulator. The instructor can POINT AT a
variable (that is, a location) on the screen and
change it by executing an instruction. Students
can discover the principles of destructive read-in
and non-destructive read-out simply by observation.
The sharing of main memory by program and data
appears natural when seen in real-time action.

The major technical features of Slic are: (1)

19tS



www.manaraa.com

target machine instructions and data are stored in
fivedigit decimal locations and asIngle
accumulator; (2) the instruction repertoire
includes laod and store, arithmetic, jumps, and

input/output; (3) the command structure is based
on the UCSD Psystem and Apple Pascal; (4).a

memory "editor" allows direct manipulation of "main

memory" and easy entry of programs; (5) a filer

'provides saving, retrieval, and printing of
programs; (6) a program may be run at a specified
rate, stepped one instruction at a time, or
"crawled _thnough all fetches and stores; (7) any

machine instruction may be executebInimmediate
mode, simply by typing it as a command.

182

19J



www.manaraa.com

COMPUTER EDUCATION FOR ELEMENTARY SCHOOL TEACHERS

Joyce Currie Little
Robert Wall

Harold R. Strang
Ann Booker Loper

Dr. AliceAnn Winner
E. Muriel J. Wright
Helen V. Coulson

ABSTRACT: Computer Literacy for'Elementary and'

Middle School Teacher's A Report on a MAEUC/AEDS

Project

Joyce Currie Little, College of Natural and
Mathematical Sciences, Robert Wall, College of
Education and Instructional Technology, Towson
State University, Towson, MD 21204

A pilot project in computer literacy,
sponsored by the Maryland Association for
Educational Uses of Computers, Inc. (MAEUC), and
the Maryland affiliate of the A ssociation for
Educational Data Systems (REDS), was done to test a
strategy for increasing literacy among teachers in
elementary and middle schools. The primary
purposes of the project were to provide information
to the schools for awareness of computer literacy;
experiment and evaluate the use of certain
exercises, materials, and activities; determine

computer literacy levels; and determine the
effects of exposure to computer literacy materials.
It was decided that a minicourse format would be

used.
Three elementary schools and their feeder

middle school in an inner city area were chosen for

the minicourse. All teachers and administrators,
and some parents, were invited to participate. The
course was organized, managed, and taught by
members of MAEUC/AEDS, and equipment was provided
by their institutions.

The Computer Literacy and Assessment
questionnaire, developed by the Minnesota

Educational Computing Consortium (MECC), was used
for pre and post testing of knowledge and attitudes
in order to assess changes in computer literacy.

This presentation will describe the project
and its management, give an overview of the
minicourse, present the results of analybis of
change, and summarize the local MAEUCkAEDS group's

recommendations.

ABSTRACT: Microcomputer Simulation: An Aid in
Training Elementary School Teachers

Harold R. Strang, Ann Booker Loper, 405 Emmet
Street, Ruffner Hall, Unversity of Virginia,
Charlottesville, VA 22903

This micocomputer project is being developed
to assist in the preparation of elementary school
teachers. Our primary goal is to help bridge the

gap between academic teacher preparation and actual
teacher:student classroom contact.

Hardware component,consist of an OSI 48k
microcomputer equipped with two 8inch disk drives,
a real time clock; a video terminal, a second
independent video display, and a serially connected
printer

er loading the simutlation's BASIC program,
an operator assigns, via the terminal's keyboi.rd,
the following to each of the class's four simulated,
students: a probability for knowledge (the
likelihood of answering correctly) and a
probability for initiative (the likelihood of
volunteering to participate).

The teacher, who is situated in a booth
physically isolated from the operator, next
receives a brief familiarization with the
simulation's graphic feedback characteristics and
then actually conducts a lesson with the four
students whose names are displayed on the
independent video monitor in front of the teacher.
The teacher may verbally instruct', ask questions,
solicit questions or answers, or just respond to
students whose graphically defined hands pop up due
to programmed initiative. Each teacherstudent
interaction is coded by the operator and keyed into
the terminal. The terminal's display directs the
operator, who functions as the voice of the
students, what to say to the teacher. After the
teacher has solicited an answer, for example,-the
operator'-.. screen might present WRONG ANSWER 1, the
1 designating the type of wrong "answer to'be
relayed to the teacher. Rapid computer feedback to
the operator coupled with careful operator training
insure a pace in the teacherstudent verbal
exchange not appreciably slower than that found in
an actual live classroom.

During the teaching session, the computer also
collects time and frequency data on over 110
specific types of cycles that the teacher has
employed in interacting with each student. As

cycles emerge, the printer fuiibtions as an event
recorder, displaying immediatelyfol,lowing each
cycle the student involved, the time elapsed, and
the cycle type. Cycles are defined according to
their antecedent characteristics (e.g., teacher

----soliciting an answer, a question, or responding to
a 'hands ups), student responses (e.g., right
answer, wrong answer, or question), and teacher
consequation (e.g., inclusion of feedback,
instruction, and/or emotional affect).

A complete hard copy teaching profile is
obtained at the conclusion of the teaching sesion.
This record displays over 500 separate measures
pertaining to the events that occurred during that
session.

Two projects have addressed one of the most

183

2ou



www.manaraa.com

basic questions pertaining to the simulation -
namely, whether it truly creates an environment
functionally similar enough to an actual classroom
to be of value in teacher training. Initial

results are very encouraging. When, for example,
class or individual characteristics were
manipulated so as to produce initiative and/or
knowledge contrasts, participating teachers
responded in ways paralleling those that would be
expected in actual classrooms.

In addition to pursuing the validation
research, the authors are also exploring the
possibility of developing a pre-teaching diagnostic
tool based on the system's extensive data
collecting, sorting, and display. features.

ABSTRACT: Toward Curriculum Development: A Case
Study in Computer Inservice Training

Dr. Alice-Ann Winner, United Nations International
School, 24-50 East River Drive, New York, NY 10010

Teacher training in appropriate use of the
microcomputer in the elementary classroom presents
a problem for educators. Many of the computer
training programs are conducted by "experts" who
have little understanding of elementary education
and/or the specific needs of its teachers, and
consequently curriculum development for wise
computer use has not been forthcoming. This

project report describes the design,
inplementation, and evaluation processes of an
inservice training program especially created, for
elementary teachers.

Three other differences separate this training
program from most of the current computer
workshops, even though similarities in content k.nd
structure exist: 1) the use of an inside change
agent as the inservice instructor; 2) the extended

duration of the workshop series over the entire.
school year; 3)the use of formative evaluation in
the design process.

The development of this program started with
reviews of the literature on change and computing
in education with regard to the implications on
curriculum development in elementary education and
inservice training. The training took place at a
single school with an international population.
While the demographics of the study were to some
extent idiosyncratic, the course content is
applicable to other school environments as many
elementary teachers share common goals. The

materials and experiences designed and implemented
in this study reflect this commonality of purpose.

The objectives of, the program were to increase
the awareness, exploration, and experimentation
levels of the participating teachers, and to lay a
foundation for permanent computer implementation
and curriculum revision. Designed by the author,
who as a fellow teacher was aware of the
regularities of the school environment, it
reflected the specific needs of the participants.
These needs were addressed in the workshop sessions
and in the intervals between sessions. Use of
formative evaluation permitted the teachers an
active role in the planning process, transmitting a

184

sense of shared responsibility. -
Five assumptions were articulated and

supported by the results of the study. Briefly
stated they are: 1) workshops conducted by outside
agents are less effective in promoting innovation
adoption in elementary education; 2) a single
school, which possesses a positive attitude toward
change and the requisite supportive mechanisms, can
be a decisive instrument of change; 3) an inside

change agent can initiate a successful change
process in a single school environment; 4)

computer literacy at the introductory level needs
to include careful analysis of "wise use of
microcomputers" to avoid an over-emphasis on
computer assisted instruction as the prominent mode
of implementation; 5) computer literacy at the
elementary level should provide an awareness of the
implications of process learning to develop
curricula for optimal implementation of the
computing potential.

The data, collocted from a variety of
evaluatory procedures, support an additional
arlumption undefined at the outset - curriculum
revision should follow rather than preceed teacher

training. The results also indicated apparent
stages in the computer implementation process, and
illustrated some of the problems inherent in that
implementation as well as general ones relating to
inservice training. The data underscored the
necessity of integrating developmental inservice
training into the regularities of tbe,elementary
school.

ABSTRACT: Incorporating -the Microcomputer into the
Department of Mathematics Program for the
Prospective Elementary School Teacher-at California
State University, Northridge

E. Muriel J. Wright, Helen V. Coulson; California
State University, Northridge, No thridge, CA 91330

Computer literacy is an essential outcome of
contemporary education. To keep pace with the
inevitable sophisti-cation of their students, it is
imperative that-1C-8 elementary teachers - perhaps
the single most influential group in the
mathematical competence of the country - acquire an
understanding of,the versatility and limitations of
the computer through a working knowledge of how one
interacts with computers and how one uses their

capacities.
The Department of Mathematics at California

State University, Northridge, has just completed
the PILOT MODE of a two year project for (1) the
development of a laboratory of eight
microcomputers, (2) incorporation of interactive
compute( experiences within an existing strong_two
semester mathematics program for prospective
elementary school teaschers involving'700 students
annually (90% women, 20-40% ethnic minorities, 10%
re-entry women), (3) selection-and_design-of
software using the computer's special capabilities
(iteration, recursion, graphics,'number-crunching)
to enhance the treatment of the mathematical topics
within the available time, (4) bringing the novice
to a beginning but sound programming capability.

201



www.manaraa.com

We will (1) build mathematical and computer
skills - by hands-on drill, testing, and assignment
correction, (2) teach new mathematical and computer
concepts - by tutorial programs which will also
invite student modification, (3) provide problem
solving experience - by interactive programs in
simulation of probability, statistical, and
transformation geometry problems, (4) illustrate by
examples of our programs;and format the variety of
uses that an elementary teacher may make of the
microcomputer in the classrOom - in mathematics,
but also in other aspects of the curriculum, and
(5) develop programming skills - by teaching
computer commands, by requiring modification of
some existing programs, and by student-written
programs suitable for elementary classroom use.

During the PILOT MODE, using an Apple
microcomputer and peripherals purchased under a
grant, we were able to select and develop software,/
for drill, tutorials, and simulations; make
extensive student testing of the materials in bot
one -unit electives and seminars; and determine th
values of individual and paired use of the
terminals for student -worker 7--A-room for setting up \
a model microcomputer laboratory housing eight
machines was obtained adjacent to the
classroom/tutorial complex used for the methematics
courses. Proposals were submitted to various
agencies within and outside the University. Six

Apples with color monitors and disk drives have
been granted and will be installed during January
1983. Peripherals such as a graphics tablet and
two printers will also be in use. A-voice-over
\attachment for use with haddicappedstudents is
attached to one computer.

Beginning with the Spning Semester 1983, full
implementation of the project is planned. Using
tested materials - mathematics text, programming
manual, computer film, and computer programs and
materials selected and designed by the two project
directors ----three hundred students under ten
instructors will develop programming capability
along with the required mathmatical knowledge. For
years, a standardized common final-has been
administered to all sections of this course so that
well established norms are available for comparison
of the effect of incorporating the microcomputer
into the program without reduction of mathematical
content. Level of Computer Literacy will "be
determined using a test and norms developed by the
Minnesota Educational Computing Consortium.
Finally, instructor and student attitude will be
determined by self-report.

The goal is preparation of 350 students per
semester trained in the mathematics essential for
the elementary school and with a working knowledge
of computers. An important spin-off will be the
replacement of the now superfluous one-unit
elective in introductory computer programming with
a course in Graphics and Turtle Geometry.

.1,

185



www.manaraa.com

COMPUTERS IN EDUCATION

C. Michael Levy
Dr. John R. Pancella

Edward Zeidman
Melvin H. Wolf

ABSTRACT: RealTime Microcomputer Programs for

Teaching Statistics

C. Michael Levy, Department of Psychology,
University of Florida, Gainesville, -FL 32611

While many instructors believe that the key to
mastery of statistics is the successful completion
of many sample problems, it is often infeasible for

them to implement instructional programs that
provide students with a rich corpus of problems.
Partly in resonse to this implied need, I have
developed a 100 kilobyte ensemble of interactive
CAI exercises for the Apple, IBM, Atari, and DEC

microcomputers. The materials are solely

instructional; they provide no means to perform
statistical calculations of usersupplied data.
These programs are used in conjunction with a
workbook that portrays the rationale and
demonstrates the use of each statistic with a
detailed example, and presents scenarios describing
the problems that the student completes.

The design of our programs was heavily
influenced by insights that emerged as I developed
other courseware for undergraduates during the last

decade. For example, the software contains
routines whose sole function is to reduce the
opportunities for students to make entry errors
that result in abnormal program termination_ or
evocation of an obscure error message.

The ensemble of programs contains two broad
categories of exercises. One includes multiple
computational problems for each statistic that is
in the family of problems found at the end of the
chapter of many statisticslbooks. These were

designed to provide the guided practice many
students need to appreciate the process of
determining the correct solution.

I have dubbed the second category of exercises
"Exploratory Problems". These were designed
expressly to give students an intuitive grasp of
each statistical technique. Great effort was made
to incorporate special features thatwould make
moderately deep levels of cognitive processing

nearly unavoidable. This was accomplished by
directing students to "play with" the techniques
and "manipulate" the raw data in order to answer
"what if" sorts of questions for example, "'What

will happen to the variance if I add a constant to

each score?" "What happens to the standard error
if I increase or decrease N?" "What will happen to

the value of t or F if I reduce to zero the
variance of one group?"

Graphics were used whenever possible to
enliven the displays, and color was used not merely

to enhance their visual quality but to serve asa
signal or cue. More importantly, the keyboard was
used as an asynchronous device, permitting us to
create dynamically changing displays and, in
general, to give these programs many of the
characteristics of some of the exhilirating arcade
games. The obvious appeal of this utilization is
related to the fact that students who often resent
using "canned" data feel that they (rather than the
computer) are in primary control in these

situations.
In short these programs provide students with

powerful opportunities to discover for themselves
the answers to important substantive-questions,
thereby making the abstract theoretical ideas of
statistics more concrete and memorable. The
presentation will include both a discussion and

demonstration of these materials.

ABSTRACT: High School Science Microcomputer

Project

Dr. John R. Pancella, Coordinator, Secondary
Science, Mr. John Entwistle, Teacher Specialist,
Science, Mathematics, and Microcomputers,
Mrs. Carol Muscara, Specialist, Computer Related
Instruction, Montgomery County Public Schools,
Rockville, MD 20850

A project was begun during the 1981-82 school
year to implement microcomputer technology in
senior high school science courses. Feedback from
three school tryout centers was used to develop
teaching and training plans to incorporate
microcomputers.in biology, chemistry, earth
science, and physics classes of 12 senior high
schools during the 1982-83 school year. Training

for 36 science teachers was conducted during summer
1982. Use of microcomputers will be phased into
the remaining 10 senior high schools by September
1983.

2'he

1)

186

project gopls are:
Reinforcement or review of information
gained in the classroom for students to
grasp subject matter that is perceived as
difficult for them.

2) Development of problem solving skills
using programming algorithms or
microcomputer capabilities to increase
student ability to solve
multidisciplinary problems.

3) of simulation software for laboratory
investigations that would otherwise be too
timeconsuming, hazardous, or expensive

203



www.manaraa.com

for high school investigation (e.g.,
longterm genetic investigations, ammonia
production, electric charge on atomic
particles).

4) Interfacing (connecting laboratory
equipment with the microcomputer) for
investigation and analysis of data
previously not readily available to
students (e.g., continuous pendulumperiod
analysis, rapid coolingcurve plotting,
genetic statistical analysis).

Each science department of the 12 high schools
received four Apple II microcomputers, four
monitors, four disk drives, one printer, and
miscellaneous accessories. Each school received
about 30 software programs for immediate use.
Other software was loaned from a central
collection. Schools purchased evaluated and
approved software to meet their local program
needs.

Four 3hour followup meetings of the summer
participants were held during 1982-83 to exchange
ideas and programs and describe diffusion and
dissemination activities done at the school level.

Products of the project included:
1) A model 10day inservice program for

training teachers.
2) Design and implementation of several

labisratory investigations using
thermistors and a teachermade interface
module to connect the experiment to the
microcomputer through the paddle port
analogtodigital converter.

3) Implementation of an evaluation form and
selection process for approving software
for school use, and a data base storage
system of the information.

4) Data collection on microcomputer use
during school and nonschool hours.

5) Lesson and unit plans with descriptions of
approved software coded to each science
course by topic and lesson objective.

6) A bimonthly newsletter to schools on new
products, new applications, and school
implementation activities.

Data on the results of the project showed an
unusually high rate of diffusion of the training
among other teachers in the schools, students, and
even parents. There was a rapid increase in
microcomputer use 1:), students. Many microcomputer
programs were writ'in by students and teachers and
shared among,schoris.

ABSTRACT: The Function Game: Using a
Microcomputer to Improve Graphing Skills

Edward Zeidman, Division of Science and
Mathematics, Essex Community 'College, Baltimore
County, MD 21237

Computers are gaining widespread use as
instructional tools in the classroom. They have
shown promise in such traditional tasks as drill
and practice, question and answer formats, and data
manageLent. These are important applications of
the computer, but in order to realize the full
instructional potential of this relatively new
medium, we must look beyond the above applications

to ones which were previously not possible and for
which the computer is especially well suited.

The graphing of functions receives a great
deal of attention in the community college
mathematics courses. However, student performance
in this area has been poor. This is particularly
distressing in light of the importanze of functions
and graphing, both to applications and to further
work in pure mathematics.

The microcomputer, with its unprecedented
ability to do tedious calculations almost
instantly, makes it a natural choice for material
intended to improve students' understanding of
functions and graphs. This paper explains a
computer activity designed to provide students a
fertile, mathematically accurate environment and
the motivation to manipulate that environment to
learn about graphs ofequations. This activity is

called the Function game.
The Function Game is a computer educational

game designed to aid the-student in learning to
recognize functions of a single variable a

necessary skill for mathematical modelling. The
Function Game challenges the student by effective
use of computer graphics, immediate performance
feedback, scoring, and competitive skill ratings.
The student is able to explore and discover the
association between graphs of functions and their
equations, with the computer giving the student
immediate feedback.

The student starts the game by selecting
functions he/she wants to study. (The game package
comes with a set of over seventy functions, and
more can be added.) A 'function is randomly chosen
from this set; the graph is drawn; the student
then examines it. Ths student can imagine that
he/she is a detective, whose job it is to solve the
case of the "mystery" function. The student must
guess the name of the function and determine the
value of its unknown constants. Then the graph of
the guess is drawn, overlaying it on the graph of
the actual function. The student can visually
ascertain the correctness of her/his answer. (This

provides the student with immediate performance
feedback.) In keeping with the game aspect, the
student is scored on the proximity of the actual
function to her/his guess.

An important feature is that hints are
provided when the student wants help. A set of
hints comes with the package, but as with
functions, these can be modified.

A special editor is provided to modify and add
to the list of functions and hints. The instructor,
can even design entirely different sets of
functions and hints, to apply to a physics,
chemistry, or economics course. The editor is
designed so that the teacher can tailor the program
to fit his/her needs without knowing anything about
programming.

The Function Game has been classtested in
precalculus avid calculus courses at Essex Community
College, Baltimore County, Maryland. We found that
the program worked most effectively with groups of
three or four students. The interaction among the
students was very important in, their. learning
process. Inotructors remarked on how quickly they
were able to identify the different functions.

The program, written to work on the Apple II
microcomputer, will be demonstrated.

187

. r 204



www.manaraa.com

ABSTRACT: Computer Chronicon Pro_ect

Melvin H. Wolf, Professor of Humanities and
English, Pennsylvania State. University, Middletown,
PA 17057

In their endeavors to achieve a better
understanding of the past as a step toward
developing clearer views of the present and future,
scholars and students in the humanities have long
made use of two standard forms of chronological
tables; the first provides chronological lists of
items, and the second horizontal or vertical
timelines. Both forms are designed to facilitate
perceptions of relationships between various events
and persons, but the utility of both forms as

they are now generally available is diminished by
their being set on printed pages by the choices of
persons other than the users themselves.

With computer terminals now readily available
to investigators in all fields, it is time for the
development of a machinereadable data bank of
chronological informantion which a user can query
with an eye to his particular needs and interests.
Just as library users can now broaden or limit the
range of responses to their bibliographic questions
at library computer terminals, they should be able
to broaden or limit the range of responses to their
chronological questions at similar library,
university, or classroom terminals.

The purpose of this project is to develop a
Computer Chronicon capable of generating customized
chronologies to users' specifications. The

specJ.fic objectives of the pilot project now in
progress are to:

1) compile a sample machinereadable data
bank of chronological information,

2) develop a working set of computer programs
which will a) generate both cathode ray
terminal (CRT) and hardcopy output b) of
both list and timeline chronological
tables c)using both data bank and
usersupplied data d) for both interactive
and batch processing, and

3) provide full and readable documentation
describing the system and its use.

188

205



www.manaraa.com

WHERE ARE WE GOING IN THE USE OF COMPUTERS IN PUBLIC EDUCATION

Sylvia Charp
Editor-in-Chief

Technical Horizons in Education

The use of computers in education covers a wide range of activities and applications
and its use in schools has increased tremendously. We are currently 'being swept along
with the tide, using buzz words such as computer awareness,. computer literacy, computer
based instruction, etc., but without sufficient thinking concerning the direction we wish
to go, profiting from experiences of others and then developing a plan for implementation.
There is no doubt that-Many aspects of our lives will be changed, adapted, or modified by,'
computer technology and that education ust prepare students to live in a technological
world. However, "to get on the bandwagon" should not be the prevailing desire. We -now

have sufficient accumulated experience and research to help determine, our direction,
though what should be taught and to whom' is still being debated. We do have alternatives,
and we can determine our needs and wants and better evaluate our options.

189

20G



www.manaraa.com

Computers in the Undergraduate Mathematics Curriculum

Sheldon P. Gordon
Suffolk Community College

ABSTRACT
This session is designed to explore some

of the most, sophisticated and novel uses of
the computer in the undergraduate
mathematics curriculum.

At Brooklyn College, CUNY, a group of
faculty have developed and explored a

multifaceted approach to the use of

computer to perform , the clerical and
routine work involved in producing drills,
worked examples and related instructional
materials. The main direct and immediate
impact on education at the College has been
the establishment of \a math workshop,
staffed by, faculty and student tutors, to
provide a major component of the math
remediation needed by many students. The
workshop is used by apprOximately 1000 per
year and is based on the use of drill
materials generated by programs developed
within the project, largely by Professor
Kovacic.

Other major areas of development and
exploration at Brooklyn Co lege include; 1)
syntax driven authoring languages and
programs to support them; 2? the production
of -materials for computer literacy and
computer science education\that illustrate
the workings of various ,algorithms by
printing traces of theiroperations; 3) the
use of computer graphics on large and small
machines to produce instructional materials
for distribution and use in classes; 4) the
utput of material designed this way to
ary high quality typesetting devices for
ucational publishing.
At SUNY College at Brockport, a group of

fa ulty has developed a number of
instructional modules for use in lower

ARTICIPANTS:

M"chael P. Barnett
B ooklyn College
Ci y University of New York

The on D. Rockhill
SUNY College at Brockport

Gerald Porter
University of Pennsylvania

division undergraduate mathematics courses.
The modules are used for problem solving,
tutorial and modeling in differential
equations, calculus and precalculus
mathematics courses.

The mathematics faculty are using many
of these modules for class demonstrations,
particularly the function graphing and

modeling programs. Several modules are

designed to be used as laboratory
supplements to classroom lectures. These
modules include suggested laboratory
exercises. Students have access to the

materials in a departmental laboratory
equipped with several Apple computers
networked to a hard disk.

At che University of Pennsylvania, the
faculty has adopted the philosophy that
computing can be used in mathematics
instruction to motivate the mathematics and
to enable the student to solidify the grasp
of mathematical concepts. As an
illustration of such usage, two versions of
a course entitled Senior Seminar in

Computational Mathematics will be

described. This course is a reguired
course for computer math majors at the

University.
The, first version of the course is An

Introduction to Computer Simulation. This
course involves mathematical modeling,
differential equations and probability
theory. The second version of the course
is the Mathematical Foundations of Computer
Graphics, This version requires
proficiency in linear algebra and some
geometry.

190

2117



www.manaraa.com

Simulation: A K-College Teaching Strategy

Beverly Hunter
Targeted Learning Corporation

Amissville, VA 22002

SPONSOR: Society for Computer Simulation

ABSTRACT
Computer simulation is a widely used

problem solving aid in many areas of life.
A variety of simulations, from board games
to role playing, hage been traditionally
used by teachers. With the increasing
availability of computer resources, it is
likely that computer simulations will
become widely used in classrooms.

As with every pedagogical strategy,
educators should be cognizant of its
benefits and drawbacks. The purpose of
this panel is to clarify some of the issues
surrounding the use of computer simulation
as a teaching/learning tool. Discussion
topics'will include:
I. a recapping of the history of computer

simulation models as classroom aids;
. 2. an overview and assessment of

commercial simulation models available
today;

3. specific examples of integrating
simulations into the curricula;

4. a look at- the development processes of
simulation models;

5. the inherent dangers of using canned
simulations; i.e., the black box
phenomenon;

6. alternatives to using canned

191

simulations or teaching students to
be model builders.

The panel represents some of today's
leaders in both the academic and commercial
community of model and simulation
advocates. The panelists experiences span
all grade levels, from primary through
college.

PANELISTS:

Alfred Bork
Education Technology Center
UniVersity of.California, Irvine

Ludwig Braun
New York Institute of Technology
Old Westbury, NY 11568

Jonathan Choate
Groton.School
Groton, MA .01450

Tom Snyder
Tom Snyder Productions, Inc.
Cambridge, MA 02138

1)ULs



www.manaraa.com

Considering the Lack of Instruction Computing
in Higher Education: Why?

Lincoln Fletcher, moderator
MECC State University Instructional Coordinator

St. Paul, MN 55119

ABSTRACT
There is far less happening in the area

of instructional computing - using
computers as an instructional tool - in
higher educational institutions than in

elementary and secondary school across the
country. Why is this the case?

This panel will discuss some of the
issues and problems related to this

PANELISTS

James W. Johnson
Directorof Information Technology
Univer ty of Iowa
Iowa City, IA

George Culp
Assistant Director of Instructional Computing
University of Texas
Austin, TX.

Charles Parson
Assistant Professor, Geography Department
Bemidji State University
Bemidji, MN

3PONSOR: ACM SIGCUE

192

2 0

question. Members will represent different
perspectives on the situation: Computing'
Center Director, faculty member,
administrator, and computer,, coordinator.
Throuall discussion and sharing of concerns
perhaps some new understanding of the
problems and some possible solutions can be
found.

...



www.manaraa.com

The Funding Game: Playing to Win

John T. Thompson
Barker Central School

Barker, NY 14012

ABSTRACT
This. session describes the grantsmanship

process inherent in applying for private
monies for microcomputers. The audience
will leave the workshop equipped with a
broad background in applying for such funds
with detailed references to monies
available through the large computer
companies (e.g., Apple, Radio Shack,
Atari). Contact persons, telephone numbers
and extended bibliographies in the
grantsmanship area will be given.
Fast-paced and_packed full of useful
insights into the grantsmanship process,
this session will appeal to beginning grant
writers, plus established money 'seekers
looing for a quick update and new
information.

Attention is first given to the private
foundations which are depicted by type
(e.g., independent, corporate, community)

193

and area of funding priorities. Audience
is informed of the regional collections of
the Foundation Center in public libraries,
specific books on private foundations and
addresses to write to for more detailed
information on their individual needs.
Emphasis is placed upon how to establish
initial contact and rappdrt with foundation
trustees.

Attention then will focus upon the grant.
application procedures for several of the
large computer companies that have
corporate foundations. The majority of the
workshop will be devoted to these specific
Procedures.

Throughout the presentation, handouts
will be distributed to the audience. The
method of presentation will be a lecture
format with questions from the audience.

210



www.manaraa.com

DESIGNING A PROGRAMMING COURSE FOR MBA STUDENTS

*David V. Cossey, Director
The Wharton Computer Center

The University of Pennsylvania - The Wharton School
Philadelphia, Pennsylvania 19104

(215) 898-6422

David Rossien
EXXON Corporation

New York, New York

This paper discusSes the redesign of a
non-credit programming course for MBA students.
At Wharton this course is entitled "Problem
Solving Using the CompUter" (BA814), and all MBA
students must either waive the course by
credentials (based on prior computer
experience), waive the course by exam, or pass
the course as offered by the Wharton Computer

Center. Wharton has offered such a course for
several years, and recently the course was
redesigned. The study'described in this report
and the redesign took place in 1980-81. The
principal issues raised during the redesign
period concerned the goals of such a course,
whether the existing course met those goals, and
if not, was it possible to design a course
better suited to meet the-goals-

INTRODUCTION

For several years, BA814 used-the
programming,language APL. The course consisted
of approximately 22 hours of lecture presented
by members of the Wharton Computer Center staff
(generally MBA candidates), and was offered foUr

times each year: in August, during the Fall and
Spring semesters, and during the January
inter-semester period. The August class met for
three weeks, the semester classes for seven
weeks, and the January class.for two weeks.

All MBA candidates must either pass or
waive the course in order to graduate. During

the past two years the waiver requirements have
been relaxed, so that "substantial computer ---
experience" is sufficient to receive a waiver by
credentials. About one -third of the recent
Matriculants currently waive the course by
credentials.

APL was chosen for two principal reasons:%i,..,

1. It is an interactive language. BASIC,
the only other interactive language
available, was not well implemented on

the DECsystem-10.,

2. It is a very powerful language, and it

was hoped that knowledge of APL would
provide a useful tool that students
would utilize throughout their time at
Wharton.

COURSE GOALS

Faculty and administrators have described
the primary purpose of the course as
"facilitation of a better understanding of the
nature of computers and their capabilities".
The course instructors and the Wharton
administration believe that such an
understanding is important to a manager,
especially. given the rapid influx'of computer
technology into the business world. The
consensus is that an active, hands-on approach
to computer programming is essential for a
foundation of computer operation and
utilization. In the course of our research we
spoke with faculty and administrators from
numerous graduate business schools throughout
the country. Most stated that'developing an
understanding of computers is important; their
respective schools concurred by requiring
students to complete a course similar to BA814.

A secondary, but noteworthy, goal of the
BA814 course is to provide the student with a
tool, the knowledge of a programming language,
Which may be used while at Wharton.

Finally, a tertiary but relatively less
important goal is to provide 'a tool which might
be usefultoi the student after graduation.
While it is not expected that any Wharton MBA
student will be doing a significant amount of
programming, it is felt that with 'more and more
businesses gaining access to computing power,
the knowledge of a high-level programming
language might be useful to graduating MBAs.
The widespread purchase and use of personal
computers for home and office use might, in the
near future, make this a more important goal.

DESCRIPTION OF THE FORMER (APL) COURSE

The 22 hours of class time that comprised

211
194



www.manaraa.com

BA814 were designed to instruct the student in
the fundamentals of the API, programming
language. A simplified outline, indicating the
approximate number of class hours spent on each
-subject, follows:

(2) Introduction to Using APL on the
DECsystem-10

__.(2)__APL Data Structures ---

(6) Using APL as a Calculator
(4) .Writing Simple Programs (Functions) in

APL
(3) More Complex Programs in APL
(5) Manipulating Matrices in APL
(4) Formatting, Flowcharting, Discussion and

Review

There were three 1-2 hour 'quizzes', 8
assignments, each of which required one to three
hours of computer terminal use, and a final
project that generally took 8 to 10 hours of
terminal time and an equal amount of outside
preparation.

To pass the course, a student had to
accumulate a satisfactory average on the exams
(generally about 70%), and complete the
assignments-and the final project. Since there
was no penalty for dropping the course, most
students did so when it appeared they were not
passing. Therefore, the number of students who
receive grades of NC was quite low, around 5-10
percent. However, the course was sometimes
subject to a high attrition rate; in January
this was sometimes as high as 40 percent, and
ranged betueed.15120 percent in August, and
20-40 percent.during the semester.

Students did not generally find the course
conceptually difficult. There is no question
that most students were learning what we have
asked them to learn, though their responses on
course evaluation forms suggested they did so
grudgingly:.

PROBLEMS WITH THE FORMER COURSE

The critical problems with BA814 as it was
taught are outlined below:

1. The course did not teach concepts which
are basic to an understanding of the
role of computers in the business
environment. Concepts such as
structured programming, files, records,
databases, and text editors were among
those not covered in the course.

2. Students reported the course unduly
detailed and time-consuming,
particularly in light of its non-credit
status.

3. The skill(s) taught in the course (e:g.
the APL language) were not used again by
the vast majority of students while at
Wharton.

195

4. Students often found themselves
ill-equipped to work with the computer
packages which they do use while at
Wharton, such as SPSS, EMPIRE, IFPS and
TSP. This was because they had only
been taught concepts relevant to the APT,
language.

APL is fundamentally different from almost
all other computer languages. Though it is true
that those differences make APL a powerful tool,
they also set it apart from languages such as
BASIC, FORTRAN, PL/I, COBOL, Pascal and Ada.
APL often makes the computer transparent to the
user, hiding what the user should really see.
In this way it may distort both the "nature of
computers," and their capabilities.

There is without a doubt an APL "mind-set,"
a way of viewing problems in a different fashion
than one would if trained in one of the other
languages mentioned above. The fact that APL is
.not used extensively in the business community,
nor is it the primary teaching language of any
other business school in our survey, suggests
that emphasizing the APL "mind-set" does not
necessarily_facilitate_the_understanding of
computers and their usage in the business world.

Proponents of the APL language view it as
the language of the future. However, computor
scientists have been hearing this claim for ten
years. A recent survey, taken of the readers of
BYTE magazine (BYTE, October 1980), shows the
"literacy" rate of APL to have dropped faster in
the past two years than that of any other
computer language. The rate, according to this
survey, is now 22. percent. The literacy rate
(i.e., percentage people who "know" the
language) of Pascal, on the other hand, had
increased by over 150 percent, and is now at 40
percent, up from 14 percent two years ago. This
suggests that 10 years time should be sufficient
to detezmire whether APL is the "wave of the
future". Admittedly, more and more companies
are using APL, just as more and more companies
are using computers, but the widespread
utilization of APL that had been envisioned
appears not to have taken place.

Virtually every BA814 course evaluation
form used to come back with a comment about "the
heavy workload". With three exams, eight
assignments, and a long final project, BA814
compressed the work of a semester-long course
into a few weeks. A significant part of the
problem stemmed from the inherent nature of the
APL language. There are so many different
operators in APL that complex expressions must
be taught before the student oan really use its
full power. It became apparent that it was not
possible to teach APL in a less detailed manner,



www.manaraa.com

since we reit that we had already pared the
language down to its smallest possible subset,
while still demonstrating the power of the
language. We felt that it was not possible to
further reduce the amount of time necessary to
teach APL.

Experience over the past several years
suggests that while APL may have been a useful
tool at some point in time, the average Wharton
student was not using his or her knowledge of
APL in other courses while at Wharton. This was
to a large extent directly traceable to the
advent of the hand-held financial calculator and
the development of special-purpose high-level
software packages.

When the computer is used in a Wharton
course, it is usually via a pre-written package

'which requires only that the user know how to
log in and initiate the program, and not any
knowledge of a computer "language". The
packages which are most frequently used are .

LINDO, IFPS, EMPIRE, SPSS, BMDP, Minitab and THE
MANAGEMENT GAME.

In ai lition to the use of the computer in
regularly-scheduled Wharton courses, many
students use the computer to assist them in
their Advanced Study Project (ASP) courses. In'
almost all eases it is a package, and not a
general-purpose language, which is used. Many

marketing students analyze their questionnaires
with SPSS, finance students use TSP or IFPS, and
ASPS have also made use of EMPIRE, BMDP, and
IDA. In some cases, databases such as COMPUSTAT
are accessed, and since APL can only read
specially constructed databases, a consultant
must write a program in FORTRAN or Pascal for
the student.

Many students did not know what facilities
(other than APL) were available on the Wharton
DECSystem-10. BA814 did not attempt to teach
the students what tools were available on the
Wharton DECSystem-10, and because of time
constraints, it was not possible to conveniently
include this knowledge in BA814. The experience
of one of the authors of this paper (Rossien)
suggests that the tools which students want to
use now are not those which mimic calculators,
but rather packages such as those mentioned
above- and programs with access to databases,
which calculators cannot provide.

EXPERIENCE OF OTHER BUSINESS SCHOOLS

Part of this study included conversations
with administrators'and faculty at fifteen
graduate business schools. Of the fifteen
surveyed, twelve offered some sort of required
course in computer programming as part of their

196

MBA curriculum. The three that do not have such
a programming course, have a formal course which
utilizes computer packages, such as those
previously mentioned, in their "core" courses.
This suggests that a majority of these business
schools believe that a course in computer
programming is relevant to the MBA degree.

Each school that requires a course utilizes
a different format. In about half of the
schools, the course combines Management
Information Systems and computer programming
into one course. These courses are always for
credit, and typically last a full semester.
Some schools, such as NYU and Columbia, had
course structures similar to that offered at
Wharton; non-credit short courses which teach
only programming. Other schools give one-half
or one-third credit for their courses. No

course lasts less than two and one-half weeks,
and most short courses last for six weeks.

By far the most common language taught is
BASIC. Nine of the twelve schools with
programming courses teach BASIC, one teaches
PL/I, one FORTRAN, and one a combination of PL/I
and APL.

For our study, we requested syllabi from
each school, and received about half to examine.
Our findings indicate that most courses cover
the rudiments of BASIC programming. A few
simple programs are assigned, and some courses
have,a mid-term or final.

As far as programming as a tool for a
student's use while in graduate school, most
professors admitted that it was not used very
much. Stanford noted that it had an extensive
BASIC library (much like Wharton's APL Library),
and that several programs were used by students,
particularly the plotting and regression
routines, but that a knowledge of BASIC was not
essential for this use. Some courses, such as

that at Carnegie-Mellon, spent a lecture on
canned packages such as SPSS and text processing
programs such as SCRIBE. The instructors at
Carnegie-Mellon said many MBA students used the
text editing facilities to write their papers, .

as well as to generate cover letters and resumes
for job searches.

SUMMARY

213

,

1: Learning a high level computer
programming language (in contrast to a
"package" such as SPSS or TSP), is quite
useful, and-perhaps essential, to
facilitating a good understanding of
computers and their capabilities.

2. The advantages of teaching the APL



www.manaraa.com

programming language have not been
realized. For many reasons, APL was not
used as a tool by the vast majority of
MBA students, before or after they
graduate. Students found the previous
course to be much more time - consuming
and difficult than they felt the
situation warranted. Yet for all this
work, students did not have a good
understanding of what computers can do
and how one might expect computer
technology to affect the business
environment in the future.

3. APL instructors agreed that 113cauee of
its power and breadth it takes more time
to teach the fundamentals of the APL
language than it would to teach many
other higher level languages.

4. The concepts and principles behind APL,
as well as the language itself, are not
at all widely utilized in the business
world. Concepts such as Mee, records,
and program structure were dot really
covered in BA814, as they are not an
important part of APL. These concepts
are considered important and integral
parts of EDP and should be included in

the MBA curriculum.

5. Packages such as EMPIRE, IFPS, SPSS and
TSP are not as readily understandable to
persons' knowing APL as to those knowing
"FORTRAN-like" languages such as BASIC
or Pascal.

6. Most of the business schools we
contacted have a required course in
computer programming as part of their
MBA curriculum. Most schools teach the
BASIC language in one of its many forms.
Usually the BASIC that is used is an
enhanced version of BASIC.

INITIAL RECOMMENDATIONS

It was clear that the goals of BA814 were
not being met in an effective manner within the
structure of the APL course. After studying the
course outlines and syllabi of other business
schools, and speaking with Wharton faculty,
staff, and students, we concluded that-it would
be possible to design a course to.better meet

our goals. Our initial design of such a course

consisted of three parts:

1. An introduction to the Wharton Computer

Center Facility

2. Instruction in a language such as BASIC

197

\ or Pascal

3. Instruction in a package of the
student's choosing

It was envisioned that each of these parts would
be viewed as an independent "mini-course", and
would normally be taken in the above order.

The goal of the first course segment was
threefold:

1. Live the computer novice an overview of
the very basic concepts of computer
systems. These include:

-How to log on, log off, get help

-What are files, and how they are
used

-What is the significance of terms
such as CPU, memory; disk, terminal,
batch, interactiveon-line,
prograMming language and
canned-package.

2. Give the students some idea of what
tasks can be easily accomplished on the
Wharton DECeyetem-10, and generalizing
from this, on any large computer system
in the business world. This means
giving a description of the packages,
databanks, hardware, and libraries
available on this system as well as
presenting a summary of what i8
available in today's business world, and
where trends in such fields as office
automation, computer modeling, and
database management are headed.

3. Teach the student how to use a simple
text editor

The above material could be covered in four
to five class hours.

We concluded that some form of high level
programming language instruction facilitates a
better understanding of computers and their
capabilities. The following 18 a net of
concepts that should probably be covered in the
introductory programming module:

1. Variables, numeric and character-'
2. One and two dimeneional arrays
3. Conditional statement execution

(1f-Then-Else)
4. Looping and iteration
5. Subroutines and functione
6. Input and output to the terminal and to

214



www.manaraa.com

files
7. Construction of a "Conversational'

program
8. Program modularity, block structured

code, hierarchial problem solving

The language of instruction should be one
which is comparatively easy to learn, and allows
students to study the concepts suggested above
without being constrained by artificialities
inherent in the language. A study of language
choices suggests that the possible languages are
all "FORTRAN-like", but there are several
alternative languages to choose from. We felt
that the best choices would be BASIC, Pascal, or
PL/I. PL/I was not implemented on a
DECsystem-10. When we began our study, we were
not aware of an enhanced version of BASIC for
the DECSystem 10, so our initial Choice was
Pascal. In -ourse of discussions about the
proposed r, . of the course, we discovered

an enhanced Jn of BASIC, which contained
advanced control structures (IF-THEN-ELSE,
etc:), long variable names, expanded
user-defined sub-programs, and many other

advanced features. Upon investigating this
version of BASIC (MaxBASIC from National
Information Systems), we decided to use BASIC in
the ProgramMing Language module of our
redesigned BA814.

Topics in this section include the
following (the numbers in parentheses are the
number of hours estimated): Introduction to
programming (1.5), structure cf a computer
program (1.5), variables (1.0), expressions and
assignment statements (1.5), input/output (0.5),
conditional execution (1.5), iterative-looping
(0.5), flow charts (0.5), one-dimensional arrays
.0),.stri,Igs (0.5), two-dimensional arrays
(1.5), subroutines and program modularity (1.5),
reading from files (0.5) and 'Putting It All
Together' (1.5).

In the third section of the course the
student would choose which of a\half dozen or so

packages he/she wishes to learn. \This section
of the course would have certain prerequisites,
since most of the packages assume he user
understands the nature of the problems he/she

wishes.to solve. A partial list of the packages

which would be offered includes: SPSS, TSP,

IFPS, EMPIRE, IDA, Minitab, Runoff (text
processing).

The course would have one individuat final
project which would require the student t' use

the package to solve a real-life problem.
Experience at the Wharton Computer Center
suggests that is is definitely possible for the
student to become quite facile in any of the
above packages after at most five class hour

198

As originally proposed, the new course
would have required slightly more class time
than previously.

As described above, each segment of the
course attempts to meet specific goals. The

students would have learned the fundamentals of
computer systems and thinking, as well as the
capabilities of the Wharton Computer Center.
They would have been presented with three major
areas of computer technology in business: text

editing and word processing, data processing via
a high level language, and computer packages
which can be used to solve business-oriented
problems."

FINAL IMPLEMENTATION

After the initial recommendations were
distributed and discussed, a revised course
began to emerge that was a modified version of
the initial plans. We had initially recommended
the use of Pascal for the Programming Language
module of the course. After we discovered and
evaluated the MaxBASIC language from National
Information Systems, we recommended its use as
the language to teach.

We decided that having three separate
modules would create administrative problems,
but we thought that the content of the three
modules should somehow be provided, perhaps by
alternative means. To this end the first module
(Introduction to the Computer Center) was
combined with the second module (Introduction to
a Programming Language) in a single course that
would be required of all MBA students without
previous experience with computer programming.

The content of the third module
(Introduction to a Package) is provided in
optional short courses offered by the Wharton
Computer Center. Packages taught to meet the
objective of the propcsed third module include:
SPSS, BMDP, IFPS, EMPIRE and TSP.

Officially, BA814 now consists of the first
and second originally proposed modules in a
single non-credit course. This course is
offered four times a year: August, Fall,
January and Spring. In August the course runs
for 7-8 class days, during the Fall and Spring
the course runs for about 7 weeks for 2-3 hours
per week, and in January there are six 3-hour
sessions (Morday-Saturday). The January session
is run the week before classes begin for the
Spring semester. Enrollments for this course-----

during the first year were as follows:

August, 1981
Fall, 1981
January, 1982

300
50
60



www.manaraa.com

Spring, 1982 30
August, 1982 200

The course has been received very well, and
we have found much less resistance to the
revised course than we did to the previous
course. We attribute this to two primary
reasons:

1. The use of BASIC rather than APL
2. A more modest workload for the course

Many students either are buying or expect to buy
a personal computer system within the next five
years. A recent questionnaire' of Wharton MBA
students indicates that 46% of the respondents
expect to buy a personal system in the next five
years, and 40% of the respondents indicated that
they have used a personal computer system. The

proliferation of personal computers has made the
teaching of BASIC more 'palatable' and logical
for many of the MBA students who take BA814.

As a result of this redesign of BA814, and
6 supplement BA814, and to assist MBA students,
faculty members, and other interested parties in
selecting a personal computer system, the
Wharton Computer-Center-sponsoreda-Computer
Fair in September, 1981. The fair brought
twelve local vendors to in an exhibit area.
There were as many different systems on display
as vendors. There were also lectures on various
topics, including 'Personal Computer Systems:
What They Are and Whatto Buy'. The 1982 Fair
had twenty vendors and 1,500 attendees. We feel

that the Fair has become an important part of
the education prograMs provided by the Computer
Center, and although not an official part of
BA814, the Fair is in many ways an extension to
BA814.

199

2 G



www.manaraa.com

A CURRICULUM FOR A MASTERS PROGRAM IN COMPUTERI'ZE'D MATERIALS MANAGEMENT

by Daniel G. Shimshak and Dean J. Saluti

Department of ManageMent Sciences
University of Massachusetts/Boston-

Abstract

In this paper, a curriculum in computer=
ized materials management is presented. The
curriculum is designed for a graduate program
and developed as the result of the combined
efforts of (1) Cambridge College. (2) American
Production and Inventory Control Society, (3)
Digital Equipment Corporation. (4) Bay State

Skills Corporation, and *(5) the Boston Acade-
mic Community. The program is comprised of

six modules of training, each lasting three
months. Courses are designed to be taught in
the evening and weekends to allow students to
maintain employment or to enter optional mater-
ials management internships.

Introduction

This paper presents a curriculum in com-
puterized materials management which currently
serves as a pilot graduate program in Cambridge,
Massachusetts. Such a curriculum although de-

signed for a graduate program, can be modified
fOr an undergraduate Bachelor of Science curric-
ulum. In addition, the actual courses within
the curriculum. linked in such a way as to ad-
dress.various.training deficiencies can then be
used in specific industrial applications.

The field of materials management is one of-
growing importance. Industries involved in the
production of equipment, components and mater-

ials comprise a major element of the economy and
their productivity strongly influences domestic
living standards and competitive positions in
international trade. The materials manager must
be involved with three mayor functions--systems
design, "systems operation, and systems control

(see Stevenson and Monks
2
). These encompass a

wide range of management activities related to
produetion,.inventory, purchasing, stores, dis-

tribution and quality.
3
The computer has had a

significant tmpact on recent advances in the
field. COmputers are used not only for solving .
problems dealing with materials management, but
also for generating reports, automating manufac-
tUring processes, controlling operations and in

designing products.
4'

Now, more than ever; is
the computer and materials management linked to-
gether.

From a historical perspective, the need for
a masters degree program in computerized

200

materials management evolved from two sources- -
minicomputer vendors and manufacturing practi-
tioners. Digital Equipment Corporation (DEC),
the largest AmeriCan manufacturer of minicomput-
ers, had recognized the fact that their PDP 11
family and the new VAX models supported a maior
proportion of materials management' installations.
DEC's field service representatives and sales
personnel had come to the realization that the
users at these installations had skill level in-
adequacies which prohibited proper system apPli.r.
cations. For example, users with materials/man-
agement training lacked computer skillOrhile
technical computer persOnnel failed to understand
materials management tecVniques. FUkhermore, the
users had begun to speak out and/sought any and
all available training sources(

DEC's formal recognitpm of this problem was
matched by APICS, the American Production and In-
ventory Control Society. APICS, a professional
association for' materials management practition-
ers, clearly voied'a need for education in com-
puterized materials management. An informal task
group of Bost6n APICS members. DEC representa-
tives and,University professors began to work to-
gether -to develop a curriculum to meet the needs
in the field. What evolved was a pilot program
with support from several sources:
(1) Cambridge College--a small private college
accredited to grant. masters degrees in management,
contributed institutional resources which will
lead to a graduate program in computerized ma-
terials Management.
(2) APICS--the'Boston Chapter membership donated
time and resources to the development of a cur-
riculum which reflects speCific skill levels rec-
ognized by practitioners in the field.
(3) DEC--contributed a PDP 11/34 minicomputer
system to be housed at Cambridge College to
support all program training. In addition DEC
provided technical inputto the curriculum de-
velopment and made a heavy commitment to program

delivery.
(4) Bay State Skills Corporation-processes
grants for the development of highteChnology
oriented training through funds allocated by the
Governor of Massachusetts: and the State Legisla-
ture. They provided funding for this pilot pro-
gram.

Boston academic community--representing Uni-
versity professors throughout the state from
academic disCiplines such as computer sciences,
management, management sciences, and management
information systems. They played an integral part.

217



www.manaraa.com

in the development of this curriculum. These pro-
fessors held positions at institutions such as
the University of Massachusetts/Boston, South-
eastern Massachusetts University, Suffolk Univer-
sity, Bentley College, Northeastern University
and Boston University.
. The current economic status of Massachusetts
supports the demand for positions in computer-

ized materials management. 5
Massachusetts has

the second lowest unemployment rate of the in-
dustrialized states. With'regard to manufacturing
activity and employment, MassachusettS statistics
are much healthier than mosi; of the remainder-of
the nation., Also it is critical to note that the
most important piece of tax limiting legislation
in the state, Proposition 2 1/2 which was approv-

ed in November 1980. had had its major impact on
norunanufacturing employment. Thus economic in-
dicators reveal a maintenance of employment rates
and economic stability in Massachusetts which is
essential for continued growth in this area of
computerized materials management.

Program Objectives

The first objective of this program is to

build a foundation of technical skills in ma-
terials management. These are primarily mathe-
matical skills with manufacturing applications.
For example, inventory control draws upon alge-
bra Lad probability theory, quality control re-
lies on statistical analysis, and shop floor
scheduling applies matrix algebra. Whereas
mathematical analysis of these problems has un-
til recently been performed by hand, today re-
liance on the computer has become mandatory.

A second major objective is to develop the
ability to write 'programs to perform materials
management functions. Teaching' emphasis is placed
on the development of the students' ability to de-
sign systems in a structured logical manner in
virtually any and all applications and systems
languages. This is accomplished by providing an
environment'which will require students to build
systems (such as Materials Requirements Planning
--MRP) in the following applications languages:
BaLic. Fortran IV, Fortran 77,,Watbol. Cobol,
,PL/1, and PL/C. The student completes the pro-
gram with a portfolio of materials management
programs, each materials management technique
being programmed in as many as five different
languages. In addition these same techniques will
be programmed in PDP 11 Assembly in order that
they may acquire systems programming expertise
and familiarization with macros. Proper program-
ming techniques are emphasized such as structured
design and eodingas well as systems documenta-
tion. In meeting this objective students will
gain the ability to effectively link materials
management skills end techniques to computer
applications and programs.

The third objective is to develop in:the
student an expertise in minicomputer operations.
It is important that the students can configure
a minicomputer system within a manufacturing en-
vironment; can plan a conversion in hardware in-
stallation; and can actually operate and manage a

minocomputer system. Although generic minicomput-
ers operating system's functions are presented,
emphasis is placed on the knowledge of the-DEC
PDP 11 due to its popularity and applicability
in the manufacturing environment.

Finally the Program attempts to prepare the
student for the interpersonal dynamics off' the
manufacturing work environment. Students must
learn to work in a project task group setting
where technical computer and manufacturingtasks
must be shared and accomplished by a team of pro-.
fessionals. Various interpersonal skills and man-
agement principles.; essential-to success in this
area, are taught.

201

Curriculum Tracks

The program curriculum can be found in the
Appendix. This program is designed to be taught
in the evening and weekends to allow students to
maintain employment or to'enter optional mater-
ials management internships. There are six mod-
ules of training, each lasting three months;
thus the student may acquire a masters degree in
computerized materials management in one and a

half years. The admissions criteria provide an

opportunity for individuals seeking a career
change as well as those who have a background in
.business or manufacturing. Various courses such
as accounting techniques or statistics can be
waived or required given the student's previous
educational background.

Track I -- Materials Management Techniques- -
includes the following courses:

Basic Production and Manufacturing Princi-
ples

Bill of Materials Techniques
Capacity Requirements Planning
Purchasing
Introduction to CAD/CAM
(Computer Assisted Design/Computer Assisted
Manufacturing)

Introduction to Robotics
Forecasting Techniques
Shop Floor Control
Inventory Control Systems
Manufacturing Production Scheduling
Basic Principles of MRP
Advanced Principles of MRP.

This track provides a technical expertise in
nearly all areas of materials management as en-
dorsed by practitioners and professional associ-
ations .

as APICS. The traditional educational

envirom_ these courses would allow the

student t, thematical techniques to

applications. Program moves forward to pro-
vide'the tools for the design of computer systems
for the specific materials management techniques.
The logical nrogression of the courseware begins
with the basic materials management principles,
moves through specific techniques, and concludes
with the all-encompassing systems environment of

MRP.

Track II--Applications Programming for
Materials Management includes the following

courses:

218



www.manaraa.com

Introduction to Computer Programming Logic
for Manufacturing (Basic)

Intermediate Computer Programming Logic for
Manufacturing (Fortran IV)
Intermediate Computer Programming Logic for
Manufacturing II (PL/1)

Advanced Computer Programming Logic for
Manufacturing (Cobol)
Systems Programming Techniques (PDP 11
Assembly).

The intention of this track is to familiar-
ize.the student with various applications lang-
uages while integrating materials management
programming assignments with programming tech-
niques. The student will learn Fortran IV by
writing Bill of Materials programs, for example.
The number of languages taught will depend upon
the.availability of compilers for.the PDP 11/34;
thus languages such, as Watbol, PL/C and Fortran

77 might also be introduced to the student. Mac-
ros and systems Programming skills will be ac-
quired through PDP 11 Assembly language.

Track III--Computer Systems Skills for Mini-
computer Applications--includes the following
courses:

Introduction to Computer Applications in
ManufactUri:Ig
Computer Law
Computer MRP Systems I.
Computer MRP Systems II.

Within courses such as Introduction to
Computer Applications in Manufacturing and Com-
puter MRP Systems I and II students will become
familiar with commands for various software
packages that are a7ailable from vendors
(Original Equipmer Manufacturers or OEMs) for
the DEC PDP 11. Computer Law is an important part
of the curriculum given that practitioners must
continually negotiate contracts with hardware
and software vendors /OEM's who offer materials
management processing resources. In addition DEC
RSTS Operating Systems:. and DEC Systems Manager
topics are included within the content of speci-
fic courses in this track.

Track IV--Mathematics Workshops--includes
six optional, noncredit mathematics workshops
and a ,Statistics Applications course. AS quanti-
tative methods are taught within each course in
the Materials Management Techniques track, the
student is offered support ina workshop en-
,
vironment. Thus students with an innate fear of
mathematicsnan,be assisted. A basic statistics
course in included which can be waived by stu-
dents who have achievecha grade of B or better in
a college statistics course. Most materials man-
agement techniques incorporate statistics prin-,
cioles thus justifying the statistics reauirement.

Track V-- Manufacturing Business Environment
--includes the following courses:

IntrOduction to Manufacturing for the Busi-
ness Environment

Accounting Techniques for Materials Manage-
ment

Financial Techniques for Materials Manage-

ment.Again the opportunity exists for students to
waive these courses if they have achieved a B or
better in similar college courses. The purpose

202

of this track is to acquaint students with impor-
tant principles of the business environment that
they will undoubtedly encounter in the perform-
ance of their materials management functions.

Track VI--Behavioral Dynamicsincludes
Management Style for Manufacturing, Job Oearch
Techniques and six human relatiOns, skill build-
ing courses taught within a workshop environment
in each module. The topics covered-in the Human
Relations courses include interpersonal communi-
cations. team building, group processes, motiva-
tional techniques, leadership, conflict inter-
vention, organizational effectiveness and inte-
gration techniques. A course in management style
is included because it is perceived that grad-
uates of this program will quickly move into
entry-level management positions. Finally the
course dealing with job search techniques will
assist graduates in moving into immediate employ-
ment.

Summary

A consortium of contributors from the menu-
'featuring industry, computer industry and aca-
demia have worked together to develop a graduate
program in computerized materials management. The
intent of the contributors was to develop a pro-
gram curriculum with the following primary ob-
jectives:
(1) to build a foundation of technical skills in
materials management,
(2) to develop the ability to 'write programs to
perform materials management,
(3) to develop an expertise in minicomputer oper-
ations, and
(4) to in-et/are for the interpersonal dynamics of
the manufacturing work environment.

The courses'are offered in six modules and
assembled within the following tracks:
,(1) Materials Management Techniques,
(2) Applications Programming for Materials Man-

agement,
(3) Computer Systems Skills for Minicomputer
Applications,
(4) Mathematics Workshops,
(5) Manufacturing Business Environment, and ,

(6) Behavioral Dynamics.
The pilot class will begin in July 1983,

with an expected enrollment of 30 students. Con-
tinuous input will be solicited from program de-
velopers and Program graduates. In this way the
courseware will remain within the state of the

art.
Appendix

Computerized Materials Management
Proposed Curriculum

Module I Contact Hours

Introduction to Manufacturing for
the Business Environment

Basic Production and Manufacturing
Principles

Introduction to CoMputer Applications
in Manufacturing

Introduction to Computer Programming
Logic for Manufacturing,

(Human Relations Course)

20

140

20

8o
140



www.manaraa.com

Math Workshop I (Optional) 40 Outlook on MatistchUsetts, Commonwealth Books,

240 Palisades, NJ. 1982.

Module II
Accounting Techniques for Materials

Management 40
(Human Relations Course) 40

Intermediate Computer Programming
Logic for Manufacturing 40

Bill of Materials Techniques 40
Capacity Requirements Planning 40
Math Workshop II (Optional) 40

Module III
Financial Techniques for Materials

Management 40
Statistics Applicatiohs 40
InterMediate Computer Programming

Logic for Manufacturing II 40
Purchasing 40
(Human Relations Course) 40
Math Workshop III (Optional) 40

240
.

Module IV
Introduction to CAD/CAM 20
Introduction to Robotics. 20

Forecasting Techniques 40
Advanced Computer Programming Logic

for Manufacturing 40

Computer Law 20
Shop Floor Control 20
(Human Relations Course) 40

Math Workshop IV (Optional) 40
240

Module V
Inventory Control Systems 40
Master Production Scheduling 20,

Basic Principle's of MRP lib

SysteMs Programming Techniques; 40

(Human Relations Course) 40
Compuier MRP Systems I 20
Math Workshop V (Optional) .40

24o
Module VI
Advanced Principles of MRP 40
Management Style for Manufacturing 4o
Computer MRP Systems II 60
(Human Relations .Course) lip

Job Search Techniques 20
Math Workshop VI (Optional) 40

24-6-

References

(1) William J. Stevenson, Production/Operations
Management, Richard D. Irwin, Homewood, IL.

1982.
(2) Joseph G.-Monks, Operations Management,

McGraw Hill, New York, 1982.
(3) Jack N. Durben, "Materials Management Online

System," Proceedings of the 24th Annual
International Conference of APICS, Boston,
MA. October 6-9, 1982, pp. 27-30.

(4) Donna Hussain and K.M. Hussain, Information
Processing Systems for Management, Richard
D. Irwin, Homewood, IL, 1981.

(5) Roger J. Deveau, Dean J. Saluti and Daniel
G. Shimshak, "Economic. OpportUnity--An
Economic Profile of Massachusetts" in The

203

22u



www.manaraa.com

Information Literacy Course: A Recommended Approach

Eileen M. Trauth

School of Management, Boston University
Boston, MA 02215

Abstract

Given the pervasiveness of computers in our

society,much recent attention has been focused
on the development of literacy courses to

prepare students for this new era. The typical

approach is a computer literacy course which
introduces the students to some programming

language. This paper presents an alternative
course on information literacy.. The goal of
information literacy is to be able to respond
to'the demands of an information-intensive

society.

Introduction

The arguments supporting the need for a

literacy course in the computing area have been

made and are widely accepted. What is not so
widely accepted, however, is the form that such

a course would, ntake. The rationale for
computer literacy stems primarily from the

pervasiveness of information processing
technology in our society. Most fields of
study require interaction with the computer

resource. Upon graduation, virtually all areas
of employment will bring the graduate in

contact with information processing techndlogy.

The response to this need ranges from a
service course in the computer science
department to specialized courses within the

various disciplines. Literacy in this regard

is generally labeled "computer literacy" and

aspires, to make the students proficient in the
manipulation of a computer via some high level

languge. The underlying assumption, it seems,'
is that learning how to successfully manipulate

the technology is the best preparation for an
information- intensive society. This paper
suggests another approach, one based upon the

goal of information literacy rather than

.computer literacy. According to this view,
what should be the focus of attention is the -

information itself. The computer is viewed as

'a tool - albeit the major tool - used in the.

processing of information. Thus, it is studied

- but from the viewpoint of its relationship to

the information. Information literacy, then,

is a broader concept than computer literacy.
The goal is not competencein manipulating the

computer, as the latter term implies. Rather,

the goal is the capability of working with

204

information in whatever form it arrives and by
whatever means it is processed - via computer,

or otherwise.

Fundamental to this view is the notion that

information is a phenomenon that has
independent existence. Thus, one could study
information in much the same way, as one could
study energy, or music, or basket weaving. The

emphasis would be on the issues associated with
the existence of the phenomenon. Some of these

are technological, others are behavioral.

Thus, the spectrum of possible study ranges
from systems design and programming to human
information processing to societal impacts of

information. These areas of study are,
however, shaped by an "information

perspective." This perspective means
considering the phenomenon to be distinct from
the media used for storage, processing or

transmission. Since the focus is on the
phenomenon and not the-medium, a broader
outlook is possible. Thus, the emphasis for
problem solving would be on the satisfaction of
the information need rather than on the
manipulation of technology. As such, attention

can be given to appropriOte tools for

information processing and transfer- whether it

be print, electronic, video, etc. An

additional aspect of this perspective is that
it allows for the behavioralcomponent. Since

the various media involved with information are
seen as being only the tools, the- focal point

can become the people - those affected by these

tools.

Such an approach to literacy will enable
the student, in this author's view, to cope

with the issues surrounding an
'information-intensive society that go beyond
manipulation of the tools. The student would
develop a methodology for "learning to learn."
Additionally, the student would develop an
orientation toward information as an explicit

and valuable organizational resource. Finally,

assuming that most people will be users of
information rather than developers of its
systems and technology, they will,ke able to
develop their ability to articulate'their
information needs and communicate them either
to another person or to a machine.

221
1



www.manaraa.com

Recommended Undergraduate Literacy Course

There are certain assumptions underlying
the recommendations that will follow. First,

it is assumed that this is a required course
for allstudents in the academic unit the
department,' school, or college. Second, for
the majority, of the students, this literacy
course might be the only computerrelated
course.that they will take. Third, it is
assumed that one of-the goals of such a course
would be its integration into the subject
matter of the Major discipline. That is, this
course would become an integral part of the
student's educational experience. This
reflects\the attitude that the study of
informatiOn should not be separated from the
setting in which it is to be used. A final
assumpton is that the study of information is
not synonomous with, the study of the technology
used to process it. The latter is an aspect of

the former.

In keeping with the emphasis on information
literacy this course should, among other
things, familiarize the student with the
information environment. That is, the student
should become comfortable with the process of
articulating theinformation requirements of a
0.-Ven situation. In addition, he/she should'be
able to identify and understand the role of
information flows within the organization. For
this reason the course should include
discussion of notions associated with
information as an independent entity. The

origins of informaton should be examined
relative to-the situations in which the
students would be working with information.
The properties of this phenomenon should be
examined as well. In order to this, it is
necessary to understand the distinction between
data and F.-.formation. While this may seem
fairly obvious, there appears to be much
confusion over the terms as evidenced in
students' perceptions about the topic. A recent
discussion in an introductory course_yielded
such responses as:

Or

"Data is what you have when
you use computers; information
is what you have when people
do the work."

"You take information and put
it into the computer and do
things like statistics on it
and. then you get data as the

output."

The viewpoint held for this proposed course
is that data should be understood to be the raw
material out of which information is created.
It is, therefore, information in potential.
Data, when processed, does not necessariy
result in information. It only does so when
the recipient' of the data is capable of

205

understanding it and is motivated to do so.
Some of the distinctive properties of
information that can then be noted are the
following: Information has subjective
existence, while data has objective existence.
Information is not depleted with use.
Information is intangible. The overall intent
of the treatment of information as a distinct
entity with distinct properties is to separate
the information content from the media or
technology by means of which it is conveyed or
processed.

A second major topic that should be
addressed is that of systems. Hany people use
the terminology of information systems without
ever having stopped to think about the
implications of the term. Recommendations
regarding the treatment of the term
"information" have just been presented.
Recommendations about the term "system" follow.

Students should first be introduced to the
notion of a system in general (and accordingly,
systems thinking). They should then probe the
interaction of systems and information. Part

of doing so involves examination of systems
used for the processing and communication of
information. Thesesinclude software packages,
new telecommunications offerings and manual
procedures. Another apsect of the study of
systems involves the study of the
organizational systems within which information
flows. If an information system is to automate
the flows of information within the
organization, then it is encumbent upon those
working with such systems to be able to
understand the existing framework that holds
the information.

An overriding orientation that should
influence the preceding treatments is the
particular disciplinary setting. It has
already been argued that information only has
real existence within a given context. For
this reason it is crucial to the introductory.
understanding of information and its systems
that different scenarios of information
generation, and processing be used. Business
students will encounter a different type of
information than that for library science -

students. Liberal Arts students interact with
information in ways much different from those
of science majors.

A third major topic should be the study of
information processing. In an era when the
limits of computer processing continue to be
expanded, students who may never take another
formal course in this area need to develop a
view of the entire srectrum. This involves
treatment of three major areas.

If it is accepted that information is a
phenomenon whose existence depends upon the
characteristics of the recipient then it is
necessary for the students to have some
understanding of human information processing.

222



www.manaraa.com

This includes treatment of both the ways in
which humans process information in general and
the ways that the particular people involved in
the student's discipline process and use
information. A secondary benefit is that this
understanding is helpful when learning about
machine processing.

Since commercially available software
packages are increasingly the norm, students
should have exposure to the types that they
would be likely to use. They will then not
only have experience manipulating "real world"
software, they will also have the opportunity
in an introductory course, to examine examples
of more sophisticated software than they are
capable of writing themselves.

The final aspect of information processing
is to experience developing programs
themselves. This is often the easiest segment

of such a course. The students usually feel
that they are working with something concrete
that has specific outcomes. Despite the fears

that some might have upon entering, by the end
of the course the majority of students are
usually quite excited about working with
computers and are pleased with the acquisition
of a new and valued skill. The' challenge when
incorporating a programming segment into such a
course, however, is to maintain the proper
perspective. The goal of the programming
segment is not one hundred percent proficiency
in some high level language. Rather, it is to

understand how to process data into information
by means of a computer program. The emphasis

is placed on learning the input-process-output
sequence. The students learn how programs work
in general through writing specific programs.
The particular language used is treated as a
vehicle for conveying such concepts. With
thirty to forty percent of the coursework
devoted to computer processing only a subset of
the language can be taught. The students are

\told this. They are taught enough to be able
to see the way in which computers process
data. Suggested constructs would be: simple
input and output, sequential file processing,
calculations, transfer of control and looping.
By writing programs in a given language the
students should develop a generalized
understanding or how computers and software
function. If some attention has also been
given to human information processing then the
students are able to contrast their own mental
operations with the operations of the
computer. This understanding has proven to be
valuable when students encounter difficulties.
with theirprograms. A typical example is the
holistic or gestalt approach'to problem solving
taken by, humans as opposed to the linear
approach taken by the computer. Another is the
contrast between the amount of ambiguity each
can tolerate.

The final topic to be covered in such a
course should bring together the previous
three. Through problems and cases the students

should examine the ways in which information,
systems, and organizations interact. Again,

such a treatment should be geared to the disci-
plinary setting. In a business curriculum the
students would consider the information
problems of industry and the available ways of
solving them. A literacy course for a liberal
arts curriculum might emphasize societal impacts
of new technology, coping with the "information
explosion," etc. One way that such topics can
be woven into the fabric of the course is to
have each student give a five minute presenta-
tion at the beginning of class meetings. The

students are told to report on a recent journal
or newspaper article. They typically focus on
leading-edge applications, societal issues, and
the new types of technology that are emerging.
These talks often lead to stimulating
discussions. In addition, the students are
made to feel that a portion of the course is
governed by their particular interests.

206

The Goals of an Information Literacy Course

A very important outcome of such a literacy
course is the demystification of the
tecnonology. Students with no particular
interest in or inclination toward computers
develop a sense of self confidence. Through
successful experiences with machine processing
they are reinforced that with some knowlege
humans can be in control of the technology.

Closely related is the second intent, that
the technology be placed in the proper
perspective: secondary to an understanding of
the need for and the uses of information. Tne

course should convey a user-oriented
perspective. Since the majority of the
students will eventually be users, this outlook
is appropriate. Because majors should develop
a sensitivity to the people for whom they will
be working, this perspective is fitting.

The third objective can be inferred from
the comments just made. This course should

include both majors and nonmajors. Both groups

will benefit from exposure to the other.
Having a range of capabilities and interests
poses a challenge to the teacher-. This author
believes, however, that the benefits are worth
the extra effort. This type of literacy course
provides nonmajors with an exposure to the
entire field. By having majors take such a
course as their introduction to the field they
receive an overview of the range of issues
rather' than in-depth exposure to a narrow area
(uhic:h is usually the programming dimension).

The final objective of such a course is 'to
provide the students with some tools for coping
with the information-intensive society in
which they will be working and living. By
learning about information and how it is
processed they will develop skills.in "learning
to learn." With increasing obsolescence of
knowledge, this is perhaps the best that can be
hoped for from an education.

223



www.manaraa.com

Conclusion

This type of literacy course has been
taught in a variety of institutions to diverse
types of students. Student reaction is
consistently positive. In many ways this type

of course is more difficult than one. which
treats a narrower cut of the subject area. The

body of knowledge is large and is constantly

growing. Most textbooks are not orientecito
such a course. But given the pervasiveness of
information technology and the need for all
students to learn how to cope with it, such a
literacy course appears to be a reasonable
response.

207

224



www.manaraa.com

A System for the Automatic Grading of Programming Style

Patricia B. Van Verth and Anthony Ralston

'DepartMent of Computer Science
State University of New York at Buffalo

Amherst, New York 14226

Abstract

With current emphasis on programming
methodology in introductory computer science
courses, automatic grading systems which merely
check whether programs produce correct answers
have become obsolete. This paper describes a
method for automatically grading student programs
for style using a system which implements a
mathematical model of program quality. The
quality metrics obtained from this system relate
to the choice -a use of data structures and
control structures,- and to t e Ivision_of_the
program into procedures. A database of programs
and grades is being created in order to test the
system and provide material for further research.

Introduction

Relief from the burden of grading student
programs is high on the wish lists of all computer
science instructors. Student programs are a
necessary evil in introductory programming Classes
and other computer science courses in order for
students to demonstrate in,a practical manner
their mastery of programming skills. However, it
is possible that performing the grading task could
be relegated to the computer itself. This in fact
has been done in the past for evaluating whether
programs run correctly or Compile correctly. With
the current emphasis on programming methodology in
elementary level courses, these automatic grading
systems have become obsolete by virtue of the
deemphasis on correctness: not only are programs
expected to work correctly, they must also be
well-written, thus demonstrating good programming
style.

Programming style in the context of this
_paper is taken to be a combination of program
appearance and program quality. Program appearance
is that component of style that includes the
format and internal documentation of a program.
Program quality refers to the way in which the
implementation of the algorithm has been
accomplished, i.e. the way in which data
structures and control structures have been used

208

in the program. Quality in this sense is taken to
mean the antithesis of the complexity of control
and data structures. The research described in
this paper is concerned primarily with automating
the evaluation of program quality in student
programs, and, in particular, program quality as
it appears in introductory Pascal programs.

Benefits of Grading Style Automatically

Automatic grading of student programs places
the process of evaluation on an objective basis
since the automation itself requires that
standards for judging have been defined and
implemented. Often in the case of human graders .

lack of objectivity occurs when a set of programs
is graded by several different persons or even
when processed by the same person. This usually
happens due to the absence afclear guidelines for
style, with graders relying on personal opinion or

intuition. In the case of several graders, these
opinions often 'vary, thus, producing
inconsistencies in the grades. In the case of an
individual grader it is difficult to maintain the
same level of consistency in the presence of large
numbers of programs and lack of clear-cut
standards. Moreover, time pressure on graders
results in evaluations of program quality and
appearance which are often too cursory. With an
automated system, the definition of measurements
implemented in a computer program means that those
measurements will be applied in a manner which is
impartial, effective., and consistent. This in
turn should instill confidence in students that
the assessment of programs is meaningful and fair.
It is our opinion that an automatic grading system
with well-defined measurements of program quality
can do as well as expert human graders who take
considerable care in their grading, and will do
better than almost all human graders in practice.

As well as achieving objectivity, an
automatic grading system would considerably
alleviate the shortage of personnel to conduct
computer science courses and to do the grading
associated with these courses. Grading projects

is a lengthy, time-consuming and boring task. It

is beneficial to an instructor when the instructor
obtains feedback_on the effectiveness of

225



www.manaraa.com

instructio' ; however, most times the instructor
does not do the grading and gets only a
superficial impression of how students are
performing in this aspect of the course. Indeed,

data from an automatic grading scheme could give
an instructor far better feedback than is normally
achieved. On the other hand the student derives
the maximum benefit if the grading has included
constructive criticism and praise. Given the size
of classes and the number of persons available to
do the grading, this is an almost unreachable goal
within reasonable time constraints. An automated

system would be capable of providing similar
analysis in greater depth and, with more accuracy.

Background of Automatic Program Graders

Programs for grading student programs have
been in existence almost since the time when
computer programming courses were first taught.
The earliest known such system was developed in
1958 by Jack Hollingsworth at RPI and used to
grade assembly language programs[4]. This program
evaluated programs for correctness of the answers.
Later versions of program graders shared the early
version's concern with correctness, included
efficiency checks for time and memory usage, and
were extended to grade programs in a variety of
high level languages[1,3]. In the early 1970's,
emphasis in computer programming courses shifted
toward programming methodology. This shift
resulted in a relative deemphasis on correctness
in evaluating programs. Other factors such as
readability, quality and clarity became equal in
importance to program correctness. Since a

'correct program in this context is one which
produces correct answers for a standard data set
or student-supplied data set, correctness can be
readily checked by computer. However, evaluating a
prograM for its style is a much more difficult
task by virtue of lack of either a generally
accepted definition of style or standard-3 by
which to judge style.

Some attempts have been made io relate
program style to resource usage_ program

appearance18,91. These attempt:: have not gained
wide acceptance since it seem,., clear that style
encompasses more than is implied by these terms.
Criteria used in grading style in programs usually
includes the appropriate choice and use of control
structures and data structures, and the division
of the program into procedures. These criteria
remain sufficiently ambiguous (note the word
"appropriate") but can be rigorously defined by
embodying them in a mathematical model of
programs. Then the quality of the use of data
structures, control structures, and procedures in
a program can be measured using that model. This

permits the comparison of programs performing the
same task on the basis of these measurements,
ultimately allowing one to determine that one
program is better than another if the measures
have been suitably chosen and the measurements are
consistent with this conclusion.

To support such conclusions the measures
derived from the model should include more than

just simple counts of structures since a count'
essentially reflects which structures have been
selected. To gauge the use of these structures,
the measurements should also incorporate the
effect these structures have on the program
itself. Thus, measurements ofprogram quality
should include both syntactic and semantic
analysis. E.g., it is not only important to note
that a WHILE loop has been used in a program but
also to recognize the effect that loop structure
has on the flow of control of the program.

An Approach to Program Qualitr/Complexity

The approach to grading program quality
discussed here originated in program complexity
studies done by Enrique Oviedo at
SUNY/Buffalo[5,6]. In that research Oviedo
proposed a mathematical model of programs and from
that model derived a set of measurements for
program complexity. Prdgram complexity is an area
of software metrics which seeks to measure in a
program the degree of difficulty a person has in
understanding a program in order to debug, modify
or maintain the program. Its importance arises
from the couderable amounts of time and money
which are spent in performing these three tasks in
large computer systems. To.date there are no
absMute standards of program complexity; in fact
there is no.generally accepted model or
measurement of that attribute[2]. Nevertheless,
we see in the work of Oviedo the po ential for
developing an accepted model of program quality
which can be used is the context of automatic
grn4'.ng for programming style.

209

Description 1E Complexity Measures

In his work, Oviedo models programs using the
control flow graph ci the program. Measurements
for the complexity of control flow are made by
counting the edges on the g.-aph which relate to
the number of potential branches in a program.
Data flow measurements are made by computing data
flow equations over the same control flow graph;
these are related to the data complexity in a
program. These measurements combine syntactic
analysis, a parse of the control and data
structures in a program, with semantic analysis,
the effect each structure has on the control flow
and data flow of the program, to arrive at the
complexity measures. While no absolute standards
exist, measures of this kind permit comparisons
between programs implementing the same task
involving essentially the same algorithm, i.e. one
can ascertain whether one program is less complex
than another by comparing complexity measures. If

the model is appropriate, the results wi.11
identify those programs which perform the
programming task in a less complex manner than
others. This then provides the basis for an
automatic program grader for programming style.
See Figure 1.

Programs implementing the complexity measures
were used as part of early experiments conducted
by Oviedo. Based on these early experiments and
reported elsewhere at this conference[7], the

22G



www.manaraa.com

PROGRAM COINT(INPUT,OUTPUT);
CONST BLANK = ' ';

VAR
NCHAR, NWORD, NLINE INTEGER;

OLDCH,NEWCH : CHAR;

BEGIN
NCHAR := 0;
NWORD := 0;
NLINE := 0;
WHILE NOT EOF DO
BEGIN

OLDCH := BLANK;
WHILE NOT EOLN DO

BEGIN
READ(NEWCH);
NCHAR := NCHAR + 1;

IF (OLDCH = BLANK) AND
(NEWCH 0 BLANK)
THEN NWORD := NWORD + 1;

OLDCH := NEWCH;
END;

NCHAR :m NCHAR + 1;
NLINE := NLINE + 1;
READLN;

END;
WRITELN(' THE NUMBER OF WORDS IS ',NWORD);
WRITELN(' THE NUMBER OF LINES IS ',NLINE);
WRITELN(' THE NUMBER OF CHARACTERS IS ',NCHAR);

B4D.

Data Flow Complexity = 20
Control Flow Complexity = 14

Example of Good Program

Figure 1. Example Programs

The programs included in this figure are
programs which count the number of characters,
words and lines in a text file. Characters mean
all characters including the end-of-line mark.
Words are strings of characters excluding blanks
which are separated by blanks and end-of-lines.
Lines are signified by end-of-line marks. The

most difficult part of the program is determining
the word count, i.e. detecting where one word
ends and the next begins.

The good program has lower control flow
complexity than the poor one since it uses two
WHILE loops and one IF-THEN-ELSE statement,

PROGRAM TEXTCOUNT (1NPUT,OUTPUT);
CONST B=";
VAR WHAR, NWORD, NLINE: INTEGER;

POS: BOOLEAN;

CH: CHAR;

BEGIN
READ(CH);
IF CHOB
THEN POS:=TRUE
ELSE POS:=FALSE;

IF TRUE
THEN NWORD:=I
ELSE NWORD:=0;

NCHAR:=I;
NL1Nr:=0;
WHILE NOT EOF DO

BEGIN
READ(CH);

IF EOLN
THEN

BEGIN
NCHAR:=NCHAR+2;
NLINE:=NLINE+1;
READLN;
CH := B;

END
ELSE IF (POS=FALSE) AND (CH=B)
THEN NCHAR:=NCHAR+1
ELSE IF (POS=FALSE) AND (CHOB)
THEN

BEGIN
NCHAR:=NCHAR+1;
NWORD:mNWORD+1;

END
ELSE IF (POS=TRUE) AND,(CH=B)
THEN NCHAR:=NCHAR+1
ELSE IF (POS=TRUE) AND (CHOB)
THEN NCHAR:=NCHAR+I;

IF CHOB
THEN POS:=TRUE
ELSE POS:=FALSE;

END;
WRITELN(' THE NUMBER OF WORDS IS ',NWORD);
WRITELN(' THE NUMBER OF LINES IS ',NLINE);
WRITELN(' THE NUMBER OF CHARACTERS IS ',NCHAR);

END.

210

Data Flow Complexity = 69
Control Flow Complexity m 34

Example of Poor Program

whereas the poor one has one WHILE loop and eight
IF-THEN-ELSE statements. The data flow complexity
is lower in the good program since there are ten
assignments or variable definitions with ten
referentes to those definitions vs. eighteen
assignments and twenty references in the poor
program. The large difcerence in data flow
complexity (20 vs. 69) between the two programs
arises from the effect assignments have on
references in data flow complexity measurements.
At each reference, all of the previous assignments
which might affect the value of a variable at the
point of reference are taken into account,
producing a multiplicative effect.

22



www.manaraa.com

measures obtained using the complexity model
compared favorably with the results obtained when
programs were graded for complexity by expert
graders. These early results imply that, in
practice, when program quality grades are assigned
by human graders, the automated complexity
measures will compare favorably with these. Thus,

the automated results seem to be capable of
_discriminating quality programs as well as human
graders. These results have encouraged the
current work in expanding the model and in
developing a comprehensive automatic grading
system.

Assignment of Grades

Since no absolute standards for program
quality exist, i.e. a quality measure of 50 has no

° meaning by itself, part of the process of using
the grading programs will be to calibrate the
grades for the particular programs at hand. An

assumption that must be made with this system is
that programs being compared are programs which
implement essentially the same algorithm and are
thus capable of being compared. One approach to
calibrating the system is to provide a "perfect"
program against which to compare student
solutions. To ensure fairness, the "perfect" (i.e.
instructor's) program could be awarded a 95% grade
to give the students the opportunity to arrive at
a better solution. Student grades forquality
will be assigned using the model values relative
to those of the instructor's program.

Testing of the System

The grading system described here is unique
since it not only 'automates the process of grading
program quality, but it also tests this process
against human graders to determine system
performance. The testing portion of this research
has been started by collecting the programs from
several sections of introductory computei science
courses using the Pascal language. Along with the
sources for the programs, grades assigned to the
programs are also being collected for later'
testing of the system. These are being entered
into a database constructed for the purpose of
providing sets of programs and grades for a
variety of experimental' purposes.

In order to make grades more meaningful for
experiments, the recorded grades are sub-divided
into grades for program correctness, program
quality,_program readability, internal
documentation, output-format,-and external
documentation. Program correctness includes the
compilation and running of the program; full marks
are awarded only, if the program produces correct
answers. Program quality includes those aspects
previously discussed, i.e. choice and use of data
structures and control structures. Readability
includes the formatting of the program. Internal
documentation refers to the commenting within the
program text. We have also developed a method for
evaluating automatically program format and
internal documentation at the textual level. This
method assumes that students have a set of well-

defined rules for indentation and commenting; the
automatic grader then measures how well the rules
have been applied.' Output format reflects the
manner in which the output is presented. Note that
program correctness does not include the
appearance of the output. External documentation
includes any separate documentation required as
part of the programming assignment such as a
discussion of the stepwise development of the
program. Thegoal of such categorization of grades
is to make students more aware of the various
aspects of producing "good" programs. Hopefully,
results from human grading will be sufficiently
accurate to permit comparisons with automated
measures in the various categories.

211

Implementer'.. of the System

Implement:ti, , the autr cic

analysis portion of the system nas bee. 'tiall;
completed using a front-end parser for Lae Pascal
language to derive control flow graphs and sets of
defined and referenced variables from source
programs. These graphs and sets are then
processed by a complexity-measuring program that
counts edges on the control flow graphs and
calculates data flow equations. Programs are
processed on a procedure-by-procedure basis for
both types of complexity measures and the total
for each type is obtained by summing over all
procedures. This yields two components in a
program complexity vector which is subsequently
used for comparing programs.

In addition to the programs for measuring
complexity,. implementation of the grading system
has progressed in three other areas: the
collection of programs, the.collectiou of grades,
the construction of a database. Programs are
collected by requiring all students to use a
special job control language (JCL) command when
running versions of programs to be handed in for
grading. This JCL is very easy to use; it is no
more complex than the normal system calls to the
compiler and the linker/loader. The JCL
controls the compilation and execution of the
program, and it collects a copy of the source and
output of the program for entry into the database.
The student receives a -compilation listiLg, output
and two grading forms attached to the listing by
the JCL. The grading forms have a,coded ID number
which permits later correlation with the collected
copy. When the-program is graded by the grader,
the second form is copied from the first and
retained by the grader before returning the
listing to the student. The grades on the form
which has been kept are then entered into the
database and correlated with the copied source
programs. To ensure consistency in the database,
i.e. programs copied match programs graded, any
programs and grades which do not have matching IDs
are rejected.

This implementation also filters out programs
which are syntactically incorrect (don't compile).
And it also discriminates between programs which
terminate normally and those which halt on some



www.manaraa.com

error condition. Copies are kept of programs
which halt prematurely; however, part of the
encoded ID contains a record of the premature

halt.

The system does not have the capability to
check program correctness automatically since the
primary goal of the research has been to automate
style grading. Correctness at this point is a
relatively easy task for the graders since student
programs are run on standard data sets.

Database Description

Programs, program results and grades divided
into categories are entered into the database.
Also included in the database are specifications
for the programming tasks and data sets. Programs

can be accessed by task, section, student,
semester. Thus far (Fall semester 1982) two
projects of approximately 200 students each have
been collected for entry into the database. Future

entries include results from automated measures
including those for measuring program quality.
See Figure 2.

Summaries

Programs Grades

Output

Figure 2.

Experimental
Results

Database Model

It is anticipated-that copies of the database

will be made available to outiide experimenters.
We envision that this database can be used-for
further studies of the program complexity model,
testing and comparison of other. complexity models,
and the establishment of a common set'of programs
to allow the reproduction of previous experiments.
Having many copies of prOgrams implementing the
same task should provide the quantities.of
,programs needed for experimentation. It seems

obvious that an academic environment is the
optimal source of these programs since industry
could not tolerate the expense or justify the
existence of so many copies of similar programs.
Academic settings also permit samples to be
c, _lected from a variety of applications and
pri.fgramoning languages. Many of these programs are

212

considered "toy" programs by virtue of their size
(100 - 500 lines, generally speaking). Nevertheless
research must begin somewhere, preferably with
large sample sets of programs. Most "real" world
samples are available on a one-time only basis as
implementations of very large systems.

Applications

Applications for grading systems are not
simply limited to the evaluation of the end-
product of student efforts. However, until
absolute standards of quality are developed, we
must be satisfied with this result. Once absolute

standards are formulated, the evaluation process
can be performed on individual programs, allowing
students to submit programs directly to the
automatic grader and obtaining immediate grades.
A further refinement would incorporate the
assessment into program development systems as
part of an interactive set of tor" ; used to write

programs. In that setting the measurements could
be used to direct students, or even professional"
programmers, to correct poor code, thus enforcing
good programming habits at the outset. A not

entirely unexpected side-effect of the automatic
evaluation of program quality has been to produce
an effective cheating-checker - it is not
difficult to see that programs with identical
complexity measurements are in fact likely to be
the same program.

Conclusions

In this paper we have described an automated
system for grading style in student programs. The

system is based on a mathematical model of
programs -from- which- measures have been defined to
measure the quality of a,program. These measures
of qualitylinclude the use and choice of data
structures and control structures in a program;
they permit the comparison of similar programs to
determine which programs are better from a quality
or style point of view, Preliminary testing of
the system indicates that it performs in a manner
comparable to human graders. It is expected that,
after further extensive testing, the results will
demonstrate that the mode'_ derived from the
program complexity model is acceptable for
modelling quality or style in a program and is a
suitable basis for a system for theautomatic
grading'of programming style.

References

1. Forsythe, G. and Wirth, N., "Automatic Grading
Programs", CACM; May, 1965, pp. 275-278.

2. Harrison, W. et al., "Applying Software
Complexity Metrics to Program Maintanance",
Computer, Sept. 1982, pp. 65-79.

3, Hext, J. and Winings,.J., "An Automatic Grading
Scheme for,Simple Programming Exercises", CACM,
May, 1969, pp. 272-275.

4. Hollingsworth, J. "Automatic Graders for
Programming Classes", CACM, October, 1960,
pp. 528-529.

22.1



www.manaraa.com

Oviedo,--t., "Control Flow, Data Flow and
gram Complexity", COMPSAC, December, 1980,
146-152.

Oviedo, E., "Control Flow, Data Flow and
PrOgram Complexity", Dissertation, SUNY/Buffalo
(to appear 1983).

7; Oviedo, E. and Ralston, A., "An Environment to
Develop and Validate Trogram COmplexity
Measures", NECC, June, 1983.

- 8. Rees, M., "Automatic Assessment Aida for Pascal
Programs", SIGPLAN,-October, 1982, pp. 33-42.

9. Robinson, S. and Torsun, I., "The Automatic
Measurement sf the Relative Merits of Student
Programs", SIGPLAN, April, 1977, pp. 80-93.



www.manaraa.com

TEACH TOP-DOWN PROMANiam WHILE YOU TEACH BASIC

by Michael J. Streibel, Ph.D.

Instructional Systems Program
The Pennsylvania State University

University Park, Pennsylvania

Abstract

This paper describes a way to teach top-diown
programming principles while teaching the Basic
computer language. Such an approach is especially
important since microcomputeraare appearing in
large numbers in public schools and in homes and
since Basic is. the first computer language which
mostpeople encounter. Programs, in this approach,
are designed by first spelling out the program
goal as remarks in the header part of the program
and then developing a complete set of major sUb-
rdutine-calls for the main part of the program.
The subroutine calls in the main part of the
program also include remark statements which spell
out the goal of the subroutine as well as the
parameters (if any) which are "passed to" and
"returned hoe the subroutine. Once this phase
of the program-design process is finished, the
actual subroutines are coded and tested to
completion.

Introduction

Many compUter literacy courses have been
proposed in educational computing magazines which
include a component on Basic programming. The
approach taken in these courses invariable deals
with teaching the individual statements of Basic
before going on to higher-level programming
concepts. At the same time, other articles in
these magazines encourage their readers to use a
top -down approach to designing programs. Why not
combine the two approaches into one method and
help your students learn the basic statements of
Basic in the context of top-down-structured
projects? What follows is a-rationale and an
exam& of this approach.

Top-down vs. Bottom -up Program Design

_Anyone who has ever written a program in Basic
has been tempted to turn to the keyboard as soon.
as possible and start coding the final program.
The interactive nature of most interpretive Basics
and the. "friendliness" of microcomputers just
makes this-temptation irresistable. These same
people have probably also learned the hard way
that coding first and thinking later has led to
innumerable difficulties - not the least of which

214

is a premature commitinent to specific solutions
and a program of Basic code that eventually
becomes unmanageable, unmodifiable, and un-
understandable.

The approach described above can at best be
called the bottom-up method of designing programs
(i.e., coding the individual statements of Basic
before planning the overall structure of the
program). It is only defensible' when tine programs
are short (i.e., one CRT screen long). In
response to the bottom-up approach, several
authors over the years have proposed a top-
approach to designing and writing programs.
Theirargument goes something like this: the. -

bottom-up approach does not teach effective
problem-solving skills and usually results in
poorly-written programs. .Some people findthe
latter an acceptable state of affairs. Why, you
therefore ask, should one learn effective problem-
solving skills and why isn't a program that
executes correctly enough? The answers to these
questions are simple: programming is a subset of
problem-solving (i.e., problem-definition and
solution-generation techniques) and programs
communicate with humans as well as.with machines.
More of this later.

The top-down approach to programming attempts '

to define the problem clearly (i.e., the "top" if
one views the process as a pyramid of levels)
before breaking it into smaller and logically-
distinct components. Giving a program a meaningful
name, for example, is an excellent first (or
"top") step. Issues on the most general level
can then be articulated so that the eventual
program has coherence and conceptual integrity
(i.e., all the parts work in unison to achieve
the program goal) and robustness (i.e., ;he
program operates_under many conditions).°

The "top", or first step of the design
process, therefore involves giving a program a
name and a description of what it will do. We
usually do not think of this as programming but
this step is as much apart of programming as
writing specific Basic statements. We are, in
effect, communicating with ourselves and others
at this point (if we are part of a collaborative
team) and thereby programming our minds to
proceed with the problemrdefinition and problem-

23



www.manaraa.com

solution in certain ways. The computing power of
microcomputers is an extension of the human mind
even though it resides in a separate box and has
its own arcane rules of grammar and syntax. By
describing what we are going to do in the program
before work gout haw we are going to do it, wl
avoid locking ourseNES into premature solutions.
We will use REMark statements such as those in
the program-example below to carry out the "top"
of the design process. These will be described in
greater detail later.

Gje proceed in the top-down design process
by asking: what major steps will we have to take
in order to accomplish the goal of the problem.
Notice, we are leaving the how (or the specific
code, whether it be Basic or Fortran or Pascal) .

until later. We are also attempting to make the
major steps represent intelligent sub-processes
of the larger goal rather than arbitrary divisions
dictated by the Basic code. Bence, the major
steps at this point are usually described as
some sub- process like "define the values,"
"calculate other values," and "printout those
values." The goal is not to get bogged down in
the details of coding Basic statements when we
are still brainstorming various ways to formulate
possible. solutions. Otherwise, we would be
assembling the "bricks" of the program before
designing the plan of the entire program. In the
example that follows, a series of GOSUB and
REMark statements will be used to carry out the
second-level of the top-down design process..
Each subroutine in the eventual program is
treated at this stage as a black box that will
dasomething for us. We can satisfy the urge to
type something on the keyboard here by typing
the GOSUB and REMark statements. If we want to
change out minds about a particular solution,
then it will be easier to delete a few lines of
REMark statements in the Basic program than to
delete a series of Basic'code that we have worked
long and hard to create.

The last (?). stage of the top-down design
process is to fill in the actual subroutines and
make them do what we want them to do. The large
problem has been broken down into s.ialler and
more manageable sub-problems that can be solved,
coded, and tested by themselves. The trick is to
treat each subroutine as a black box into which
we pass some variables and values (i.e., input)
and out of which we get some action, variables;
or values (i.e., output). Since we have specified
exactly what We want the black box to do, we can
test and debug the Basic code in the black box
until it satisfies our desires. The result is
that, once we are finished with each subroutine,
we can file it and forget it because we have
solved a small part of our problem. In a larger
sense, we have formulated the original problem
in such a way that the power of computing can
help us solve the problem. Notice that the last
step in the design process involved coding the
problem into a particular, dialect of Basic. We
could just as easily have coded it into another
language because the design process up to this
point would have been the same.

A Specific Example

What happens when you are teaching a computer
literacy class and have to teach the individual
statements of Basic? Do you throw out the top -
down approach until after your students have
learned Basic? Definitely notl Programming; habits
are developed and reinforced during every
encounter with a computer. You can therefore
structure a project in such a way that it is
formulated and partially solved in a top-down
manner. The example below will indicate how this
is done (see Listing 1):

Tha object of the DATA.BASE program is to
teach students about double- subscripted variables
and data-structures (i.e., DB$(I,J) in line 3080
is a mailing list data structure with two
subscripts I and J): Students are given the
listing shown (in printed form and anto,their
disks) and then asked to complete the program so
that it will carry out the goal described in the
header. The main program is a series of GOSUB and
REMark statements that has broken the overall goal
into smaller sub-problems. Each subroutine is made
up of a physically-distinct set of REMark state7
meets and a RETURN statement.

The "top" of the design is the program name
because it identifies the intent of the eventual
program (see line 1020). Use meaningful words here
so that you can refer to the entire program as a
meaningful entity. An informative name is
important because it communicates the intent of
the program to other human beings. In many cases,
that human being may be yourself if you develop
the program over an extended period of time. .

The program description elaborates the intent
of the program (see lines 1060-1110). A clear
description of the program in the early stages of
the design process usually helps focus your
attention on what you want to do without getting
you bogged down in details. Many people object to
this stage of the design process because they feel
it limits their creativity and inventiveness later
on. They have a point if the description is too
detailed and prescriptive. You can avoid this
pitfall be describing what will be done rather
than how it will be done. For example, a bad
progrE7description would include specifications
for the exact messages to be typed out to the
user. Iwthe DATA.BASE example in Listing 1, on
the'other hand, the description in the header
does not specify hoW the program will carry out
the intent of the author. The description is
created by the teacher to help focus the student's
attention on the goal of the program. The
description is also written to serve as a model
of haw to formulate a problem.

A final component of the "top" of the program
deals with a description of the variables and
files that are used in the program and a listing
of any formulae used in the program (there are
no formulae in the DATA. BASE program). This
constitutes a kind of glossary of terms so that
teachers and students have a common "vocabulary"

215

232



www.manaraa.com

1000
1010
1020
1030

REM
REM
REM
REM

PROGRAM: DATA.BASE

1040 REM AUTHOR: MICHAEL J. STREIBEE, PH.D.
1050 REM
1060 REM DESCRIPTION: THIS PROGRAM CREATES A DATA BASE
1070 REM IN MEMORY CALLED DB$ AND THEN ASKS
1080 REM THE USER FOR A LAST NAME TO SEARCH DB$.
1090 REM IF FOUND, THE CONTENTS OF THAT PERSON'S
1100 REM DATA IS TYPED OUT, ELSE AN ERROR MESSAGE
1110 REM IS PRINTED.
1120 REM
1130 REM VARIABLES:
1140 REM NE = # 07,ENTRIES IN DATA BASE
1150 REM NI = # OF ITEMS/ENTRY
1160 REM MO$ = 011 "Y" FOR MORE SEARCHES?
1170 REM
1180 REM FOR I = 1 TO NE
1190 REM DBW,1) ='LAST NAME
1200 REM DB$(,I,2) = FIRST NAME
1210 REM DBW,3) = STREET
1220 REM DB$(,I,4) = CITY
1230 REM DB$(./,5) = STATE
1240, REM DB$(,I,6) = ZIP
1250 REM
2000 REM
2010 REM
2020 REM MAIN PROGRAM
2030 REM.

--

2040 -GOSUB 3040: REM CREATE DATA BASE DB$(1-NE,1-NI)
2050 GOSUB 4030: REM ASK FOR LAST NAME; RETURN NA$
2060 GOSUB, 5030: REM SEARCH DB$(1-11E,1) FOR NA$; RETURN POINTER PT
2070 GOSUB 6030: REM PRETTY-PRINT TITLES & DB$(PT,1-N1)
20.80 GOSUB 7030: REM ASK IF MORE; RETURN MO$="YES" OR "Y"
2090 REM
2100 IF MO$ = "YES" OR MO$ = "Y" THEN 2050
2110 END
2120 REM
3000 REM
3010 REM CREATE DATA BASE DB$(1-NE,1-NI)
3020 REM NOTE: TYPE IN YOUR OWN DATA STATEMENTS
3030 REM
3040 READ NE,NI: REM NE.4 ENTRIES, NI=# ITEMS /ENTRY
3050 REM
3060 FOR I = 1 TO NE
3070 FOR J = 1 TO NI
3080 READ DB$(,I,J)
3090 NEXT J
3100 NEXT 1
3110 RETURN



www.manaraa.com

3120
3130
3140

REM
DATA 9,6: REM NE,NI
REM

3150 DATA *%LAST","FIRST","STREET","C/TY","STATE","ZIP"
3160 REM
3170 DATA "LAST","FIRST","STREET","C/ Y","STATE","ZIP"
3180 REM
3190 DATA "LAST","FIRST","STREET","C/TY","STATE","ZIP"
3200 REM
3210 DATA "LAST","FIRST","STREET","C/TY","STATE","ZIP"
3220 REM
3230 DATA "LAST","FIRST","STREET","C/TY","STATE","ZIP"
3240 REM
4000 REM
4010 REM ASK FOR'LAST NAME; RETURN NA$ TO BE SEARCHED IN DB$
4020 REM
4030 RETURN
5000 REM
5010 REM SERACH FOR NA$ IN DB$; RETURN PT=SUBSCIPT IN DB$ OR
5020 REM
5030 RETURN
6000 REM
6010 REM PRINTOUT DB$(PT,1-NI) OR ERROR MESG IF PT=0
6020 REM
6030 RETURN
7000 REM
7010 REM ASK IF MORE; RETURN MO$="YES" OR "Y" OR "NO" OR "N"
7020 REM
7030 RETURN

LISTING 1.

217

234



www.manaraa.com

for the particular project (see lines 1140-1240).

This mechanism serves a communication function.

It also serves as an aid in directing the student's

attention to the major data elements in the
particular problem. Being able to construct a
visual/spatial representation of data-structures
helps one to think about data-structures.

'We have now finished the "top" of the design
process. We are fairly clear About what we want
our Program to accomplish, about 'the types of
data objects (a mailing list in our example), and
the specific variables to be used in:our program.
We are therefore ready to proceed. to the next
level of the design process.

The second level ,of the top -dawn design
process is represented in the DATA. BASE program
by the 'MAIN PROGRAM"' set of GOSUB and-REMark
statements (see lines 2040-2110). In this
example, the teacher has already partitioned
the problem in A. certain way so that students
are primarily concerned with the object of the

lesson (i.e., double-subscripted variables and

data structures). Let's take a look at the two,

main elements of this level of thinking.

The GOSUB statement is the only mechanism
in most Basics which allows for multiple lines
to be defined as a single unit. Why is this

important? -Well, we have already discussed the
need to break a large problem, into moremanage-
able sub-problems and the'value of leaving details
until later. This helps us avoid premature
foreclosure (i,e.; premature commitment to
specific solutions). Being able to cluster
several lines of code together is also important
because it allows us to have a physical counter-
part to the conceptual units of the problem-
solution. Humans can only deal with complexity
at a certain level before having to "chunk"
the problem into smaller meaningful units.
Having these chunks In a physical as well as
conceptual units is a definite advantage7

The REMark statements in the "MAIN PROGFW
are as important in the top-down design process

as the GOSUB Statements because they all us to

articulate our intentions for each Sub-problem
(see lines 2040-2080). Each subroutine, in effect,
br.somes the "top" of its own pyramid of code.' Time
spent in writing these Mark statements is not

wasted if one is trying to brainstorm solutions
to a complex, problem because the REMark stataments
let us publically inspect our.intentions and
meanings. This allows us to "debug" our solutions
on the semantic level before debugging the

actual code. For example, we can ask ourselves
whether we should ask for the users last name
and immediately search the data base or whether
we should do these things separately (see lines

2050-2060).

The Mark-statements associated with each-
GOSUB statement also include a brief reference to
what variables are passed to the subroutine and
what variables are returned. For example, line

2050 indicates that we should jump to a 'black

box" of code in our'program (i.e., line 4030)

which will ask the user of the program for a last
name and which will then return this name ir a

variable called NA$. The, variable NA$ is not
"really" returned in the program because it
constitutes a global variable in Basic (i.e.,
can be used anywhere in the program); but we

are treating it as if it were returned to us by

the subroutine. Tfils way of looking at subroutines

fosters a computer-as-tool (i.e., subroutine -as-
tool) attitude which is very healthy. Subroutines
are treated as autonomous units of code that make

no assumptions about the rest of the program
(such assumptions are always a source of "bugs")
except for what argments are passed to it. The

subroutine in the example initially contains only
a RETURN statement (see line 4030) which students

will then expand into a working subroutine.

The "last" levelOf the DATA.BASE program is
made up of the individual subroutines (see lines
4030, 5030, and 7030). Since the purpose of our
progrm is to learn about double- subscripted
variables, the data-base variable DB$ is pre-
defined by the teacher (see lines 3040-3230).
This provides an example of how a data-structure
is created in Basic and yet leaves open several
activities for manipulating the data base. In the
DATA.BASE example, students are asked to make up

a list of names and addresses and then type than

into the appropriate DATA statements.

The individual subroutines are made up of
Mark statements which visually separate the
code from the rest of the program and which
describe what the subroutine is to do.8 This

may seem like a duplication of earlier efforts

but ithelps students focus their attention on
each sub -prellem of the program. The subroutine
can then be coded and tested by itself since its

input, output, and intent are clearly spelled out.
The subroutine also gives-the student wide
lattitude in working out how the sub - problem

is to be solved.

218

Stmt'

The top-down project approach to learning
Basic which is described above has a number of
distinct advantages over traditional instruction
in Basic. First, it gives the teacher wide
lattitude in formulating both the content and
the structure of student projects. Bence, the
teacher could fill some subroutines completely
for beginning students and yet add extra options

for advanced students.

Second, the approach described above lets
the teacher address several levels of learning

at the same time. For example, the project

described' above teacher about specific Basic
statements (i.e., double-subscripted variables),

computer concepts (i.e., simple data-structures),
systematic program design, and how to think about
problems. The assumption throughout the example
is that computer literacy is ultimately a matter
of the user's ability to think and communicate
clearly (withhumans and computers) about a

235



www.manaraa.com

problem. Computing, in effect, becomes a. well-
defined extension of the humen mind. The power of
comuting, however, is only engaged after the
human being has clearly visualized and then
articulated the'purpose and parameters of a--
program.

Finally, the approach described above permits
a problem to be solved with style and logic from
the-"inside-age (i.e., from an understanding of
the problem) .7 Programs no longer look like
"spaghetticode":but reflect clear, efficient,
and effective thinkingAs a teacher gradually
removes his or her own way of structuring
problem-solutions, students learn to develop
their Own style of formulating and solving
problems with the computer.

References

/Finkel, L. and Brown, J.R. APPLE BASIC: Data File
Programming. New:York: John Wiley g Song:M.

2Dijkstra, E.W. A pii.14041.g: of Programming.
Englewood Cliff i LUTT-Prantice-Pall, 1976.

3Wirth, N. Systematic Programming.: An Introduction.
Englewood Cliffs, LT., Prentici=Hall, 1976.

Siagin, P. and Ledgard, H.F. BASIC With Style:
ey Puut : Proverbs. Rochelle raiE, 1. J.:

:.. Co., 1978.

5Lewis, W.E. Problem-Solving Princ leS for BASIC
Programmers. 10Ehelle Park, NJyden E63E
CO., 1981.

6Nagin and Ledgard, op. cit.
7
Miller, G.A. "The magic number seven, plus or

minus two: Some limits on our capacity for
processing information." Psychological Review
1956, 63, 81-97.

8Nagin and Ledgard, op. cit.
9
Dreyfuss, Hy Designing for People. New York:

Simon & Minster, 19557

219

236



www.manaraa.com

USING' COMPUTER SIMULATED MODELS
TO TEACH PROGRAMMING LANGUAGES

BOGDAN CZEJDO

UNIVERSITY.OF HOUSTON
WARSAW TECHNICAL UNIVERSITY

tion with the corresponding program specification._
These models were chosen after a wide variety,

of structures had been examined and evaluated for
potential use in the introductory courses in pro-
gramming languages. For each model we investigated
the problem of how to generate the solution (for
the given task) and evaluate the correctness of
.the student's answer.

ABSTRACT

In this paper computer generated models
to teach programming. languages are defined and
examined. The memory modeling, the program
generation and the flowchart creation are pre-
sented. Generation and transformation of pic-
torial structures for each model is analyzed.
The application of these models to computer-
assisted instruction is shown. Finally further
research in the area is suggested.

I. INTRODUCTION

The concept of model-based instruction was
introduced in the paper "Using Model Based In-
struction to Teach Pascal". On the basis of the
principles of model-based instruction', CAI lessons
have been designed for teaching elements of the
programming languages. The early version of our
systemi displayed prestored course material,
accepted only a.restricted format of the answers

and used built-in comments. This paper describes
the research leading to the new version of the

system. We took advantage of studies in artifi-
cial intelligence in the area of knowledge repre-
sentation, program transformation, algebraic mani-
pulation and system simulation5-7. Several simu-
lation models were defined and implemented in Pas-
cal on the VAX computer. They constitute the sim-
ulation system shown in Figure 1.

PROBLEM
DESCRIPTION

Figure 1. The Simulation System.

The program specification is the basis to
generate the program or the flowchart. The flow-

chart may also be obtained directly from the pro-
gram. Memory model is generated from the program.

In Figure 1 there is no link between problem des-
cription and program specification because the
current system cannot perform this transformation.
We assume that, the instructor will provide that
link by means of associating each problem descrip-

220

2. THE MEMORY MODEL

A good simulation model to start with in the
introductory course is a structure which consists
of an input device, memory, and an output device
(external storage can be added later). This corre-

sponds to the approach chosen in various textbooks
for programming languages 4. This model enables
the student to visualize the execution of a single
instruction as well as the whole program. Two

phases of the operation of the model can be identi-
fied:

1. Creation of the structure
2. Transformation of the model

For the sake of generality, standard declara-
tions in PASCAL and FORTRAN were chosen to build

the structure. For example the following declara-
tions in PASCAL:

I: integer;
Z: real;

Ch: char;
A: array [1..3] of integer

would result in the picture shown in Figure 2.

Input

Output

Figure 2. Generated Memory Model.

The generated picture consists of:
a) An Input Box
b) An Output Box

237

I (integer)

Z (real)

Ch (char)

A[1]

A[2]

A[3]

A
(in-

teger)



www.manaraa.com

c) Memory divided into several boxes.

Several data items can be put into the input or
output box. Mixing of types is allowed. The mem-
ory consists of several boxes in accordance with
the declarations. Every box corresponds to a var-

iable. In this way, a simple "v.;sualization" of
variables or constants in programming languages
can be introduced. Big arrows indicate the al-
lowed transfers.

Program instructions and input values are ne-
cessary to perform transformations of the model.
The four permitted program instructions are:

a) read
b) write
c) assignment
d) new

For example, consider the Pascal instruction read-

ln(I) and assume 25,75 is given as input. The
result of the transformation is shown in Figure 3.

Output

Figure3. Transformed Memory Model.

This and any other read statement is executed by
displaying the transfer of an item from the input
box to the proper box of the memory. Note that the
item in the input box is not erased, only its copy
goes tb the memory. At the same time, a small ar-
row which' indicates the beginning of the input
queue is moved to the next element. It helps the
student to determine what element is to be read
next. Transfer of the item to the memory causes
the erasing of the previous value. If the type of
the item in the input box does not match the type
of the memory box, the transformation of the model
is aborted and the model returns to its previous
state. In sucha-case, an error message is dis-
played. The latter rules apply also for the
assignment statement which causes some computations
and transfers the result to .the specified box in
the memory. The write statement transfers the pro-
per values from the memory to the output box. Out-

put is treated like a mini CRT screen using a
scrolling mode. Every transfer "from" is executed
by making a copy and transferring it to the proper
box. Various ways of animation of the transfer
were considered. Blinking and/or showing charac-
ters moving on the screen were chosen as the most
explicit approach.

One of the areas where students have many prob-
lems and need more assistance and opportunity to
practice is in,the concept of pointers. Unfortun-
ately in this case, the model of the computer chan-
ges'during the execution of the program, so we

25 I (integer)

Z (real)

CH (char)

A [1]

A [2] A
(integer)

A [3]

cannot directly use the previous two step method.
To make the simulation feasible., we assumed some
restrictions for the pointers. The following de-
claration is assumed:

Pointer = " Item;
Item = record

Key: integer;
Next: pointer
end

For example, assuming the declarations 0,Z: Pointer
the following sequence of instructions would re-'
sult in the picture shown in Figure 4.

new (P) ;

P ".Key: =7;
new (Z) ;

Z ". Key: = 9;
P ". Next: =Z;

221

Output

Figure 4. A Memory Model for Pointers.

We are convinced that-the above described memory
model enables a down-to-earth interpretation of
single instructions (as well as their sequence) as
a "visible" transfer of some values from some box-
es to other boxes and the creation of linked lists.
In the model, the number of variables and the size
of the arrays and the number of elements in linked
lists are restricted because of the size of the
screen. To make our model more usable we can re-
lax these restrictions assuming that the screen
is the window to display the first elements only.

3. THE PROGRAM GENERATION

Research in automatic programming has achieved
some success with experimental systems which pro-
duce programs from some specifications. Various
specification methods have been useds:

1. formal
2. by examples
3. natural language /-

In this paper we describe a simulation model
to generate programs found in introductory courses
of programming languages e:g.4-6. A variety of
structures of the programs'were analyzed and evalu-
ated for potential generating. To simplify the
generating process, we restrict the area to pro -
grams with one loop or without any repetition. Ex-

ceptions to this rule were programs with additional
initialization laop for the array. This restric-
tion is not really very strong because we can al-
most always break the problem into subtasks in a
reasonable way,-und use the system to generate ev-
ery subroutine separately.

Our method of specification is based on choos-
ing options of the given menu. Some restricted
formulas are also allowed. External specification
corresponds to the internal representation in the
form of a network, which is the basis for the pro-

2:3q



www.manaraa.com

gram generation. The method of generation is
based on the'observation that most programs can be
divided into areas which are independent of each

other.
In the first step we need to choose a proper

structure for these areas. The following struc-

tures are available:
1. No-Loop

--2-;--For-Loop

3. Sentinel Loop
4. Eof/FolnLoop
5. Mixed CoiTd_Loop
6. Nested Loop

For example, the For-Loop structure is shown in
Figure 5:

Program

var

I:integer;

begin

for I:=1 to 100 do

begin

end;

Initial

Processing

Read

Area

Processing
Area

Final

Processing

end.

Figure 5. Initial For_Loop Structure

Once the structure is generated (e.g. for.Loop
in Fig.5) we decide whether reading inside the loop
is necessary or not. If'our answer As "yes", we
have to list all items to be read together with
their type. For example the result of choosing to
read one integer variable TRANS is shown in the
reading area in Fig. 6.

The third step enables us to specify the pro-
cessing (including initial processing). We can
choose between various standard processes like
accumulating the sum, counting, etc. If we decide

to have a standard computation such as.counting the
number of transactions grater than'50, then our
final program.would look like Figure 6.

Program Count (input, output);

var

I,X,Count:integer;

begin

Count : = 0;

for I.= 1 to 100 do

begin

read (TRANS)

if TRANS >50 then

Count:=Count + 1;

end;

write ('Number of items = ' , Count);

end.

Figure 6. Generated For_Loop Structure

4. THE FLOWCHART GENERATION

Initial
Processing

Read
Area

Processing
Area

Final

Processing

The evolution towards-the use of higher level
structures has reduced the need for detailed flow-

charts. Flowcharting might still be useful, how-
ever, for the beginners to visualize control flow.
Graphics primitives corresponding to three basic
control structures, (sequence, condition, loop)
were designed to implement this model. On this

basis, a flowchart can be created for the given:
1. program specification
2. program

Process of flowchart creation' from the program
specification is analogous to the three step pro-
gram generation. The flowchart generated for the
example from the section 3 is shown in figure 7.

( Start )

222

Count:=0

<loop for

I:= To 100/

rread(TRANS)

if TRANS > 50 then
Count:=Count + 1

write 'Number of items = ,Count)

( Stop )

Figure 7. The flowchart generated from the program

specification

23



www.manaraa.com

In the current system any decision structure is
included in the processing box to stress the con-
trol flow for the loop. The other reasonfor mak-
ingthis decision is the fact that the size of the
s:reen would impose some restrictions for the num-
ber of explicit decision boxes.

The second option is to generate the flowchart
directly'from the program. In this case, the sys-
tem displays the flowchart in a more "traditional
way" as it is shown in Figure 8. This flowchart
is generated directly from the program in Figure 6.

(Start

I Count = 0

( loop fOr>
I=1,100

t
TRANS

COunt = Count +1

"Number of items" Count'

( STOP )

Figure 8. The flowchart generated from the program

5. THE SIMULATION MODELS IN A CAI SYSTEM

The primary purpose of developing the models
described above was to use them in a CAI system to
teach programming languages. Three modes of inter-
action with the student for the models were iden-
tified:

1. Information
2. Simulation
3. Testing

The Information mode is simply presenting the
work of the simulation model. The necessary input
is prestored by the instructor. In the case of
the memory model, the instructor needs to store
the program and the data. For the program genera-
tor, the problem description and the program spe-
cification should be prestored. For flowcharting,
the program should be provided or the problem de-
scription and the program specification should be
given. The second mode is simple simulation and is
similar to the "Ten Finger Ekercise". It allows
the students to experiment with the language. One
can provide programs or data and watch the changes
in the memory and output (the memory model). One
can supply specifications of the program mainly by
answering the questions and observing the process
of generating the program (the program generator).

One can also experiment with the flowchart (the
flowchart generator). The testing mode is to
check whether students can perform actions indica-
ting their ,ducational achievements. They can be
asked to predict the changes of the content of the
memory for a given program and some data (prestored
by the instructor) using the memory model. They

can attempt to complete the program or the flow-
chart for the given_problem (provided by the in-
.structor). The system should compare the answers
with those generated.

We plan further investigation of the following
extensions to the models and their use in CAI:

1. Implement the testing mode
2. Integrate the simulation system so that

a sequence of simulation models can be
invoked according to figure 1.

3. Give the instructor or the student the
possibility to'define their own language
for a memory model.

4. Build a memory model for the lower level
languages.

5. Design educational games (eg adventure
games) connected with the programming
process.

6. Use or design the interface to extract
program specifications from the prob-
lem description given in a natural lan-
guage.

7. Extend the area covered bythe program
generator.

223

SUMMARY

In this paper we described the use of simula
tion models in teaching programming languages. We
identified and defined the memory modeling the
program generation and th: flowchart creation. We
showed how to generate and transform pictorial
structures using these simulation tools. The ar_

plication of these models to computer-assisted In-
struction was shown. Finally, further research in
the area was suggested.

REFERENCES

1. Czejdo, B.,"Using Model-Based Instruction to
Teach Pascal" Proceedings of NECC/2, Nor-
folk, Virginia, 1980.

2. Kolkowski, L.,Nauczanie Problemowe w Szkole
Zawodowej, Warsaw: WSIP, 1974.

3. Bork, A., Learning with Computers, Bedford, MA:
Digital Equipment Corporation, 1981.

4. Richards, J., Pascal. New York: Academic Press,
.1982.

5. The Handbook of Artificial Intelligence, Vol.2,
Stanford, William Kaufmann, Inc:, 1982.

6. Friedthan, F.; Koffman E., Problem Solving and
Structured Programming in FORTRAN. Read-
ing, Massachusetts: Addison-Wesley, 1981.

7. Czejdo, B., "Transformation of Universal Alge-
braic Expressions in PASCAL" ACM Computer
Science Conference, Kansas City, Missouri,
1980.



www.manaraa.com

COMPUTERS IN SCIENCE EDUCATION

Raymond E. Bigliani
Lewis Dove

Stephen Bryant
H. Herbert Edwards
Kenneth Keudell
P. James Nielsen
Gerald White

'Robert W. Henkens
David Alexander

Richard Cornelius
correct answer was internally computed. Students

ABSTRACT; The Use of an Apple/Corvus Networking were allowed up to three attempts to correctly
System in an Elementary Physics Course answer the question before the correct answer was

displayed and the student was then directed to the

Raymond E: Bigliani, Associate Professor of
Physice;. State University Agricultural and
Technical College, Farmingdale, NY 11735

Course Description. A network of eleven. Apple
microcomputers was used in 2 one semester
elementary physics course (PH095) offered at SUNY
Farmingdale in the Spring 1981 semester. This

course is taken by students in the Pre-Engineering
Technology Curriculum which is designed to help
high school graduates satisfy requirements for
admission into a two year Engineering Technology
program at SUNY Farmingdale. The elementary
physics course described below is designed to
prepare "pre -tech" students for a one year physics

ourse taken in an Engineering Technology
curriculum.

I taught two of the four course sections using
the microcomputer system described below; the

remaining-two-sections were taught in a
traditional, non-computer mode.

Course Objective and Structure. The major
objective of the course was to develop an
understanding of the basic concepts and to provide
drill in the following areas: 1) mathematical
skills, 2) graphical data analysis, 3) problem
solving technique, and 4) physics theory.

The course was structured as follows: classes

met for three one-hour classes per week. Two of

tka three classes met in the Computer Aided
Learning Laboratory (CALL) which consists of eleven
Apple microcomputers networked together using a
Corvus networking system with a 10 megabyte hard
disk drive. The third class met in a regular
classroom in a traditional lecture class format.

All homework assignments, called activities,
were first disussed in the lecture class; the

actual performance of the activity and/or ,

presentation of data occurred in CALL. Some of the

activities consisted of drills in the following
areas: calculator operation, algebra, graphical
analysis, and trigonometry. Seven additional
physics content activities were used; these

consisted of four to six homework problems taken
directly form the text used in the course.
Although the wording for each problem was the same
for every student, any required numerical values
were randomly generated and the corresponding

next problem. If the student answered the problem
correctly in three or less tries, he then was
congratulated and automatically cycled to the next

problem. All questions in the activity had to be
answered before a grade could be assigned. In

addition, in order to raise their grade, a student
could repeat an activity as many times as desired.
However, only the last grade on an.activity was
retained.

Course Evaluation. The course was evaluated
,using the results of a student qeustionnaire and

standardized post-tests administered to all
students enrolled in the. course. Student response
to the microcomputer as a testing tool was
overwhelmingly positive, mainly due totheability--
to answer an individual question up to three times

and the ability to repeat any activity any number

of times.
At the end of the semester, all students took

College Board Entrance Examination tests in.

Computation and Elementary Algebra. The two

^computer" classes averaged slightly higher on both

tests than did the "non-computer" classes. A more

meaningful measure of the efficacy of the technique

described above will be determined from a future

correlation study between the ^computer^ and

^non-computer" groups in PH095 and their grades in

their subsequent physics courses.

224

ABSTRACT: Program Development by a Biology User's..

Group for Microcomputer Assisted InstructAon

1.ewis Dove, Stephen Bryant, H. Herbert Edwards,

Kenneth Keudell, P. James Nielsen, Gerald White,

Western Illinois UniVersity, Macomb, IL 61455

A biology user's group has been operating at

Western Illinois University for two years. It is

composed of six faculty, five from the Department
of Biological Sciences and one from the Mathematics

Department. The Project Director, a cell
biologist, spent two years promoting CA1 and
computer literacy as an associate of the faculty

development office. Other members of the group
include a plant pathologist, a microbiologist, a
human physiologist, a population biologist, and a

"241



www.manaraa.com

mathematician who teaches computer programming.
grant from the Apple Foundation provided two
microcomputer systems, a faculty development grant
provided funds for the development of an immunology
program, and the remaining rpograms were developed
under a grant from the National Science Foundation ,

Local Course Improvement (LOCI) program. The group
promotes computer literacy'and microcomputer usage
among biology students and, faculty by reviewing
microcomputer software in biology, by presenting a_
course on microcomputers in biology, and by writing
software. Five of these programs are being
evaluated by students and others are being written.
These and other biology programs acquired from
external sources are being used'by students to
supplement their laboratory work in first-year
biology courses, general microbiology, ecology,

genetics, and cell biology. These include a
program which assists sewage treatment personnel in
evaluating sewage effluent by providing a key to
indioa'..cr protozoa and a description of their

taxonomy. Another program dramatizes electron flow
in light reactions of photosysnthesis and also
includes the dark reactions. The immunology
tutorial program describes and illustrates the
immunoglobulins. A tutorial microorganism
identification program characterizes the bacteria,
fungi, algae, and protozoa.. A,computer-managed
program written in Pascal incorporates three

lessons in cen biology and a student file system.
Projects under developmnent include energy
metabolism of mitochondria, adaptations of existing
software in chemistry to courses in biology, and
tutorial/simulations of natural selection and

migration.

ABSTRACT: Scientific Instrument Trainer

Robert W. Henkens, P. M. Gross Laboratory, Duke
University, Durham, NC 27706

Rationale. Access to necessary instruments for
work at the frontiers of knowledge is obviously
important to the nation's future research
productivity and for the training of future
generations of scientists and engineers.

Most science educators agree that laboratory
training is necessary for sciencestudents.
Unfortunately, high costs severly limit this kind
of training in many areas of instrumental analysis,
including modern spectroscopic analysis, This is in
strong contrast to a decade ago when most
universities provided their students with hands-on
experience with state-of-the-art instrumentation.

The Scientific Instrument Trainer System is
designed to help with this problem by providing
interactive training for chemistry graduate
students in modern FT-nuclear magnetic resonance
(NMR) instrumental analysis. The system could also

be used in undergraduate upper division chemistry
laboratories. The basic system architecture is
general and might be,adapted to other scientific

instrumentation.
Expected Product.The main components are an

instrument simulator for the student to use, and an
instrument communications package for the

instructor. The system will provide an interactive
FT-NMR simulation with extensive CRT graphics for

the Apple II computer. The Traiher is meant for
individual use in a course or training program. A

unique aspect of the product is the provision for
data communications lith the instrument :self,

allowing the instructor to download a number of
real data sets of 4-8k each. The concept should be

adaptable to a wide range of additional scientific
instruments.

The input and output characteristics of
Scientigio, Instrument Trainer will be like the
instrument, using keyboard, display screen,
printer, and plotter. The students can set
parameters, such as the accumulation time, pulse
angle, and decoupler power and frequency, and give
commands through the keyboard, obtain parameter
listings, and observe instrument graphic displays.
At the end of the training session, the student can
go over printed parameters and plotted data with
his instructor and discuss possible ways for
improvement and_return to the trainer to gain
experience and confidence to handle a variety of
experimental problems.

ABSTRACT: Concentrated Physics Concepts: A

Comprehensive Package of Tutorial Problem Solving

David Alexander, Physics Department, Richard
Cornelius, Chemistry Department, Wichita State
University, Wichita, KS 67208

Undergraduate students enrolled in,an
introductory physics course often experience
difficulty relating abstract physical principles in
the concrete problem-solving arena. In many cases,
this difficulty arises from a deficiency in general
problem-solving skills. Unfortun.telY,
undergraduate physics classes are often too large
for the instructor to give students the individual
assistance needed to develop the logical thought
processes required for successful problem solving.
Although laboratory experiments are an important
element in learning physics, they address a
different set of goals.

Concet,rated Physics Concepts is a package of
Apple II+ computer programs designed to foster the
development of problem-solving skills for
introductory physics students. The programs are
contained on about eight diskettes and cover the
material normally contained in a two semester
introductoery physics course. Two types of
programs are included: Conceptual programs review
the concepts and terminology of a unit to assure

225

that the student understands the material before
attempting the problems associated with the unit.
Each problem-solving program presents a graded
sequence of problems to illustrate.a.single
physical concept. In many cases, the solution of
the problem is approached through several
preliminary questions. When requested, the
programs provide assistance in working out an
appropriate strategy for solving the problem.

These programs incorporate both user
friendliness (no prior computer experience is
required to operate any part of the package) and
user power (the student controls the pace' and
subject matter at all times). Whenever possible,
student interaction with the screen (e.g., properly
placing vectors on a diagram) is incorpbrated into
the problem solution. Problem solving techniques
are emphasized by asking appropriate preliminary
questions and by pr iding assistance in response
to incorrect answers.

C,



www.manaraa.com

4:a

JRSEWARE DEVELOPMENT FROM THE PUBLISHER'S PERSPECTIVE
A PANEL DISCUSSION

M. D. Roblyer, Moderator
ICON Enterprises

Jack Chapel
SRA, Inc.

Harvey Guion
Random House Inc.

Jane Isay
Harper and Row

Dale LaFrenz
Scott, Foresman Co.

Christine Johnston
Milliken Publishing Co.

Renzi Sugihara
Harcourt Brace Jovanovich, Inc.

As publishers of educational materials continue to expand their development of

computer-based instructional products, the role of these organizations in shaping the

instructional computing field is becoming increasingly apparent. In this panel
presentation, high-level representatives from several major publishing houses will discuss

and answer questions on some of the issues surrounding their involvement in educational
technology. A specific focus will be on the methods publishers use to assure that
materials they publish are: (1) responsive to the needs of educat6rs, (2) helpful to the
continued evolution of the field, and (3) of high instructional quality.

22§24 j



www.manaraa.com

Trends in Interactive Data Analysis
In the Classroom

Jon A Christopherson, Chair
U.S. Coast Guard Academy
New London, CT. 06320

SPONSOR: SIGCUE

ABSTRACT

The course Social Science Methodology at
the U.S. Coast Guard Academy tries to
sensitize the cadets to the nature of
applied statistical analysis. The tedium
of computing one Pearson's r correlation
coefficient over 40 cases is usually enough
to convince the cadets that they should
learn to use a computer system. While not
course materials for classroom use are
designed for batch processing, batch
processing is pedagogically an undesirable
teaching tool. The central problem lies in
the loss of continuity in the teaching of a
concept. The best approach is to use an
interactive data analysis system (IDA).
The desirable characteristics of a good IDA
system include the ability to:

1) create data files either by keying
in the data or by using a prepared
data file,

2) randomly access any of the
variables in the.data base in any
order,

3) dress up the output with labels for
variables and values,

4) edit online any of the variables in
the data base after the variable
has been created,

5) automatically handle missing value
codes specified for any variable,

6) create data--- (or conditionally
create) and perform general
mathematical manipulations of
variables and numbers, (only one
topic in the Methods course) is
taught in an interactive mode. We
find that cadets more easily learn
the basic underlying logic of the
method and the practical results of
the violation of regression's
assumptions. An interactive data

227

analysis system allows the
instructor to follow the logic of
class discussion rather than having
it dictated by fixed printed
material.

Michael Smith will discuss an
elective course in the use of computers
in social welfare research which has
been developed for students in the
doctoral program at Hunter College
School of Social Work. The purpose of
the course is to expose doctoral
students who are not research majors to
basic data analysis procedures in

social research, to give them an
understanding of statistical and
analytic procedures and to help them
learn a set of skills which can be used
directly in their doctoral projects.
An experimental approach to data
analysis contains learning that can
never be realized in a survey course
with a lecture approach. This paper
describes three basic issues in the
course: 1) the attitude of
students; 2) the stress given to the
role of data ,analysis in the total
research process; and 3) the choice of
a packaged program:

The tu...rd presentation will discuss
micro versus mainframe conversational
computing. With the advent of
microcomputers, students approach the
computer with less trepidation. As
micros become more powerful, colleges
must make a choice between offering
students computing in the friendly
micro environment or encouraging
conversational mainframe computing.

The IDA Interactive Data Analysis
and Forecasting System, a teaching and
research tool which runs on both
mainframes and micros is used as a case
study.



www.manaraa.com

PARTICIPANTS:

Joan Fee
SPSS, Inc.
Chicago, IL 60611

Michael Smith
Hunter College
New York, NY 10021

Loren Bullock
IBM Corporation
Bethesda,MD 20817

William Gattis
The Tandy Company
Fort Worth, TX 76102

228

245



www.manaraa.com

Science Education and the Growth of the \U.S. Computer Industry:
Is This a National Policy Concern?

Dorothy Derringer, Chair
National Science Foundation

ABSTRACT
---The U.S. comptiter industry shows a

strong positive balance of payments and is
one of the few growth areas in the economy.
Many feel that a scientifically and
technologically literate 1:orkforce is key
to increasing the :growth of this industry.
Should the government act to create a

PANELISTS

Vico E. Henriques
CBEMA

Fred Weingarten
Office of Technology Assessment

N. John Castellan Jr.
Indiana University

William Aldrich
National Science Teachers Association

SPONSORS

SIGCUE
ICCE

229

climate which will encourage this industry
to thrive? If so, how should this be done?
Panelists will discuss answers to these
questions within the context of the
economy, the role of education in fostering
the industry, and government state actions.
Differing views will be presented on
proposed legislation and possible actions.

c,



www.manaraa.com

Computing Curricula Prepared by Professional Societies

Joyce Currie Little, Moderator
Towson State University

SPONSOR: SIGCSE

ABSTRACT
Curriculum recommendations for the

education of computer professionals have
been developed and published by several
United States computer associations,
including the Association of Computing
Machinery (ACM), the Data Processing
Management Association (DPMA), and the
Computer Society of the Institute of

Electrical and Electronic Engineers
(IEEE-CS). Among international groups, the
International Federation for Information
Processing (IFIP) has produced one report,
now being revised. The American Federation
of Information Processing Societies (AFIPS)
serves as liaison to IFIP on behalf of its
United States member associations.

This session will provide an overview of

PARTICIPANTS:

these curriculum reports. A bibliography,
with other information, will be available.
Included are works for secondary schools,
vocational technical institutes, community
colleges, baccalaureate degree programs,
and grEduate programs.

Representatives from each association
will discuss the levej and type of
institution for which their works re
intended, the subject matter content
recommended for the program, and the typo
of qualifications for jobs or further study
expected after completion of the program.

Opportunity will be given to each
association to acquaint the audience with
their current and ongoing curriculum
development work.

ACM: Richard Austing, University of Maryland
Gerald L. Engel, Christopher Newport College

DPMA: David Adams, Northern Kentucky University

IEEE-CS: J. T. Cain, University of Pittsburgh-
Murah Vuranasi, University of South Florida

IFIP: William F. Atchison, University of Maryland

0
4.

230

-7



www.manaraa.com

Augmenting Self-Study Materials With
Microcomputer-Based Lessons: A Case Study

Ernest Giangrande Jr.
Department of Computer Science

North Adams State College
North Adams, MA 01247

Abstract

The central question addressed in this paper

is the effectiveness of computer-based instructY.on
in a self-study, self-paced learning enviroment
designed to aid students learning the syntax and
semantics of FORTRAN input and output statements
and FORMAT statements. Our results indicate that
CAI lessons can haveia noticeably positive effect
on learning, and there is evidence that this

effect can be attributed to CAI, rather than to

either a novelty effect or the fact"that the
materials augmented basic coursework.

Introduction

The effectivehess,,of CAI studies are gen-

erally open to the charges that 1) there is a
novelty effect associated with the use of the Com-
puter as the instructional 'medium, and 2) the
differences attributed to CAI may, in fact, be due
to individualized self-study. Our study attempts
to neutralize these factors by comparing CAI les-

sons to self-study materials for a course in FOR-
TRAN developed for the Department of CoMputer Sci-
ence at Oregon State University. Students in .a

Computer Science course should be less affected by
the novelty of using a computer; and the self-
study aspect of the particular course compares
with the individualized nature of CAI. -A welcome
side effect of this study was the development of a
usable production level CAI program for teaching
the difficult topic matter involved in the FORTRAN
FORMAT statement. The materials were designed, to

be supplemental in nature, rather than as a

stand-alone replacement for the course materials.
Our experimental procedure also takes this into

account.

The limited number of publications comparing
CAI to self - study: materials have generally
reported contradictory results (see Bailey and
Klassin, 1979; Splittgerber, 1979; Edwards 1978;
Hazen et. al., 1979; and Chambers and Sprecher,

1980).

the

Background

As mentioned, the basis for this study was

self-study course (CS 190, Self-Study

231

William S. Bregar
Computer and Information Sciences

University of Delaware
Newark, DE 19711

Introduction to FORTRAN Programming) at Oregon

State University (0.S.U.). To successfully com-
plete this course students must pass (70%) nine

quizzes and satisfactorily complete (60%) six pro-,
gramming assignments. Students are expected tO

demonstrate competency in all areas covered in the
course, therefore, they are allowed to retake

quizzes and resubmit program assignments until the
course criteria are met. The materials used by

the students include a set of course notes

developed for this course and a textbook

(Krutzberg and Schneiderman, 1975). There are

nine lessons outlined in the course notes.

Quizzes are administrated by the Math Science
Learning Center (MSLC) at O.S.U.

Grade records in this course indicate that

the percentage of students successfully completing
this course has ranged between 50 and 60 percent

Furthermore there are a few key areas where stu-
dents have difficulty, as determined by the number
of retakes for quizzes in these areas. Clearly,

lessons with a high number of retakes contained

material that was difficult for the students to
master. An analysis of quiz results showed that

two primary areas of difficulty were Input/Output
statements and looping. Lesson 4, which intro-

duces formatted input/output (the focus is on the

1, F, X, and string specifications) was selected

for our experimental target. CA1 lessons were

prepared to supplement the existing materials.

They were written in Pascal for the Apple II.

Lessons for FORTRAN I/O:

CAI Lessons

Two supplemental lessons were developed for

the study. One, was the CAI lesson, "he other was a
printed lesson essentially duplicating the CAI

material. This was to ensure that the effect
observed from the use of the CAI lesson would not

be attributed to its use as a supplement to the
original course material.

The primary focus of the lesson is the con-

struction of READ, PRINT, and FORMAT statements in
FORTRAN. The follewing concepts must be clear to

a student attempting to understand FORTRAN I/O:

248



www.manaraa.com

a) the relationship between a variable name
and c. location in a computer's memory.

b) the relationship between the name chosen
for a variable and the type of data that
is stored in its location;

3) the difference between the data types

that can be processed using a FORTRAN

program.

The CAI lesson has five parts, each contain-

ing textual material with examples or problems for

practicing the .techniques covered. Following is a

list of thes4 five parts and a brief outline of

their content:

1) READ/PRINT-CONSTRUCTION
- basic concepts related to input

and output
- rules for constructing READ and

PRINT statements
- examples of READ and PRINT

statements
2) ROAD/PRINT-PRACTICE

- student constructs READ and

PRINT statements from specifica-
tions

- system evaluates student',s

response and gives feedback
FORMAT-CONSTRUCTION
- rules for constructing FORMAT
statements used for input

- rules for constructing FORMAT
statements used for output

- examples of FORMAT statements

used for outpUt

4) READ/FORMAT-PRACTICE
- student constructs FORMAT state-

ments used for input from

specifications
- system evaluates student's

response and gives feedback
- system simulates execution of

input statement using student's
FORMAT

5) PRINT/FORMAT-PRACTICE .

- student constructs FORMAT state-
ments used for output from

specifications
- system evaluates student's

response and gives feedback
- system simulates execution of

output statement using student's
FORMAT.

3)

The READ/PRINT-CONSTRUCTION part and the

FORMAT-CONSTRUCTION part present the basic con-
cepts for constructing the READ, PRINT, and FORMAT

statements. Examples are presented along with a

simulated execution of each.

The practice parts are the primary focus of

this lesson. The READ/PRINT-PRACTICE pert pro-

vides an opportunity to construct READ and PRINT

232

statements from specifications and to have the

system evaluate the response. The student's task

is to enter the appropriate I/O statement. The

system evaluates the response in terms of spacing,
presence of required keywords and FORMAT statement
number, and correct choice of variable names.

Errors are described to the student. If the

response is correct then appropriate specifica-

tions are presented in the FORMAT statement and
either a data card or values stored in =amory are

supplied. The system then simulates the execution
of the statement, processing one specification at

a time.

It should be noted that the system randomly

produces all specifications and data values used
in these problems and those discussed below. The

system generates all statements using the syntax
rules for their construction. The type and number

of specifications are determined randomly but ,.

.there is no template for the statement that is

filled in by the'system. This approach differs

from generative techniques (Collins and Duff,_

1979; Garcia and Rude, 1979), and is similar to
that of Koffman (1972).

The READ/FORMAT-PRACTICE part and the

PRINT/FORMAT-PRACTICE part give the student an

opportunity to construct FORMAT statements for

READ and PRINT statements respectively. The

specifications needed to construct the FORMAT

statements are presented to the student who then
enters the FORMAT statement at the keyboard. The

student's response is evaluated in two steps.

First, the syntax of the response is evaluated.
Any errors detected at this stage are presented to
the student Along with a correct FORMAT statement.
The student is then presented another problem.

If the response contains no syntactic errors

it is semantically evaluated. This evaluation can

result in one of twooutcomes: (1) the response

is semantically correct and will produce the

specified result, or (2) it is semantically

incorrect and will produce some 'undesired result
(in the case of inpv.t incorrect data values will

be read from the card, and fof output an

incorrectly structured output line will be pro-

duced). The system presents the results of this
evaluation to the studont.

Regardless of the result of this evaluation,

the system will simulate the execution of the

student's response similar to the way described

for the READ/PRINT-PRACTICE part. The simulated

execution of the student's semantically incorrect

FORMAT statement is carried out to demonstrate .

what an erroneous FORMAT statement would actually

produce. The student is then shown a correct FOR-
MAT statement and its results. Thus, the student

is shc.m what an incorrect FORMAT specification
would produce and its effect on the rest of the

items being read or written.

2 ,1d



www.manaraa.com

The Printed Version of the CAI Lesson

To insure that any observed effectiveness of

the CAL based materials was, in fact, more likely
a function of the medium and not the content of

the lesson, a comparison in the form of a printed
lesson was also developed. This printed lesson

contains of- all the textual material presented in
the CAI version including all of the examples from
the CAI version. Students using this version

would not be presented problems to solve and have

no opportunity to practice' the skills presented in

the lesson.

Methodology

The design consisted of three groups: Group

1 (CAI-EXP), an experimental group that used thP
CAL lessen, Group 2 (PRT-EXP), an experimental

group that used the printed lesson, and Group 3/
(CONTROL), a control group that used no supplemen-
tal materials.

subjects

Subjects were drawn from students enrolled in
CS 190, Self Study Introduction to FORTRAN Pro-
gramming, during the winter term of 1981 at Oregon
State University. During orientationrientation meeting
the students were asked to participate in a pro-

ject that they were told was designed to evaluate
their impressions of new materials designedfor
this course. Each student decided whether he

would volunteer. Twenty of the volunteers were-
randomly selected and assigned to each of the

experimental groups (CAI-EXP and PRT-EXP). The

remaining volunteers were assigned to the CONTROL
group. Since twenty students did not remain 'for

this group it was supplemented by randomly choos-
ing students enrolled in the course who had nct

volunteered for the project.

The students were told to contact the

instructor after completing all of the standard
materials for this lesson but prior to taking quiz

4. At that time each student was informed of the
group he was in and how t4 access the appropriate

materials. He was also told that he would be

given a questionnaire to complete regarding the

lesson he viewed. Volunteers in the CONTROL group
did not use any supplemental materials and did not
complete a questionnaire. They were told that
their assistance was not needed because there were

too many volunteers and to continue with the

course as usual.

Procedure.

Upon contacting the instructor each student
413 informed of the type of material he would be
viewing and '.)1d how he could access it. If he

was assigned to the CAI -EXP group,-arrangements

were made for him to meet with an assistant who

directed him to the microcomputer lab and stayed
with him until the lesson was completed. The

assistant, provided the lesson disk and printed

instructions. He then went about his own work but
was available if the student had any questions.
Upon finishing the lesson a questionnaire was com-

pleted.

Students assigned to the PRT-EXP group, were

directed to the resource desk of the Math Science
Learning Center at O.S.U. where they received the

printed lesson and a questionnaire. Both were
returned when completed. The volunteers assigned

to the CONTROL group were told they were not
required to participate in the study. and those who
had not volunteered never contacted the

instructor.

The number of students dropped from the ori-

ginal twenty per group. This was caused by two

factors: (a) only those students who remained
active in the course through lesson 4 and took the

.quiz at least once, were considered, and (b) some

students in the CAI-EXP and PRT-EXP .groups asked

to be excused from participating in the study.

These students were dropped from the study since
they had not been exposed to the treatment before
they took the quiz for this lesson. The groups
eventually ended up with 14 students- in the CAI-

EXP group, 16 in the PRT-EXP group, and 17 in the
CONTROL group.

In an attempt to demonstrate that the groups

were homogeneous two items from the questionnaire
were examined - student G.P.A. and prior experi-

ence with 'computers. These tests could only be
applied to the CAI-EXP and PRT-EXP grdeps as they

were the only ones who filled out the question-
naire. An analysis of variance applied to the

G.P.A.'s for the members of these groups (see
Table 1) shows no significant difference between

them on this measure (F = 0.222, p > .05). A Chi

square test showed no difference between these

groups in terms of prior computer experience. .

The only measure that could be used to con-

firm the homogeneity of all three groups was stu-
dent classification (i.e. freshman, sophomore,
etc.). A Chi square of 10.59505 (p > .05) suggests
that three is no difference between groups on this
measure.

Results

Data pertaining to quiz 4 were analyzed with

respect to the number of retakes, the total

scores, and the number of correct answers on the

15 I/O related questions. Quiz 8, which also
tested I/O comcepts was correlated with quiz 4.

The measures used were an."!lis of variance
(ANOVA), Chi square, ,aa'l correlation.

The analysis of variance wft, nlilo used as an

appropriate follow up teat .,, iN,e any variance
found between groups (Wood, . All of the

analyses were done ,using EPS:: - A Statistical

Package for the Social Sciences. A p < .05 was
required before the null hypothesis was rejected.

A Chi square of the number of tries at quiz 4
by group showed that there was a significant

difference (p < .05) in the number. of tries
between the groups. No member of the CAI-EXP

group took a reta.,:e on this quiz while 50% of the

PRT-EX? group and 76.5% of the CONTROL group took
one or more retakes.



www.manaraa.com

An analysis of variance was conducted on the
number of correct responses to the I/O questions
on the first attempt at quiz 4 by the members of
the three groups (Bee Table 2). A significant F
ratio (F =10.66, p < .05) suggests that there was
some variance between the groups on this measure.
The follow up tests used to isolate this variance
(Table 3) shown a significant difference (F
12.401, p < .05) between the CAI-EXP group and the
PRT-EXP group on this ,measure. It also 'shows a
significant difference (F =20.829, p < .05) on the
measure between the CAI-EXP group and the CONTROL
group. Since there was no difference (F = 1.538,
p> 05) between the PRT-EXP group and the CONTROL
group on this measure, the observed variance can
be attributed to the effect from the CAI-EXP
group's performance.

A similar analysis was applied to the total
scores for the first attempts at quiz 4 by the
students in the three groups. Table 4 suggests
that some variance exists between the groups on
this measure (F 9.60, p < .05). The results of
the follow up tests used to isolate this variance
(see Table 5) shows a significant difference (F

-14.332, p < .05) between the CAI-EXP group and the
PRT-EXP group. There is also a significant
difference (F = 17.475, p < .05) between the CAI-
EXP group and the CONTROL group. An ,F ratio of
0.204 (p > . J5) between the PRT-EXP 3 roup and the
CONTROL grour was not significant. These analyses
suggest tnat the variance can again be attributed
to the CAI-EXP group's performance.

Since quiz 8 also deals with Liput/Output a
Pearson' e correlation was applied to the I/O
scores and total scores for that quiz and quiz 4.
The results, (r = .3852, p < .05) and (r = .3852,
p <. 05), respectively indicate that these factors
correlate with their counterparts on quiz 4-

Discussion

The performance of the PRT-EXP group was not
found to be significantly different from that of
the CONTROL group. The CAI based materials had an
impact on the the performance of the CAI-EXP
group. Both groups were exposed to the same tex-
tual material, yet no student in the CAI-EXP group
had to retake the quiz for lesson 4, while 50% of
the PRT-EXP group took at lekist one retake. Sig-
nificant differencei in performance on the
related questione and total quiz scores suppc
this conclusion. It cannot be concluded that tho
content of the presentation is responsible for the
observed effect. One can only conclude that the
CAI-EXP group's performance was influenced by the
opportunity to do practice problems in an enriched
environment, that is, in an environment where the
systera analyzed responses and provided immediate
feedback.

Splittgerber (1979) reported that the useful-
ness of simulation and problem solving is ques-
tionable in CAI Lessons. The findings reported
here are contrary to his. The only significant
difference between the textual materials and the

CAI lesson developed for this study was the inclu-
sion of problem solving and dynamic simulation in
the CAI lesson. It is likely that the reported
differences in the effectiveness of these teJh-
niques is due to the environments in which the
lessons were used.

It might be argued that programmed instruc-
tion provides a similar environment to that pro-
vided in a CAI environment. This ie not the case
when the CAI environment provides simulation. The
lesson used in this study not only provided
immediate feedback tailored to the student's
response but also provided a simulated execution
of input and output statements. Simulations might
be provided in a programmed text but the examples
must be predetermined by the author. The ability
to provide simulated execution of a student's
response can only be provided in a one-to-one
teacher student situation or in a CAI lesson like
the one developed here.

The attitude differences reported by Crawford
(1970) and Edwarde (1978) for students using CAI
based materials can be discounted in this study
since all students involved were exposed to com-
puters as part of their course requirements.
Hazen (1979) reported no attitude differences in a
study of a FORTRAN programming course for busi-
ness students, supporting the poeition that the
observed effect was due to the aspects of the
lesson and not to some effect resulting from expo-
sure to the computer itself.

Our findings suggest that, the use of CAI as a
supplement to existing self-study materials war-
rants further study. Similar lessons for cther
problem areas in FORTRAN programming should be
developed and the effect of their use studied.
CAI lessons should also be developed to eupplemerit
self -study courses in other disciplines to deter-
mine if the effect reported here would also be
found in non-computer programming er.vironments.

Bibliography

Bailey, D.E. Ingredients for Excellence in
Computer-Based Education Systeme. In National
Educational Computing Conference, 1979,
University of Iowa, pp 2-6.

Chambers, J.A. and Sprecher, 1'.,,,

and
mpuatner

Assisted Instruction: r-
Critical Issues. Communi,,,,,L., Ole ACM,

1980, 23,6, pp 332-342.

Collins, R.W. and Duff, S.J. Computer - Assisted
Test Construction via Automatic Program
Generation: Using PROBGEN II to Create Indi-
vidualized Exams and Problem Sets. In
National Educational C omputing C onference,
1979, University of Iowa.



www.manaraa.com

Crawford, A.N. A Pilot Study of Computer-Assisted
Drill and Practice in Seventh-Grade Remedial
Mathematics. California Journal of Educa-
tional aesearch, 1970, 21 pp 170 -181.

Edwards, L. The Effects of CAI on Achievement and
Attitude in the Freshman Survey Mathematics
Curriculum. In Ninth Conference on Computers
in' the Undergraduate Curricula, 1978, Univer-
sity of Denver, pp 16-23.

Garcia, A and Rude, S.A. Design of a CAI Tool to
Generatively Teach Ecology. In National Edu-
cational Computing C onference, 1979, Univer-
sity of Iowa.

Hazen, 14., Daly, C., Enbley, D., Nagy, G., and
Prange, W. Initial Evaluation Results for an
Introductdry Programming Course Without Lec-
tures. In National Educational C omputing
Conference, 1979, pp 150-1 60.

K.3ffman, E. B. A Generative CAI TUtor for Computer
Science Concepts. Proceedings of the 1972
Spring Joint C omputer Conference, 1972, pp
379-389.

Splittgerber, F.L. Computer-Based Instruction: A
Revolution in the Making? Educational Tech-
nology, 1979, 19,1, pp 20-25.

Wood, G ?fundamentals of Psychological aesearch.
Boston: Littler Brown and Company, 1977.

235



www.manaraa.com

Analysis of Variance

Sum of Mean F F

D.F. Squares Squares Ratio Prob.

Between
Groups 1 .03d, .0383 .222 .6428

Within
Groups 20 3.4575 .1729

Total 21 3.A958

Table 1.
Anova for G.P.A. for CAI-EXP and PRT -EXP

Analysis of Variance

Botween
Groups
Within
Groups

Total

Sum of Mean

D.F. Squares Squares Ratio Prob.

2 111.4027 55.7013 10.660 .0002

44 229.9165 5.2254

46 341.3191

Table 2.
Anova for I/O related questions on quiz 4 for
all groups.

236



www.manaraa.com

Analysis of Variance

Sum of Mean F F
D.F. Squares Squares Ratio Prob.

Between
Groups 1 53.2149 53. 21 4 9 12.401 .0015
Within
Groupe 28 120.1518 4. 291 1

Total 29 1 73. 3667

Ca)

Analysis of Variance

Sum of Mean
D.F. Squares Squares Ratio Prob.

Between
Groups 1 107. 3597 1 07. 3597 20.829 -.0001
Within
Groups 29 149. 4790 5.1544

Total 30 256. 8387

Analysis of Variance

Sum of Mean F 1?

D.F. Squares Squares Ratio .Prob.
Between
Groups 1 9.4342 9.4342 1.538 .2243
Within
Groups 31 1 90. 2022 6. 1356

To tal 32 199.W4

Cc)

Table 3. Follow up tests for I/O related questions on
quiz 4: ( a) Anova for CAI-EXP and PRT-EXP, (b) Anova for
CAI-EXP and CONTROL, and (c) PRT-EXP and CONTROL.

Analysis of Variance

Sum of Mean F F
D.F. Squares Squares Ratio Prob.

Between
Groups 2 2445. 8946 1 222. 9473 9.600 .0003
Within
Groups 44 5604. 9139 127. 3844

To tal / 46 8050.8085

Table 4. Anova for total scores on quiz 4 for all
groo

237



www.manaraa.com

Analysis of Variance

Sum of Mean F

D.F. Squares Squares Ratio Prob.

Between
Groups 1 1612.6881 1612.6881 14.332 .0007

Within
Groups 28 3150.6786. 112.5242

Total 29 4763.3667

Ca)

Analysis of Variance

Sum of Mean F F

D.F. Squares Squares Ratio Prob.

Between
Groups 1 2115.8039 2115.8039 17.475 .0002

Within
Groups 29 3511.1639 121.0746

Total 30 5626.9677

(b)

- Analysis of Variande

Sum of Mean
D.F. Squares Squares Ratio Prob.

Between
Groups 1 29.8935 29.8935 .20/ .6548

Within
Groups 31 4547.9853 146.7092

Total 32 4577.8788

CC)

Table 5. Follow-up tests for total scores on quiz 4:

T70--CiI-EXP and PRT-EXP, (b) CAI-EXP and CONTROL, and

(c) PRT-EXP

238

255



www.manaraa.com

4)

The Bridge From Non-Programmer to Programmer

Jeffrey Bottars and Elliot Soloway"

'Department of Computer and Information Science
University of Massachusetts

Amherst, Massachusetts 01003

"Department of Computer Science
Yale University -

New Haven, Connecticut 06520

Abstracts

Non-programmers bring to the learning of programming
strategies that they have developed to solve' day-to-day
problems. Interestingly, programming language constructs often
require strategies that conflict with these non-programming
strategies.-One-can-predict-quite - confidendy_that_in_these_
situations, novice programmers will have difficulty -- and bugs
in their programs will result. In this paper, we present evidence
for the existence of natural language specification strategies
that novices bring to programming, in the form of abstracts
from verbal protocols taken from novice programmers as they
are trying to program. These transcripts highlight the types the
bugs and misconceptions that result when here is a mismatch
between the strategies required by programming language
constructs and the strategies that non-programmers bring to
programming.

1. Introduction
Any interesting computerized task soon i-

programming. Experience with statistics packages, vetn-.1.

processing, and even microwave ovens shows that we always
want our systems to be able to follow a step-by-step
specification involving decisions and repeated actions. Even
with a very intelligent computerized assistant, we would like to
give it detailed instructions at an apprr, ,e level of
abstraction.

This ubiquity of progr -.Ding presents a problem, however.
It is widely known that programming, even at a simple level, is
a difficult activity to learn. The seventies saw a revolution in
the way that programming was practiced and taught. The
phrase "structured programming " summarizes a whole new
level of attention to the design, implementation, and testing of
computer programs; attention,. changed much of the
thinking about how programming should be taught. We are
now much clearer about how to teach powerful and effective
programming, but do we know how to make programming
maximally available? Do we really know how.. to make
programmers ubiquitous? Apparently not:

'This work was supported by the National Science Foundation under NSF
Grant SED-81-12403. Any opinions, findings, Conclusions, or
recommendations expressed in this report are thorn of the Author, and do not
necessarily reflect the views of the U.S. Government.

239

Based on exam grades and on our studies (e.g., Soloway et
al. 1982), we estimate that more than 40% of the
conscientious students never really understand the
rudiments of programming.

What's-missingwhat-is-the way to build a bridge between
non-programmer and programmer?

We begin by noting that programming is a cognitive skill,
much like understanding math [Rissland, 19781 or solving
physics problems [DiSessa, 19821. Drawing from recent work in
Cognitive Science, we are using a new methodology for looking
at the acquisition of cognitive skills. There are two key parts
tn. our methodology. First, we look in great detail at the errors
of t. -ivies programmers. As experienced programmers, our
tendency is to look at errorful novice programs only seeking to
eliminate bugs as soon as possible. In our work,-we have tried
to see what was the specific (mis)information used by the
novice to produce the bug. This is quite a powerful view:
novice programmers have deep and interesting
misunderstandings, as you will see below.

Second, in understanding the novice misunderstandings we
try to view the situation in terms of specific bundles of
knowledge possessed by the expert but not by the novice.
What we find is that there is often a level of tacit knowledge
[Collins, 19781 that is not explicitly taught, and often not even
explicitly acknowledged.

In this report we present evidence for one major source of
difficulty: current programming languages often do not
accurately .:fleet the; prbblem solving strategies that non-
programmers bring --rogramming. That is, non-programmers
have developed natti.01 language strategies in order to cope
with day to day problems. While experienced programmers
have learned to modify or replace these strategies with ones
more appropriate to computer programming, novices are often
confused at this very basic level. Stepby-step natural language
specification provides powerful intuitions for novice
program'Mers using a programming language. We hypothesize
that these intuitions take the form of bundles of knowledge we
call plans - regular but flexible techniques for specifying how to
accomplish a task. Programming knowledge also involves plans
[Soloway et el, 19821 [Waters, 19791. While an individual
programming language plan may have many lexical and
syntactic similarities to a corresponding natural language plan,
the two plans often have incompatible semantics and
pragmatics. Many novice programmer's misconceptions derive
directly from these incompatibilities.



www.manaraa.com

In this brief report we will show examples of natural
language plans and programming language plans. We will then
analyze transcripts of thinking aloud protocols taken with
novice programmers who use natural language plans while
attempting to write a computer program. We conclude with a
brief discussion of the implications of this work for teachin3
programming.

Before proceeding, a methodological point is worth making.
While the theoretical rramework in this paper -- and its
conclusions. -- are the same as those in other papers we have
published (e.g., Soloway it al. 1982, Soloway et al. 19810,
there is a key methodological difference between this paper and
the others: previously we used statistical arguments based on
written tests with large numbers of programmers as evidence
for/against our hypotheses; however, in this piper we use
anecdotes from thinking aloud protocols taken from individual
programmers as .evidence for our hypotheses. That is, in
previous papers we have made claims about what we think our
subjects were thinking. Statistical evidence is an indirect test of
then: sorts of claims. Verbal reports of subjects as they ar.:
programming proVide a more direct window into the thought
processes of our subjects. Thus, this paper provides the needed
closure for our hypotheses: we have converging evidence from
statistical-type group studies and from verbal reports with
individual programmers that support our theory of the role of
programming plans and the role of natural language plans (i.e.,
pre- programming plans) in programming.

2. Natural Language Plans and Programs
Consider the following problem:.

Problems .1: Please write a set of explicit instructions to
help a junior clerk collect payroll information fOr a factory.
At the rad of, the next payday, the clerk will be sitting in
front of the factory doors and has permission to look at
employee pay checks. The clerk is to produce the average
salary for the workers who come out of the door. This
average should include only those workers who come out
before the first supervisor comes out, and should not include
the supervisor's salary.,

The following natural language specification for this problem,
written by one of our subjects, is typical:

1. Identify worker, check name on list;check wages

2. Write it down
3. Wait for next worker, identify next, check name,

and so on

4. When super comes out, stop
5. Add number of workers you've written down

6. Add al.: the wages

7. Divide the wages by the number of workers

There are several natural language specification plans used
here. Note how steps 1 through 4 specify a loop: s. -is 1 to 3
describe the first iteration of the loop, indicating repetition
with the phrase "and so on". Step 4 adds a stopping condition,
assuming that this condition will act as a demon, always
watching the action of the loop for the exit condition to become
true. The specification also assumes canned procedures for
counting inputs, step 5, and for summing a series of numbers,

step 8. Note however, that these two procedures are both
denoted with the word "add".

Now focus on the two actions performed in steps 1 and 2.
The plan to describe these actions is get a value (step 1), arid
process that value (step 2). This plan is nearly universal in this
sort of description. Unfortunately, many programming
languages support a far: less natural plan: process the last
value, get the next value. Below, we discuss this problem in
detail.

3. Examples of Novice Programming Difficulties
To show how the conflict in strategies effects novice

programmers, consider a problem analogous to problem 1, but
simpler and explicitly of a programming nature:

Problem t Write a program which repeatedly reads in
integers until it reads they integer 99999. After seeing
99999, it should print out the correct average. That is, it
should not count the final 99999.

In Pascal, a, popular novice programming language, the
preferred correct solution to Problem 2 is:

PROGRAM Problem_2 Export;

VAR Count. Total. New : INTEGER;

BEGIN

Count := 0; Total := 0;

Read (New);

WHILE New <> 99999
DC BEGIN

Count := Count + 1;

Total := Total + New;

Read (New)

END;

IF Count > 0

THEN writelu ('Average =%Total/Count)

ELSE writeln ('No data.')

END.

Notice the peculiar WHILE loop construction. Because a
WHILE loop tests only at the top of the loop, it is necessary to
have a Read both above the loop and at the bottom of the
loop. Within the loop we see the plan-process the fast value,
read the next value. This plan is part of the knowledge used
by experienced Pascal programmers. Data we have gathered
suggests that novice programmers do not easily acquire such a
plan (Soloway et al. 1982, Soloway et al. 1983).

First of al', novices often want the WHILE to have a demon
like structure. Consider, for example, the following transcript:

240

2D;



www.manaraa.com

Subject:

Interviewer:

Subject:

How do I get [the WHILE loop]z to do that
over again? See, I guess I don't know, I
thought. I had it. What happens now, how
do I get it to go back? ... I say to myself,
why would it do [the WHILE test] after [the
last line of the loop body]? It seems to me
that it would do it as soon as the [variable
tested in the WHILE condition] changes.

So how will the WHILE statement behave?

Again, total guess here, I'm saying the WHILE
statement, here's a logical guess ...
everytime [the variable tested in the WHILE
condition] is assigned a new value, the
machine needs to check that c3lue

The subject's "logical guess" is that the condition in the
WHILE loop ,is being continually tested, and thatthe loop will
be exited as soon as the condition is true. This is not an
unreasonable interpretation; it is is consistent with the meaning
of "while" in English phrases such as "while you are on the
highway, watch for the Northfield sign". In a group study with
novice programmers, we found that 34% had this type of
misconception about the test in the WHILE loop (Soloway et al
11081a1).

Novices also try to implement the get a value, process that
value plan, even though they are programming in Pascal.
Consider, the following novice program fragment,

VAR Count, Iota I , I : INTEGER;

BEGIN
Count := 0
Tota I := 0
Writeln ('Enter integer')
Read (I)
WHILE I <> 99999 DO

BEGIN
Count :=
Total :=
Read (1)
END

Count + 1
Tots I + I
the subject has crossed out this

line out after writing it down

and a transcript of the subject discussing this program:

Subject: If I put a number in [at the top of the loopl,
it comes through [the loop body]. I don't

'think I want [the inside Read] read again, I
want it read up [at the top of the loop] ... If

I read it [at the bottom of the loop body],
what's that going to do for me? It's not
going to do anything for me. OK, if I come
out of the loop, having entered [a value],
finish all [the loop body], then if I read in

another -one [points to Read above the WHILE,
traces a flow from that outside Read down

2Text in square brackets (.r and 1") describes items pointed to by the
subject. Usually the subject's actual words were "this", there", or
something similar. The brackets and words were used to make the
transcriptsinore readable.

through the loop]. I guess what I need to
figure out is how do I get back up here
[points to the Read above the WHILE].

The subject wants to put the Read at the top of the loop,
making the test in the middle of the loop. This reflects the get
a value, process that value plan. In a separate study Soloway,
et al. [1083] show that a new Pascal looping construct
supporting this plan significantly improved novice and
intermediate performance with Problem 2.

Conflicts and problems can occur even when the novice
appears to fully understand a program fragment. Consider, for
example, the following novice. She is writing pseudo-code for
the following problem:

Problem 3: Write a program which reads in 10 integers
and prints the average of those integers.

After working on the problem for a few minutes, she had
written the following:

Repeat
(1) Read a number (Num)

(12) Count := Count + 1
(2) Add the number to Sum

(2a) Sum := Sum r Num
(3) until Count := 10
(4) Average := Sum Cy Nun
(6) writeln ge = ', Average)

Leaving aside some inconsistent pseudo-code notation, this is
correct. At this point, the interviewer asks whether the
statement on line la is the "same kind of statement" as that on
line 2a. The subject seems to understands the role these two
lines play in the program. She also recognizes the need for
other associated statements to carry out those roles.
Nonetheless, it appears that she thinks the Pascal translator
knows far more about these roles than it does:

Interviewer: Steps la and 2a: are those the same kinds of
statements?

Subject: How's that, are they the same kind. Ahhh,
ummm, not exactly, because with this [la[
you are adding - you initialize it at zero and
you're adding one to it [points to the right
side of la], which is just a constant kind of
thing.

Interviewer: Yes

Subject: [points to 2a] Sum, initialized to, uhh Sum to
Sum plus Num, ahh - thats [points to left
side of 2a] storing two values in one, two
variables [points to Sum and Num on the
right side of 2a]. Thats [now points to la] a
counter, thats what keeps the whole !Coop
under control. Whereas this thing [points to
2aJ, this was probably the

\ thing ... about Pascal when I hit it. _That
\you could have the same, you aorta have the

same thing here [points to la], it was
.-ititeresting that you could have, you could

save space by having the Sum re-storing
information on the left with two different
things there [points to right side of 2a], so I

241



www.manaraa.com

Interviewer:

Subject:

didn't need to have two. No, they're
different to me.
So -- in summary, how do you think of la ?

I think of this [point to la] as just a
constant, something that keeps the loop
under control. And this [points to 2a] has
something to do with something that you are
gonna, that stores more kinds of information
that you are going to take out of the loop
with you.

This interview explains a result we have from an earlier
written study. We found 100% of novices working on problems
like 2 and 3 were able to correctly write the counter variable
update statement ("Count := Count + 1"), while only 83%
could correctly write the running-total variable update ("Sum
:= Sum + Num") [Soloway et al, 19821. Why this difference with
statements syntactically and semantically's° similar? With this
transcript, we now have some insight into the problem. Our
subject seems to be keying on the role the pragmatics -- of
the statements, noticing but not concentrating on the syntactic
and semantic regularity. The running-total variable update is
more difficult because it "stores information that you are going
to take out of theoop with you". That is,it has implications
outside the loop body.

4. Conclusions
The implication of these results is not simply to make

syntactic fixes to preoramming languages. Instead, we are
suggesting' that the knowledge people bring from natural
language, has a key effect on their early programming effOrts.
Shneiderman and Mayer [19791 have proposed a 'model of
programmer behavior based on language specific knowledge
(which they call syntactic) and more general programming
knowledge (called semantic). Our results suggest that there is
a third body of natural language step-by-step specification
,knowledge which strongly influences novice programming
behavior.

Miller [19811, Green [19811, and others have previously looked
at step-by-step natural language specifications. They
concentrated on looking at the suitability of natural language
for directing computers. Based on the ambiguities and
complexity limitations of natural language, they concluded it
would be quite difficult to program in natural languages. Here,
we are not contradicting that result, but extending it. We are
finding that novice programmers do use natural language, even
when they think they are using a programming language.

There are several implications of this work for programming
education. First, we note that the power of the notions from
structured programming will only be useful to students who
have mastered the level of pragmatic and tacit programming
knowledge highlighted in this paper. We need to address the
problems students have very early in their programming
education. The errors discussed here are barriers for many
programming students. Only after a student has mastered
writing a simple loop, for example, is he or she ready to see the
power of a top-down design involving several loops.

We are beginning to explain many -novice programming
errors through the idea of natural language step-by-step

.i pecification plans. The quality of these explanations has
proved important in the de:elopment of a tutor to do
intelligent computer assisted instruction of programming
[Soloway et al., 19814 In the future, we hope to extend the
tutor to understand a stylized form of these natural language
plans.

Though use of our plans cannot yet be fully automated, such
plans can still play a part in a programming curriculum. As we
stated earlier, the knowledge contained in such plans is usually
tacit. Programming teachers, we feel, have roach to gain by.
making that knowledge as explicit as possible as early as
possible. We are presently developing an introductory course
where students are taught both natural language step-by-step
specification plans and programming plans from the beginning.
Not only is the information in plans made explicit, but the
differences between similar plans for different languages, in
particular the natural language and the programming language
being studied, can be made explicit. (These ideas are developed
fully in Bonar [i983].)

Finally, what is the key to cognitively appropriate novice
computing systems? Our work suggests that we need serious
study of the knowledge novices bring to a computing system.
For most computerized tasks there is some model that a novice
will use in his or her first attempts. We need to understand
when is it appropriate to appeal to this model, and how to
move a novice to some more appropriate model.

5. References
Bonar, .1., K. Ehrlich, E. Soloway, and E. Rubin, (1982)

'Collecting and Analyzing On-Line Protocols from Novice
Programmers, in Behavioral Research Methods and
Instrumentation, May 1982.

Bonar, J. (1983) , Natural Problem Solving Strategies, and
Programming Language Constructs: Conflicts and Bridges.
Ph.D thesis in preparation.

Collins, A. (1978) Explicating, the Tacit Knowledge in
Teaching ancrLearning, presented at the Atierican Education
Research Association (also Bolt Berauek and Newman
Technical Report 3889).

DiSessa, A., (1982) Unlearning Aristotelian Physics: A Study
of Knowledge-Based Learning, Cognitive Science, 6:1 (January-
March), pp. 37-75.

Du BIsulay, B. and T. O'Shea (1981) Teaching Novices
Programming, in' Computing Skills and the User -Intirface
edited by M.J., Coombs and J.L. Alty, Academic Press, New
York.

Green, T. (1981) Programming As a Cognitive Activity, in
Human Interaction With Computers, edited by C. Smith and
T. Green, Academic Press.

Miller, L. A. (1981) Natural language programming: Styles,
strategies, and contrasts, IBM Systems Journal, 20:2,
pp. 184-215.

Rissland, E. (1978) The Structure of Mathematical
Knowledge. Cognitive Science, 2:4 (October-December 1978).

242 2



www.manaraa.com

Shneiderman, B. and R. Mayer (1979) Syntactic/Semantic
Interactions in Programmer Behavior. A Model and
Experimental Results, International Journal of Computer and
Information Science, 8:3, pp. 219-238.

Soloway, E., J. Sonar, B;Woolf, P. Barth, E. Rubin, and
K. Ehrlich (1981a) Cognition and Programming: Why Your
Students Write Those Crazy Programs, appeared in
Proceedings of the National Educational Computing
Conference, pp. 208-210.

Soloway, E., B. Woolf, E. Rubin, J. Bonar, W. L. Johnson,
(1983) MENO-11: An Intelligent Programming Tutor, Journal
of Computer-Based Instruction, in press.

Soloway, E., K. Ehrlich, J. Bonar. J. Greenspan, (1982) What
Do Novices Know About Pro,z...mmingt, in Directions in
Human-Computer Interactions, edited by B. Shneiderman and
A. Badre, Ab lex Publishing Company.

Soloway, E., J. Bonar, and K. Ehrlich (1983) Cognitive
Factors in Looping Constructs, Communications of the ACM,
to appear.

Waters, R. C., (1979) A Method for Analyzing Loop
Programs, IEEE Transactions on Software Engineering,
SE-5:3, May.

243 26u



www.manaraa.com

PREDICTING STUDENT SUCCESS
IN AN INTRODUCTORY
PROGRAMMING COURSE

by Terry R. Hostetler

Global Analytics, Inc.
10065 Old Grove Road

San Diego, California 92131

Abstract

This paper examines to what extent a stu-
dent's aptitude in computer programming may be
predicted through measuring certain cognitive
skills, personality traits and past academic
achievement. The primary purpose of this study
was to build a practical and reliable model for
predicting success in programming, with hopes
of better counseling students. Results from
correlating predictor variables with a student's
final numerical score confirmed past studies
which showed the diagramming and reasoning tests
of the Computer Programmer Aptitude Battery and
a student's GPA to be the predictors most
closely associated with success. A multiple
regression equation developed from 5 predictors
correctly classified 61 of 79 students (77.2%)
into low and high aptitude groups.

1 Introduction

Instruction in computer science has become
increasingly desirable due to several expanding
areas of demand. Many academic departments have
realized the importance of computer assistance<
to their discipline, and so have adopted computer
science requirements. The public has recognized
z growing practical need to be computer literate
in order to function as intelligent consumers
and take advantage of today's technology.
Employers have begun scrutinizing potential
applicants for computer training, causing stu-
dents to carefully consider as extensive a'
computer science background as possible. These
and other demands have resulted in a recent
saturation of computer science courses, including
the traditional first course, introductory
programming.

Advising students who are making their
initial contact with computer science in cur-
riculum decisions has always been difficult.,.The
increased volume of students, however, has made
it of even greater importance to devise a useful
method for determining individualized counseling.
Both students and computer science departments
can benefit greatly from a screening technique in
which students can compare their interest in pro-
gramming ;:o their projected aptitude.

244

At educational institutions, such as the
University of Illinois at Urbana-Champaign, where
the student population has in general met uniform-
ly high admission's criteria, it might be thought
that these students would perform at a consistently
high level in an introductory programming course.
Those involved in teaching such courses, however,
observe that student ability has a remarkably
broad range, even within appareotly hvm.ogeneouS.
groups in a particular college.

Considering this seemingly extensive rangy of
aptitude, it becomes desirable to question whether
it is possible to identify traits in an individual
which may be used to predict how successful that
person will be in an introductory programming
course. This paper investigates to what extent
certain cognitive skills, personality variables,
and past academic achievement can be used to
develop such a_predictive scheme.

2 Design

2.1 Sample Group

Students used in this study were enrolled in
Computer Science 105 at the University of Illinois
at Urbana-Champaign during the spring semester of
1982. Computer Science 105, entitled "Introduc-
tion to Computers and Their Application to Business
and Commerce"is offered every semester and has no
prerequisite.

Computer Science 105 covers the basic concepts
of structured programming, using an extended ver-
sion of Fortran supported by the Watfiv compiler.
Its major topics include: organization of the
computer, data types, variables, arithmetic
expressions, assignment statements, input/output,
control flow, multidimensional arrays, subprograms,
and sorting and searching lists.

Students are evaluated according to their
performance on programming assignments (seven to
nine), two one-hour examinations, and a three-hour
final examination. Programming assignments require
students to apply concepts from lecture material
to solve stated problems, using an IBM 4341 com-
puter in time-sharing mode. Exam material ranges
from objective questions on theory and facts to the
actual writing of programs.



www.manaraa.com

A sample of 120 students was randomly select-
ed from approximately 600 students enrolled. This
sample was reduced by 17 students who withdrew
before the end of the semester. Missing data
forced the elimination of another 24 students,
leaving a final sample size of 79. This final

sample consisted of: 35 males and 44 females; 34
freshmen, 14 sophomores, 18 juniors, 12 seniors,

and one graduate student.

2.2 Selection of Data Variables

Two tests from the Computer Programmer
Aptitude Battery (CPAB) were chosen as measures
for this study. The author, Palormo [Pa1o74],
describes these tests as:

Reasoning--a test of ability to translate ideas
and operations from word problems
into mathematical notations.

Diagra.ming--a test of ability to analyze a
problem and order the steps for
solution in a logical sequence.

Palormo reports estimated reliabilities of
Q.88 for the reasoning test and 0.94 for the
diagramming test. Validity results show correla-
tions with training success over four studies
varying from 0.43 to 0.52 for the reasoning test
and from 0.25 to 0.69 for the diagramming test.
These two tests recorded the most consistently
high correlations of the five tests composin9 the
battery.

In the only other study located in which the
CPAB was included as a, predictor, Mussio and
Wahlstrom [MuWa71] found the diagramming test of
the CPAB the single best predictor of course
grade, supporting their conclusion that reason-
ing ability is the single most important quali-
fication for programmers. They feel that the
diagramming test closely resembles basic demands
that are relevant to programming, and that it
appears the logic required to solve the test
questions is also important and necessary in a
training situation. Similarly, Johnson [John72],

in his review of the battery, asserts that the
reasoning test of the CPAB represents a task very
close to that of programming.

In the area of personality, Weinberg [Wein71]
states that there appears to be evidence indicat-
ing that critical personality factors can be
located and as,-ociated with pi,...rticular tasks, at

least to the extent that their possession may
render one incapable of performing that task well.
Alspaugh [Alsp72] found that the more successful
programming student might be expected to have a
personality associated with a low level of "impul-
sivcness" and "sociability". and a relatively high
level of "reflectiveness" as measured by the
Thurston.. Temperament Schedule.

I selected Form A of the Sixteen Personality.
Facto- Questionnaire (16PF) to be administered for

this study. Its manual [IPAT79] describes the
16PF as an objectively scored test constructed

245

through basic research in psychology to provide
the most complete coverage of personality possiblt

in a brief time. This comprehensive coverage is
based on the measurement of 16 functionally inde-
pendent and psychologically meaningful traits
(PF01, PF02, PF16).

The manual reports the overall' reliability of
factor scores as quite good, even over a four-year

period. Validity coefficients are shown to be .

exceptionally high, meaning the test questions are
good measures of personality traits, as these
traits are represented in research analysis.

The significance of past academic achievement
in predicting programming success has been estab-

lished for certain variables by several studies.
Petersen and Howe [PeHo79], Fowler and Glorfeld
[FoG181], and Bauer, Mehrens, and Vinsonhaler
[BaMV68] all reported college grade point average
(GPA) as the single best predictor of success in

the models they developed. Studies both by Fowler

and Glorfeld [FoG181] and Alspaugh [Alsp72] found

a student's mathematical background to be an im-

portant contributing element in estimating success.

GPA and math background were both included as
variables in my study. Student GPA's were collec-
ted from the registrar as of the beginning of the

spring semester 1982. A student's math background

was measured according to a scale similar to one

used in Alspaugh's [Alsp72] study. This scale

associates an integer with the most advanced
mathematics course a student has passed, with a
higher integer :indicating a more advanced course.

The primary criterion of success in Computer
Science 105 was chosen to be final numerical

score. A student's final numerical score is com-

puted as a weighted sum of objectively graded
programming assignments and exams.--Students are
r7Inked :according to these scores, and then final

grades are assigned. In the judgment of those
teaching the course, the final numerical score is

the most consistent and accurate measure available

of successful performance.

The cognitive and personality tests were
administered during the first two weeks of the
semester in two one-hour sessions. Session one

included Foiln A of the 16PF, an untimed test
requiring approximately 40 minutes. The reasoning

and diagramming tests of the CPAB, with correspond-

ing test times of 20 and 35 minutes, were given in

session two. Results of the tests were not made

available to the students.

A summary of the 21 independent and dependa.lt

variables used in this study, along with their
assigned abbreviations and sources, is displayed

in Table 1.



www.manaraa.com

Variable

Cognitive:
CPAB

- -Reasoning

--Diagramming

Table 1

Data Variables

Abbreviation Source

REASON
DIAGR

CPAB
CPAB

Personality:
16PF

- -Reserved/Warmhearted PF01 16PF

Less Intelligent/ PF02 16PF
More Intelligent

--Affected by Feelings/ PF03 16PF

Emotionally Stable
--Humble/Assertive PF04 16PF

Sober /Happy -go -lucky PF05 16PF
--Expedient/Conscientious. PF06 16PF

--Shy/Venturesome PF07 16PF
- -Tough-minded/Tender-minded PF08 16PF

- -TrustIng/Susptci us PF09' 16PF

--Practicsl/Imagln tive PF10 16PF

- -Forthright/Shre d PF11 16PF
- -Unperturbed/Appehtnsive PF12 16PF
--Conger PF13 16PF

Group Oriented/ PF14 16PF

Self-sufficient
Undisciplined Sell-conflict/ PF15 16PF

Controlled
Relaxed /Tense PF16 16PF

Academic:
College CPA
Math Background

CPA
MATH

Registrar
(Nestionnaire

Success:
Final Numerical Score SCORE Instructor

3 Results

The sample of students was randomly divided
into two groups: Group A (64 students), used in
performing a bivariate correlation analysis and in
developing a multiple regression equation, and
Group B (15 students), used to cross-validate this
regression equation.

Pearson product-moment correlation coeffi-
cients were generated for Group A to measure the
degree to which variation in each independent
variable relates to variation in the dependent
variable. Correlations were also tested for sig-
nificance from zero. Correlations for all predic-
tor variables and their associated significance
levels are presented in Table 2.

The predictor most highly associated with suc-
cess (SCORE) was found to be the diagramming test
of the CPAB (DIAGR), followed in order by the
reasoning test of the CPAB (REASON) and a student's
GPA. These measures obtained highly sipnificant
correlations of 0.480, 0.406, and 0.367 respective-
ly. No other independent variables ware found to
significantly correlate with a student's final
numerical score.

Multiple regression using stepwise inclusion
was performed with all the independent variables
in this study. With stepwise inclusion, the vari-
able that accounts for the largest amount of vari-
ance unexplained by the variables already in the
equation, enters the equation at each step. The
results of this analysis are summarized in Table 3.

246

Table 2

Correlations of Independent Variables
with Final Numerical Score (SCORE)

(N 64)

Independent Variable Correlation Coefficient

REASON .406**
DLAGR .480**

PF01 -.035

PF02 .145

PF03 -.121

PF04 -.056
PF05 -.059

PF06 -.088

PF07 -.025

PF08 .126

PF09 .072

PF10 -.068

PF1! .016

PF12 .008

PF13 .177

PF14 .036

PF15 -.043

PF16 .102

CPA .367**

MATH .030

** p<.01

Table 3

Stepwise Multiple
Regression Analysis

(N 64)

Step Variable Entered Multiple R Simple R

DIAGR .480** .480**
2 GPA .568** .367**
3 REASON .608** .406**
4 MATH .632** .030

5 PF05 .653** -.059
6 PF08 .658** ,126
7 PF10 . .666** -.068
B PF09 .671** . .072

9 PF01 .677** -.035

** peS.vi

The multiple correlation (multiple R) consid-
ering only the best predictor (step 1), DIAGR was
increased from 0.480 to 0.568 with the addition of
GPA (step 2). This multiple R was further improved
to 0.608 by including REASON (step 3). Although
MATH was not significantly correlated with the suc-
cess criterion, its addition to the model (step 4)
raised the multiple R to 0.632. Similarly, PF5,
the first personality factor added (step 5),
improved the multiple R to 0.653, even though it
did not directly correlate with success. The addi-
tion of the remaining variables to the regression
equation resulted in minimal increments to the
multiple R.

Table 4 provides the beta weights and R
squared for this five-variable model. Beta weights,
the standardized regression weights, show the rela-
tive contribution of the corresponding predictor
variables to the success criterion. The R squared
indicates the proportion of variation in the cri-
terion measure explained by the predictors.



www.manaraa.com

Independent Variable

Table 4

Statistics for
Regr ,ssi,:n Model

(N 64)

Regression Coefficient Bets Weights

DIAGR .593 .385
CPA 6.442 ..330
REASON .663 .260
MATH 2.260 .191

P105 -.782 -.167
(constant) 21.675

Multiple correlation 0.65344; R squared 0.427

p<0.01

The five-variable model was cross-validated
using the 15 students i. Group B. The cross-
validation correlation between the predicted final
numerical scores and the actual sures was found to
be 0.672 (p 0.01). This cross validation R sug-
gests that the relationships identified by the
model hold true for different samples drawn from
the same population. In other words, the formu-
later, model does not appear to be sample dependent.

All analysis described in this study was per -
formed using the Statistical-Package for the Social
Sciences [NieN75].

4 Discussion and Recommendation's

The multiple R of 0.653 obtained for the five-
`Variable equat,,on developed in this study is com-
parable to research by Alspaugh [Alsp72] and Mussio
and Wahlstrom [MoWa71] whose models, measuring a
similar combination of traits, derived multiple R's
of 0.632' and 0.67 respectively. This study's model
explained approximately 43% of the variance in the
final numerical scores of students, leairing a
majority of the variance unaccounted for.

As with Mussio and Wahlstrom's work [MoWa71],
the diagramming and reasoning tests of the CPAB
were found to be the highest correlating indepen-
dent variables (0.480 and 0.406). DIAGR and REASON,
when summed together, correlated 0.533 (p<0.01)

6 with success in the course. These results support
the contention that reasoning is a cognitive skill
important to programming.

None of the personality traits measured cor-
related significantly with success in the course
(SCORE).. PF05, though, as the fifth variable added
in the multiple regression analysis, improved tr:
multiple R from 0.632 to 0.658.

A student's GPA was found to correlate highly
significantly with SCOINF, s norting past research
which reflects the tend t academic suc-
cess to be a good predictor or current acadeMic
success. MATH, the fourth variable added during
the multiple regression, raised the multiple R from
0.608 to 0.632, despite its low correlation with
success (0.030).

247

The primary goal of this study was to develop
a practical and reliable model for predicting suc-
cess in an introductory programming course, with
the major benefit of being able to better counsel
students in curriculum decisions.

In view of this goal, Table 5 shows a break-
down of the student sample according to high and
low aptitude, based on predicted and actual final,
numerical scores. High aptitude is defined to be a
final numerical score associated with a final
letter grade of an A or B, while 16w aptitude is
designated as a score resulting in a C, D, or E.

Table "5

Breakdown of Student Aptitude
for Five-Variable Model

Low

Predicted

High

Total

Actual

Low High Total

30 10 40

8 31 39

38 41 79

The table shows that 30 out of 40 students
(75%) who were predicted to have low aptitude, and
31 out of 39 students (79.5%) who were predicted
to have high aptitude, actually did attain those
levels of aptitude. Overall, the model correctly
classified 61 out of 79 students (77.2%) into low
and high aptitude.

Prediction or success based on the models
presented in this study is a useful technique in
counseling students. A majority of the variance
in the success criterion was not explained, how-
ever, requiring the consideration of other factors
not measured that will aid in predicting a stu-
dent's success, such as measures of an individual's
desire and motivation. Future research in this
area_must be done in an attempt to identify such
traits.-

It is important to note that this study dealt
with a highly homogeneous, pre-selected group of
students. Most members of the sample grbup were
enrolled in the College of Commerce and Business
Administration, for which CS105 is a required
course. This college reports that its students
entering in 1981 had an average ACT composite
score of 27 and high school class rank-of 92%.

Acknowledgements

I am grateful to Kikumi and Maurice Tatsuoka,
Geneva G. Belford Ind Gerard M. Chevalez for their
help throughuut L, research. I also extend ap-
preciation to the students of my sample group for
participating in this study.

264



www.manaraa.com

References

[Alsp/2],A1Spaugh, Carol Ann. "Identification of
Some ,Components of Computer Programming
Aptitude." Journal for Research in Mathe-
matics Education, March 1972, pp. 89-98.

[BaMV68] Bauer, Roger, William A. Mehrens, and
John F. Vinsonhaler. "Predicting Performance
in a Computer Programming Course." Educa-
tional and Psychological Measurement, 28
inigg, pp. 1159-64.

[FoG181] Fowler, George C. and Louis W. Glorfeld.
"Predicting Aptitude in Introductory Com-
puing: A Classification Model." AEDS
Journal, Winter 1981, pp. 96-109.

[iPAT79] Institute for Personality and Ability
Testing. Aiministrato''s Manual for the
16 PF. Champaign, 4P-Nr7-Tg79.

[John72] Johnson, Richard T. Rev, of the Computer
Programmer Aptitude Battery. In the Seventh

Mental Measurements Yearbook. Highland Park,
N. J.: Gryphon Press, 1972.

[MuWa71] MUssio, Jerry J. and Merlin W. Wahlstrom.
"Predicting Performance of Programmer
Trainees in a Post-High School Setting."
Proceedings of the Annual Computer Personnel
Research Conference, 1971, pp. 26-45.

[NieN75] Nie, Norman H., et al. Statistical
Part for the Social Sciences. 2nd ed.

:rk: McGraw-Hill, 1975.

[Palo74] Palormo, Jean M. Computer Programmer
Aptitude Battery: Examiner's Manual. 2nd ed.
Chicago: Science Research Associates, 1974.

[PeHo79] Petersen, Charles G. and Trevor G. Howe.
"Predicting Academic Success in Introduction
to Computers." AEDS Journal, Fall 1979,
pp. 182-91.

[Wein71] Weinberg, Gerald. The Psychology of Com-
puter Programming. New York: Van Nostraa--
Reinhold, 1971.

248

2 6 5



www.manaraa.com

COMPUTER ASSISTED INSTRUCTION

Michael G. Southwell
Mary Epes

J. Kenneth Sieben
Ellen Leahy

R. K. Wiersba

ABSTRACT: Computer Assisted Sentence Combining

Michael G. Southwell, Carolyn Kirkpatrick, Mary
Epes, Department of English, York College/CUNy,,______-
Jamaica, NY 11451

We have reported at previous m etings of NECC
on The COMP-LAB Writin& Modules, a set of
computer-assisted grammar.jeSSons being developed

at York College. HerS-We want to demonstrate the
latest development-a set of lessons to foster
students' knowledge of, and ability to use, the
complex sentence patterns of written English.

May college students who have had limited
writing practice experience difficulty moving
beyond simple sentence patterns in their writing.
Sentence-combining exercises have become popular
among high school and college teachers, because
research has suggested this to be one of the few
pedagogies that really can change the way students

write. But such exercises are time consuming and
unwieldy as whole-class activities, and are too
complicated to assign as unsupervised homework.
However, computers afford a way to build such
activities into te curriculum.

In designing our materials, we have sought to
exploit the ways in which computers can provide
instruction which is more effective than that
possible with print or even video materials. in

particular, we use the computer's capacity for
dynamic presentation to help students understand
the structural components of sentences, then we tap
its interactivity to help them practice
manipulating these components.

Understanding. As we shall demonstrate,
computers can highlight the distinction between the
clauses of sentences, and the connecting words
which tie them together; and they can connect the
clauses in different ways to show different logical
relationships. Then they can demand that students
make responses that demonstrate their
understanding.

Practice. Students must have some
.opportunities to practice manipulating the parts of
a sentence, actively creating new sentences by
combining short sentences with single ideas into
complex sentences with more complicated meanings.
As we shall demonstrate, computers make it possible
to separate the cognitve work and the mechanical
work: students tell the computer where and how to
combine ideas, and then the computer does the
actual combining. This makes it feasible to
provide students with those large quantities of
practice which are necessary to have a real impact
on students' writing.

ABSTRACT: How to Write Computer Assisted
Instructional Programs to Support a Textbook

249

J. Kenneth Sieben, 86 River's Edge Drive, Little
Silver, NJ 07739

The author is in the process of developing CAI
lessons for each of the exercises in his textbook
Composition Five (co-authored with Dr. Lillian

Anthony). The goal of the project is to remove the
time-consuming,- and often boring, task of homework
correction from the classroom.

We teach a lesson on a reading or writing
skill and assign exercises from the text to be done
as homework. However, instead of having to review
those exercises item by item, we can send our
students to the Computer Lab to correct their own.
The student keys in his responses, with letters
(T-F), (a, b, c, d), words, or even entire
sentences' for the many sentence combining

exercises. The computer is programmed to respond
to a variety of possible answers in such a way as
to teach the student whatever h' /she did not

understand. Students are given the instruction to
cheek those items for which the computer did not
give a satisfactory explanation and see us during
office hours for individual help. This procedure
frees up-clas-Sroom time for development of
cognitive skills which (We think) can best be done
in an atmosphere of free exchanp,E. It also

provides for complete individualization of homework
evaluation.

The fact that we wrote our own textbook might
have made it easier to develop support CAI

materials. However, I believe that any teacher.
could learn to program almost any kind of exercise
to enable students to correct their own work at
their own pace. I will be happy to share with
colleagues some of the problems and solutions
regarding the development of CAI materials.

0 (-1
A.. u



www.manaraa.com

ABSTRACT: Project Better Chance A Comprehensive
Approach to Basic Skill Improvement: A Better
Chance for HighRisk Students (A Title III
Project) CAI Component for Reading and Writing
Skills Reinforcement

Ellen Leahy, Bronx Community College, Sage Learning
... Center. W. 181 St. & University Ave., Bronx, NY
10453

Facility. The Computer Lab is located in the
Sage Learning Center of Bronx Community College,
and houses 10 Bell and Howell Apple II+
microcomputers. Epson MX-80 printers produce hard
copies of individual student reports and the
student data management system reports.

Setting. A'special block program was offered
to first year students scoring below acceptable
levels on the CUNY Assessment Exams. One component
of this project is computer assisted instruction
with software developed in collaboration with the
Reading and English faculty'who are on the Basic/
Skills team and the CAI Specialst.

Software. One program. "Dictionary,, consists
of a series of practice exercises designed to
reinforce skills developed with the instructor in
class. Word meanings, etymology, and words with
irregular plural spelling are examples of the
content of the program. Students must type in
their answers (words or phrases) to questions.
This requirement was included to reinforce spelling
skills in context. Students receive immediate
feedback and a printout of their incorrect
responses so that they leave the. Computer Lab with
individualized study material. Their instructor
also receives a copy of the printout for each
student completing the practrice exercises.

Another program is a series of commonly used
vocabulary development review tests in three levels
of difficulty with a total of 14 tests on the
diskette. This program was designed to remove a
regularly scheduled test exercise .srom.the class

period. The transfer of this actlyity to the
Computer Lab allows students to set their own pace
for taking the test, schedule themselves for the
test at a time most convenient for them, and more
importantly, gives the instructor more class time
to develop other skills. This program provides
immediate feedback to the student on test
performance with a list of incorrect answers and
the test score. At the end of the test deadline,
the instructor receives copies of the student
printouts.

Both of these programs have a management
system which generates class performance reports to
the instructors. The programs are written in
MBASIC, requiring a Z-80 card for the Apple II+

with 48k.
Another program is a series of 3 practice

tests for a Health Education course on the topics
of Mental Health, Drugs, and Human Sexuality.
Another program covers the same topics but has
restricted use as unit makeup exams. The

following commercial programs are being tried out
with individual students: Compupoem, MECC English,
MECC Microquest, and Microvocab for spelling
practice exercises. In'the process of development
are programs for reinforcing Reading for Main Idea,
Outlining, and SubjectVerb Identification and Word
Endings for ESL students.

250

ABSTRACT: Appropriate Technology for Computer
Education

R. K. Wiersba, Bentley College, Waltham, MA

The successful application of computers to
virtually all aspects of our culture leads
logically to two statements relating to computer
education:

1) Qualified instructors in computer topics
will be in short supply. As the ability of a
healthy computer industry to offer a higher
financial return for computer expertise increases,
qualified computer instructors will gravitate to
the industrial sector. This is already occurring.

2) At a time when instructional resources will
be strained, a greater proportion of college
students will enroll in various computer courses.
Although it appears there will be a decreasing
number of total college enrollments, curriculum
changes are being made in various academic
departments to reflect the need for computer
literacy, causing an increase in the number of
students enrolled in computer ,course as a
proportion of total enrolled students. This is
most eveident in courses offered at the
introductory level.

In an attempt to upgrade computer education in
general and to contribute to helping instructors
perform at a higher level, the author encourages
computer educators to modernize their taching -
methods. This will also provide an example for
other disciplines to follow in the use of the
computer in the classroom. This can be done and is
being done with selfcontained instructional
modules which can be designed to illustrate the
operation of specific,logical computer mechanisms
in depth, under the control of the instructor or
the student.

The author has studied the computer
programming topics taught at his institution which
have lent themselves most readily to blackboard
illustration, and has developed, with student
programming help, a pilot CAI module which
illustrates the operation of linked lists and
binary trees, and a second for the COBOL MOVE
command. These are used in classrooms equipped
with instructors' terminals and multiple television
monitors for students. The most immediate
advantage accruing from the use of these modules is
their repeatability, both by the instructor in the
classroom"and by, the students outside of classes,
either on campus or try dialup lines. Their
operation is menudriven and requires no additional
explanation or documentation.

267



www.manaraa.com

The amount of programming required to complete
these modules appears great, considering the amount
of tic," involved in their actual execution.
However, as a bonus, the design and construction of
these modules (written in COBOL, under the author's
supervision), proved a valuable project experience
for the students involved. Control of a variety of
different terminal cursors was one of the
significant challenges and led to a design decision
in favor of table-driven screens for ease of
modification to accomodate different vendors'
control code schemes.

Since completing the first phase of this
project, the author has become aware of at least
one other group of college instructors involved in
developing a similar. instructional module.
Communication is solicited from others interested
in these efforts, with in mind exchanging advice
and design information and eventually, the modules
themselves.

251

263



www.manaraa.com

COMPUTERS IN EDUCATION AT AN EARLY EDUCATION LEVEL

Carol L. Clark
Elizabeth Legenhausen
Stewart A. Denenberg
Marilyn J. Pollock

ABSTRACT: The Magic Crayon - An IntroductOry
Computer Experience for Children

Carol L. Clark, 5713 Kentford Circle, Wichita, KS
67220

Children love to make things happen. They

also love computer graphics, especially colorful,
dynamic ones. Magic Crayon is a program designed
to capitalize on these interests and provide a
positive introductory computer experience for

childeren.
The program permits children to draw on the

Apple II's low resolution graphics screen, using
keystrokes to control direction and select colors.
They can instruct the computer to "remember- a
picture, and then command it to dynamically
reproduce the drawing at a later time.

For children too young to read, special
pictorial instructions are provided; the program

has been used successfully by children as young as
three ys_s-s old. For older children,'more advanced
csptiont: are available, including changing a
drawing's location on the screen and combining
several picture elements into one large drawing.
This provides an exciting introduction to some of
the most fundamental concepts of computer logic.

An important aspect of Magic Crayon is the
"feeling of power" given to the child. Children

feel that they are in control of the machine as it
responds to their commands. Eves. the youngest

children can discover that computers do exactly as
they- are instructed, in response to decisions made
by the people who control them.

Plans for further field testing in classrooms
and homes are being made. In addition to a
demonstration of Magic Crayon's capabilities, this
project presentation will relate results of these
field experiences, including indication of the
program's applicability for various age groups and
disciplines.

..ABSTRACT: Effectiveness of Computer Usage on
Achievement of Specific Readiness Skill of
Preschoolers

/Elizabeth Legenhausen, 6517 Beverly. Road,
/
Baltimore, MU 21239

The purpose of this non-randomized,
experimental, pretest-posttest research design was
to determine the effectiveness of computer usage on

/ = the achievement of specific readiness skills in
preschobl children. In addition, observational

252

data was collected regarding the ability of
preschoolers to master computer operation.

Subjects selected for this study 30 four
year old, upper middle class children, 16 boys and

14 girls, registered in a private nursery 'school
program in Baltimore, Maryland. An experimental
group and a control group were chosen at random
from two preassembled classes.

During the six week experimental program, the
control group received the traditional preschool

curriculum. (Ethical considerations dictated that
subjects in the control group be allowed equal time
using the microcomputer.) Concepts chosen as
targets for instruction and measurement in the
experimental program were classified into three
context categories: Space, Quantity, and Time.
Subjects in the; explrimental group received two
group introduct..sry sessions about microcomputer

usage, Then, po4;':- of children were allowed to
select 'an Apple II Plus microcomputer for 10 minute
pe-!::.,ds during free play time each morning. The

,Imputer was equipped with two commercially

..... ,d programs! Juggle's Rainbow, r"-oduced in

1, The Lc .11 Company; and Cow '7 Bee,

pro:: : . in 19 oy Edu-Ware, Inc.
11.1: Boehm .est of Basic Concepts selected

to collect data for this study. Form A and Form B
were used as pretest and posttest, respectively.
Statistical analysis of raw scores on the pretest
and posttest for the experiment and control
groups was implemented in three First, the
percentage of correct responses In each context
category on the pretest and posttest for the
experimental and cohrol groups was calculated.
Second, mean and standard deviation of scores in
each category on the pretest anfd posttest for the
two groups were computed. Third, t-tests were used
to determine whether differences between mean
scores for the experimental and control groups on
the pretest and posttest wereisignificant at the

.05 level.
The major finding of this study indicated that

microcomputer usage at the preschool level was
statistically significant at the .05 level. In

addition, preschool children in this research study
enthusiastically mas.:ered computer instruction!

26



www.manaraa.com

ABSTRACT: The Oak Strr..t .:rrns: An Experiment

Stewart A. Denenberg, Associate Professor of
Computer Science and Director of Academic
Cc SUNY Plattsburgh, Plattsburgh, NY 12901

emester of 1982, eight
,dergraduate sci ,2e interns tat d,ht thf d

graders how to program in BASIC using Apple
microcomputers at the Oak Street Elementary School
in Plattsburgh, New York. A particular pedagogy
and curriculum has beers developed which focuses on
the graphic capabilities of Apple BASIC and, as a
result, is not presented in the "normal" order of
most textbooks. Briefly, the following curriculum
plan is used (all lessons after the first are begun
with a-review of the previous lesson):
(1) Familiarize child with the keyboard, diskettes,

and disk drive. Play educational games:
Lemonade, Hangman, Speedreading. Learn to
Boot, CATALOG, RUN, and how to correct typing
errors. Use of RETURN key and CTRL-C. Use

keyboard visual aid.
(2) Child runs Intern-written program that accepts

a color number, "how far to go over" and "how
far to go down", then plots that point in low
resolution graphics. After child has mastered
the coordinate system, they use the program to
draw.(in increasing difficulty) Plus (+), Times
(x), diagonal (0, square, rectangle, rtght
triangle, isoceles triangle.

(3) Child now motivated to write their own plotter
program so GR, TEXT, COLOR = , and PLOT are
taught in the Immediate mode (student can
always see last p2ot command in lower window).
Make some of the figures in lesson two above.
Use numbered graph paper as visual aid.

(4) Program is lost in Immediate mode so motivation
is provided to teach how program can be saved
using line numbers for each command.
Experiment by changing colors.. New commands:
NEW, LOAD, CAVE. Homework: draw a picture on
graph paper.

(5) Form pairs. Child A & B swap pictures from
lesson four, each writes the program to create
that picture. Intern gives children C & D the
programs written by A & B, and C & D attempt to
draw the pictures. Pictures compared.

(6) GOSUB. Show need for GOSUB when code is
repeated. Use it to plot a 5x5 square. Show

how to use GOSUB for modularity: draw a square
as a set of horizontal lines, or a set of
vertical lines using HLIN and VLIN.

(7) FOR-NEXT. Draw same square using a single loop
then a double loop.

(8) Parents visit on last lesson. (Note: PRINT,

INPUT, LET, and IF-THEN have purposely not been
taught.)

Tentative results and conclusions reached thus far
include:
- Because graphics is as close to a culture-free
symbol system (unlike numbers or strings) it is
easily understood and assimilated by young
children.

- The absolute coordinate system in Apple BASIC
presents no problems and it is unclear whether
the relative addressing of LOGO is superior.
Dedicated Computer Science Interns seem to
thrive on this teaching experience, excelling

253

it even though they have no formal teacher
1.-raining. Their presence has not only inspired
the teachers ,0 the school to learn more about
microcomputers, the interns are exemplars of
the public service function that a cl'llege can
provide to the local school system.

- It may not be possible to develop a texbook
that rigidly follows -;.he proposed curriculum -
many or the interns jumped forwn-d and backward
over topics and developed new ,ples

on-the-fly in response to th ,idual needs
of their learners. This is that

accrues from having teachers well-steepen in
the content knowledge and skills to be taught.

- The initial success of the project leads us to
believe that it can be done about ten times
more cheaply using the Timex Sinclair
microcomputers. In the Spring of 1983, we will
pilot test one group on a Sinclair using the
same curriculum and pedagogy described above;
what remains to be seen is if the
multi-function keyboard presents problems to
young minds (with, however, small fingers).

ABSTRACT: Why Computer Education in the Elementary
School? A Model for Maximum Use

Mrs.. Marilyn J. Pollock, 2 S. 621-F Fermi Court,
Warrenville, IL 60555

1. Philosophy for Maximum Use

I. Ideas from computer science and technology can
expand an individual's-learning strategies.

II. Learning to use a computer can help to achieve
academic, personal, and career goals.

III. Learning to evaluate the purpose, values, and
limitations of computer technology can enable
an individual to make effective use of this
technology in'daily living.

IV. Learning to evaluate computer applications in
terms of purposes, values, assumptions, and
limitations will lead the 'student to analyze
the possible social and political effects of
various applications.,

A Model for Maximum Use -

Suggested beginning program in an individual
school would address these questions:

1. Staff training
2. Communication to staff and parents
3. Software needs
4. Software maintenance
5. Scheduling
6. Long range plans

Oneapproach to the above questions will be
presented. Lesson suggestions will bE available.

270



www.manaraa.com

COMPUTER EDUCATIOA FOR SECONDARY SCHOOL TEACHERS

Susan M. Zgliczynski
Harriet G. Taylor
Dale M. Johnson
Carla J. Thompson
Dr. Sandra Crowther
Michel Eltschinger

Linda Hyler

ABSTRACT: Infusion of Microcomputer Training into
the Existing School of Education Undergraduate and
Graduate Curriculum

Susan M. Zgliczynski, School of Education,

University of San Diego, Alcala Park, an Diego, CA

92110

Microcomputer use in educational settings is
rapidly expanding.. There :s an everincreasing
need for eAucators both teachers and

administrators to receive comprehensive training

in the use of microcomputers in educational
settings. Federal, state, and local funding to
support inservice of practicing educators attempts
to meet the needs of teachers and administrators in
the elementary, middle, and secondary schools. New

graduates of Schools and Colleges of Education are
expected to have some training, in the use of
microcomputers in the classroom. in a tight

placement market, new graduates with comprehensive
training have a real advantage.

Many graduate and undergraduate programs for
training educators have had difficulty instituting
the necessary training. Lack. of traihs:d faculty,

limited funding for equipment, and cutbaCks on
scheduling make it very difficult to provide
comprehensive training. Most programs have
attempted to meet the computer literacy needs of
their students by adding an elective course on "The
Use of Microcomputers in Education".

At the University of San Diego School of
Education, the faculty saw several. disadvantages to

the above approach. First of all, our students had
little room in programs leading to teaching,
counseling, or administrative credentials to add an

additional course. Tuition for an extra
threecredit course in a student's program was an
expensive burden at a private institution. The

faculty al.o felt we weren't setting an example of
integrating computer use into our curriculum while
we were tellir teachers and local school
administrators that they should integerate computer
use into existing elementary and secondary
curricula.

A Faculty Research Grant was awarded to design
modules to be fitted into existing undergratuate
and graduate classes. A target goal was that
within one year every student graduating with an
undergraduate, masters, or doctoral degree would
have received training in the operation of a
microcomputer and most would receive training in
computer applications in their area of expertise.
Under the grant, one faculty member prepared the
modules, inserviced the faculty, and presented the

modules with the assistance of instructors in the
classes.

Modules developed were as follows:
1. Regular Teaching Credential Program

Students in their first education class
learned operation of the microcomputer and
were taught ways the computer could be used
in the classoom. Cautions about
inapptopriate use were included. Students
in teaching methods classes were taught
selection, evaluation, and use of CAI

programs in their teaching fields.
2. Required Special Education Class All

students earning credentials complete this
course. ,,Students were introduced to the
use of computer hardware and software used
with the handicapped and got handson
training working with handicapped students.

3 Counseling Credential Course Students

were introduced to the operation of the
microcomputer, use of career guidance
software, test interpretation and test
preparation programs, use of word
processing in producing reports, and data
management and filing of student records.

4. Administrative Credential Course Students

were taught basic operation, selection and
evaluation of hardware and software,
preparation of a school needs assessment,
and handson training in the use of
administrative packages.

5. Doctoral Program in Educational Leadership
Students learned operation and BASIC

programming, use of statistical packages,
word processing, and use of modelling
packages such as VisiCalc. Most of the
students completed a research paper related
to issues of computer use in their intended

work setting. Several students now plan
dissertation research related to
microcomputer use.

During the arst year eaah module was limited
to 2-3 hours of classroom instruction, and a
required application project for each course with a
module. Six modules were developed during the
initial year. Many students completed additional
computer practice, attended workshops, and visited
schools with model projects.

Faculty members have responded favorably to
this approach. Many have obtained further computer
training on their own. Most of them feel they can
present the module to their classes with little
assistance from the designer of the module in
future seminars.

254 2 r 1



www.manaraa.com

ABSTRACT: Certification of High School Computer
Science Teachers

Harriet C. Taylor, Department of Computer Science,
Louisiana State University, Baton Rouge, LA 70803

The use of the computer as a part of the
instructional process in the elementary and
secondary schools in the United States is
increasing at a rapid rate. A majority of this
nation's high schools now have some facilities for
instructional computing. Parents, teachers, and
administrators are now insisting that schools
prepare students to be a part of the computerized
society in which they will live. As a result,
computer science classes will soon be offered by
most high schools.

Despite this growing area of national concern,
few states have adopted certification standards for
computer science teachers. It stands to reason

that if computer competency is to be as essential a
life skill as reading, writing, or arithmetic, then
it is just as important to have standards for the
teachers of computing.

Recently, a study was conducted to determine
the national status of computer science
certification. The major focus of this
presentation will be a report on the results of the
study. Included will be a summary of which states
now offer certification in computer science and a
composite description of those standards. These

results will be compared to those obtained from a
survey of, leaders in the field of computer science
education about the importance of certification and
the content of certification programs. The

presentation will conclude with questions from the
audience and a general discussion of the issue of
certification.

ABSTRACT: Introduction to Computers and
Educational Computing - A CAI Approach

Dale M. JohnsonT-R-esearch-&-EvaluationT-University
of Tulsa, Carla J. Thompson, Mathematics
Department, Tulsa Junior College, Tulsa,, OK 74104

The presentation will describe the_development
and content of a six unit CAI package consisting of
30 lessons (5 lessons per unit). Although numerous
books, articles, and other print materinit. ,re
available for introducing non-technical
professionals to computing, there was a lack of
computer instructional software on the very topic
(educational computing) advocated by the print and
A-V materials. Thus, the present project is an
attempt to use the computer (as opposed to more
traditional media) to teach about educational
computing.

The units ircoroorated into the series are:.
(1) Hardware, Software, & People, (2) Program
Development, (3) Internal Computer Functions, (4)
Computers in Education, (5) Computing Issues in
Schools, and (6) Selection and Evaluation of
Hardware & Software. Programming as a topic was
intentionally omitted because many existing
computing CAI packages deal almost exclusively (and
exhaustively) with programming in BASIC or some
other high level lang,age. Each of the 30 lessons

255

are accompanied by one or more off-line activities
designed to reinforce the-CAI material.

The entire package was created using a special
authoring system on the TRS-80 Model III computer
system. Pedagogically, the system is tutorial in
nature with terminal lessons in each unit designed
for assessment purposes. Part I (Units 4, 5, & 6)
is aimed at preservice and inservice educational
personnel who are interested in computer literacy.
The system has been designed, coded, and has
completed technological debugjing although field
test evaluation with regard to its effectiveness as
a teaching system has not been completed.

ABSTRACT: Planning and Training for Effective Use
of Computers

Dr. Sandra Crowther, Microcomputer Coordinator,
Michel Eltschinger, Linda Hyler, Classroom
Teachers, Lawrence Public Schools, Lawrence, KS
66044

Microcomputer training has been a key
ingredient in the planning and implementation of
effective microcomputer use in the Lawrence,
Kansas, school district.

During the 1980-81 school year the district
had five computers which introduced several
teachers and students to the power and possible
uses of the computer. The district formed a
microcomputer committee to make recommendations for
purchases, training,, and. use. The committee
recommended that the district hold the computers
together for the first semester of 1981-82 so that
an adequate number of staff could receive training.
Eighty-one teachers voluntarily participated in
four different training sessions. Dui.ing the

second semester the computers were placed in the
various schools.

Demand for courses with credit and various
interests have led the district to work in
cooperation with the local university in making
courses available and-to-also-provide various
opportunities for adding depth and breadth to
staff's knowledge and skill through workshops.
Scpa ate workshops have been offered to meet needs
of administrators and classified personnel.

This session will cover ideas for planning
computer inservice, the training materials
developed, and the successes and weaknesses
encountered in the process.

2 7 2



www.manaraa.com

4.

AN OVERVIEW OF THE MATHEMATICS NEEDS OF COMPUTER SCIENTISTS

Anthony. Ralston
SUNY at Buffalo
4226 Ridge Lea Road
Amherst, NY 14226
716-831-3065

The physical world is a mathematical
object. This means only that physical
scientists and engineers do--indeed, must- -
use mathematics to describe the phenomena
with which they deal.

Unlike the physical sciences, computer
science is concerned almost exclusively
with non-natural (unnatural?) phenomena,
namely, artifacts--algorithms and pro-
grams--which are human-created. Neverthe-
less it is now a commonplace that ECfor-
ithms and programs are mathematical .,b-
jects which can only be well-constructed,
well-used and fully understood through the
use of mathematics. Computer scientists
may not agree whether the most effective,
approach to program verification is a
purely formal one or one that involves
informal reasoning (as, by the way, is the
case with-most proofs in mathematics).
But they do agree almost universa1.7.y_that----
a competent practicing -profeasiOnaLpro-
grammer or computer scientist must have a
firm grasp of the_ mathematical tools
needed-to construct and analyze those
mathematical objects called programs or____,__-

_______algorit1uas,._Why-is-it-then-th-a-t---'th-ere
appears to have been a trend in recent
years away from mathematics in computer
science and data processing programs?
What, if anything, should be done about
this?

It is wise to be wary of the opinions
of research scientists in any discipline
on what is most appropriate for under-
graduate education in that discipline.
Researchers too often, view the chief func-
tion of the educational process to be re-
production of.their own kind whereas what
is most important for preparation for re-
search may be quite different than what is
essential for the always much larger group
of students who will not go into research.
In computer science, however, the subjects
of research are still so close to the pro-
fessional practice of the discipline that
the curricular needs of research training
are not materially different from those ci
all students in computer science. Un7
fortunately those most active in compUter
science curriculum matters -in recent years
have, With few exceptions, not bei,la in

close touch with research developments.
The result has too often been curriculum
recommendations which, as far as mathe-
maticaia concerned, have been out of
touch with reality and, if followed, may
well be harmful to the education of many,
many. students.

Do I imply that you must know much
mathematics to be able to prograt? No,

of course not. Or even that you need
mathematics to write some correct pro

to
grams? Ld:sttlni!

brcomelTgIlliiral; as a
good computer scientist more generally,
you must know a considerable amount of

mathematics. For otherwise you will be
unable to analyze your algorithms or write
correct or efficient large-programs or, in
general, to be successful in writing large
applicat tPne_or_systems_programs. -(See
Gries 0981] to get the flavor of the
kind of mathematics and mathematical
reasoning which are needed for the effec-
tive development of computer programs.)
Now it may be true that. most of your

--student-a-iiill spend their professional
lives doing the equivalent--whatever that
may be in 2025--of writing payroll pro-
grams in Cobol. But your. obligation as a
teacher is to give those of your students
with the inherent capability to rise to
higher level, more demanding tasks the
basic educational tools to do so,. If your
graduates are mathematically illiterate or
nearly so, many will be doomed to low-
level positions who would otherwise have
been able to rise higher.

- What mathematics, then? While any
mathematics in an undergraduate computer
science curriculum is better than no
mathematics, the traditional calculus
sequence is just not relevant to virtually
all undergraduate computer science courses.
Conversely - -and a fact still recognized by
far too few--the very first course in
computer science and-its immediate suc-
cessors.wovad be much enhanced byi mathe-
matics corequisite or prerequisite (one or
i-mo semester) course which gives the stu-
dent a firm grounding in algorithmics
generally, in the use of mathematical in-
duction and in basic combinatorics and

256 N,
273



www.manaraa.com

discrete probability to name only a few of
the possible subjects for such a course.

Even if yoll, agree with my thesis, you
may well say that, since computer science
departments are so swamped with students
and since mathematics departments don't
offer the kinds of discrete mathematics
courses needed by computer science stu-
dents, requiring some calculus is the best
you can do. Fair enough but be of good
heart. The world of mathematics is
changing (see, fot example, Ralston and
Young [1983]). 1 anticipate that, before
many more years have passed, therewill be
good mathematics courses at the freshman
level which cater, in part at least, to
the needs of computer science students.
Until that time comes, the least you can
do is to make sure that the programs you
offer make it clear that'a healthy dollop
of rAthematics is a sine qua non for any-
one who wants to reach his or her poten-
t:f.al as a professional computer scientist.

REFERENCES

Gries, David [1981]: The Science of Pro-
gramming, Springer-Verlag, New York.

Ralston, A. and Young, G.S. [1983]: The
Future of College Mathematics: Pro-
ceedfngs of a Conference/Workshop on
the First Two Years, Springer-Verlag,
New York.

2 -f



www.manaraa.com

lions:

MATHEMATICS IN COMPUTER SCIENCE. AND THE APPLICATIONS PROGRAMMER

A.T. Berztiss

Department of Computer Science
University of Pittsburgh. Pittsburgh. FA 15260

Computer science tries to answer these ques-

What can be computed?
How fast can It be computed?
Is the computed result what we think it is?

Computability theory and complexity theory deal with

the first two questions. In the third we ask whether
s program is reliable. The results produced by

computability theory are important because they pro-
vic",e a base on which all research in computer sci-
ence ultimately rests. but it is unlikely that the

existence of solutions will be a practical concern to
the applications programmer. This Laves reliability
and complexity. The purpose of this brief position

statement is to point out the role of mathematics in
the study of the two topics. and to indicate their
relevance to the applications programmer. In particu-
lar the data processing specialist. Reliability. of

course. Is tho more fundamental of the two--it
should make no difference how rapidly we can com-
pute an erroneous result. However. given that a

program Is reliable. we want it as fast as can be.
We also want to minimize space requirements. This.

too. Is a concern of complexity theory. but space

complexity Is generally not as critical as time com-
plexity.

The main purpose of complexity theory then Is

to provide an estimate of the time that an algorithm
will take. expressed as a function of the size of the
input. Since sorting is the most pervasive data pro-
cessing activity En the most relevant result provided
by complexity theory for data processing is that sort-
ing of n items is at least, an O(nlogn) process. But

what does O(nlogn) mean? This is a measure of
the time required to sort the n Items. We call It

the time complexity of sorting. read it as of the

order of niogn.' and Interpret it as saying that the

258

time required to sort n items increases as niogn
with an increase in n . This is an oversimplified
interpretation, but a more complete explanation
requires knowledge of
objects. of asymptotic
instance. of the nature

functions as
approximation.
of logarithms.

mathematical
and. In this
Unfortunately.

without a proper understanding of the meaning of the
0-notation. there Is the danger of misinterpretation.
For example. there exist matrix multiplication algo-
rithms that are 0(nk ). where k Is below the conven-
tional 3. but n would have to be very large Indeed
before their use would be justified. Returning to
sorting. the time complexity of the well known quick -
sort algorithm Is O(nlogn) on the average. but 0(n 2

)

In the worst case. Rudimentary knowledge of proba-
bilities and their distributions would help one appreci=-
ate these results.

In discussions of the complexity of algorithms
one often hears the term combinatorial explosion.
What It means is that when we generate a set of
derived objects from a set of n basic objects. the
growth of the number of derived objects is prohibi-
lively fast as n
easy to believe
10 , books on

Increases. For example. it It Is not

that the number of ways of arranging
a shelf is as high as 3,628.800.

Proper appreciation of combinatorial explosion can be
gained only by the study of some combinatorics. by

working with the large numbers.

Problems are sometimes separated Icto those

that can be done in polynomial time, and those that
require exponential time. The complexity of
polynomleal-time algorithm Is 0 k ), wherb k is some
positive integer: the complexity of an exponential
algorithm Is 0 (kri ), or even 0 On ). For example.
the number of ways of arranging n books on a shelf
can be expressed approximately as 0 On ). which
means that an algorithm for generating all these

configurations would have to have at least this time

273.



www.manaraa.com

complexity. We also speak of hard problems.

Experience shows that such problems sometimes

require prohibitive amounts of time for their solution.

Many of the hard problems belong to a class we
call the class of NP-c9mplete problems. The distin-
guishing feature of this class Is that If any one NP-
complete problem could be solved in polynomial time
In the worst case. then all NP- complete problems
could be solved in polynomial time. We suspect that
NP-complete oroblern.1 require exponential time In the

worst case. but.

of a polynomial
not necessarily

even if this were not so, existence
time . algorithm for a problem does
mean that solving the problem is

&lways practicable. The following table bears this

out. It expresses n3 . n6 , Ind 2n microseconds in

more convenient time units for various values of n.
We soon reach a value of n at which an 0 (n6)

algorithm is Lopt,:cdcable.

n3

20 0.016

50 0.125

100 1.000

n6 2n

sec

sec

soc

4.1 m!n

4.3 hrs

11.6 days

33.5 sec

35.6 yrs

4 x 10 16 yrs

NP- completeness pervades all of programming,
including data processing. Out of the vast set of

NF -complete problems the following four have definite
bearing on data
tion is the first.

billtles with the

table conditions.

processing. Decision table optimize-
If it Is possible. to associate probe-

outcomes of evaluations of decision
then the evaluation of the conditions

can be arranged In a sequence that minimizes some
cost function. Unfortunately the finding of the

optimal sequence is NP- comple'A [21. So is the

similar problem of organizing a trie dictionary to

minimize storage requirements [31. The fact that the

seicction of an aesthetically satisfying layout of a

binary tree is a hard problem [41 suggests that lay-

out problems - general will be difficult. Finally. the

problem of deciding whether a relation schema of a
relational data base Is In Boyce-Codd normal form Is
NP- complete [51.

No matter what importance we give to com-
plexity. reliability Is more important. The writing of

unreliable programs should be regarded as profes-

sional Incompetence. but we still find It very difficult

to produce reliable programs despite a variety of

approaches that have been triad to Improve this state

259

of affairs. The first attempts were to codify sound
programming practices as sets of maxims (see, e.g..

(61!. The maxims were elaborated into design tech-
niques that have become known as software

engineering (see. e.g., [71). The culmination has

been

[8.91.

cetion

a rigorous formal program development process
In the latter case we speak of program verill-
or program proof. and all programmers should

become familiar with this approach.

What is a program proof? In mathematics one
proves a theorem by showing It consistent with a set
of assumptions (axioms). Expressed in other words,
we transform the assumptions Into a theorem. In

doing this we make use of well defined laws of

logic. the Jules of inference. The axioms and the
rules of inference define the mathematical system tn
which wo work, and every statement that is derivable
from the axioms by the rules of inference is a

theorem: In practice, however, . we find most such
statements uninteresting: generally our approach is to

set up an interesting statement that we believe to be
true as a hypothesis, and to show that the

hypothesis is Indeed true, Le., that it Is a theorem.
In program proving, we start with some description of
the properties of the input, and from this try to

derive a statement describing the required output.

Expressed In very simplistic terms, we regard the

description of the Input as an axiom or a set of

axioms, the statement types of a programming

language as rules of inference and the description
of the output as a hypothesis. As we move down a
program. the statements In the program are Inter-
preted as applications of the rules of inference that
are to transform the description of the input into a

description of the output. The program transforms
the Input Into an output; the proof transforms a

description of the input Into a description of the out-
put. If the description of the cutput is what we want
It to be, then. we conclude that the program Is in

fact correct.

How does this affect the programmer? For

one thing. structured programming arose out of pro-
gram correctness concerns, and, even if we do not
get far with formal program proofs, structured pro-
gramming &one has been a worthwhile achievement.
It has certainly made (programs easier to understand
and maintain. Second, programming languages are
deliberately being n.ade simple because this facilitates
program proofs. Pascal anddespite appearances- -
Ada are examples of this trend.

27t



www.manaraa.com

The Input and output descriptions constitute a

specification of the program. They are usually

expressed as assertions in the first order predicate

calculus. It is unlikely that many programmers will
be called upon to prove programs correct in the for-
mal sense, but some time in the future most pro-
grammers will be seeing program modules that have

been certified to be correct, and It will be necessary

to be able to read and understand the specifications.

Moreover, even an Informal proof of one's program

can bolster one's confidence In the program.

However, the general outlook for program prov-
ing IS far from rosy, and the technical background of
an applications programmer should be adequate to

understand why some of the claims that are being

made for program proving techniques are unrealistic..

The difficulties arise from complexity analysis. To

give lust one example. the length of an automatic

formal proof of a program Is exponential In the size

of the program 1101.

The topics mentioned In this shallow survey

are treated at length In recent books. Program

proving Is surveyed by Berg at al. 1111. Horowitz

and Sahnl 1121 provide a good introduction to the

complexity of algorithms: NP- completeness specifically
Is surveyed by Garey and Johnson 1131. A study of
these mathematics based theoretical topics will pro-

vide data processing specialists with better Insight

Into the nature of data processing. Moreover. It will

enable them to exercise critical judgement in dealing

with the more exaggerated claims for some theoreti-
cal techniques. A more extensive discussion of the

relevance of computer science theory to data pro-

cessing specialists can be found In 1141.

REFERENCES

1. DANIELS, A. and YEATES. D.. e(1s. (1969): "Basic
Training In Systems Analysis", Pitman. London.

2. HYAFIL, L. and RIVEST. R.L. (1976): 'Constructing
optimal binary decision trees is NPcomplete". Inf.

Proc. Letters. vol.5, pp.15-17.

3. COMER, D., and SETHI, R. (1977): "The complexity
of trie index construction'. J ACM. 01.24, pp.428-440.

4. SUPOWIT. K.J. and REINGOLD. E.M. (1983): The
comple..../ of drawing trees nicely'. Acta InformatIca,
vol.1 8. pp.377-392.

5. BEERI, C. and BERNSTEIN. P.A. (1979): 'Computa-
tional problems related to the design of normal form
relational schemas. ACV Trans. Database Syst., vol.4.
pp.30-59.

6. KERNIGHAN. B.W. and PLAUGER, P.J. (1974): "The
Elements of Programming Style'. McGraw-HIII, New
York, NY,

7. ZELKOWITZ, M.V., SHAW, A.C., and GANNON. J.D.
(1979): 'Principles of Software Engineering and
Design', Prentice -Hall, Englewood Cliffs, NJ.

8. JONES, C.B. (1980): "Software Development: A

Rigorous Approach'. Prentice-Hall, Englewood Cliffs,
NJ.

9. DRIES, D. (1981): "The Science of Programming'.
Springer-Verlag. New York.

10. JONES. N.D. and MUCHNICK, S.S. (1981): "Com-
plexity of flow analysli: inductive assertion synthesis.
and a ; language due to Dilkstra", in Program Flow
Analysis: Theory and. Applications (Muchnlck and
Jones. eds.), Prentice-Hail, Englewood Cliffs, NJ.
pp,380-593.

11. BERG, H.K.. BOEBERT, W.E., FRANTA, W.R., and
MOHER, T.G. (1982): "Formal Methods of Program
Verification and Specification', Prentice-Hall, Engle-
wood Cliffs, NJ.

12, HOROWITZ. E. and SAHNI, S. (1978): "Fundamen-
tals of Computer Algorithms", Computer Science
Press, Potomac, MD.

13. GAREY, M. :nd JOHNSON. D. (1979): 'Co Tiputers
and intractability: A tilde to the Theory of NP-
Completeness'. Freeman. San Francisco, CA.

14: BERZTISS, A.T. (1983): Data processing and
computer science theory", Proc. ACM SIGCSE 14th
Tech. Symp. Comp. Sc. Education (ACM SIGCSE Bul-
letin, vol.15. no.1). pp.72-76.

'**1 -;
260 v



www.manaraa.com

'MATHEMATICS SERVICE COURSES FOR THE COMPUTER SCIENCE STUDENT

Martha J. Siegel

Department of Mathematics and Computer Science
Towson State University

Towson, MD ..:1204

The Mathematical Association of America (MAA)
has established a Panel on Service Courses whose
members are drawn from the Committee on the Under-
graduate Program in Mathematics (CUPM) and the
.Committee on the Teaching of Undergraduate Mathe-
matics (CTUM). It has been my responsibility, as
a member of the Service Course Panel, to investi-
gate the mathematical needs of computer science
majors. One can turn to the organizations which
have assumed the responsibility for recommending
curriculUm for such students. I will concentrate
on ACM's Curriculum '78. With regard to the math-
matics requirement, the ACM Committee on the
Curriculum for Computer Science stated in its re-
port:

An understanding of and the capability to
use a number of mathematical concepts and
techniques are vitally important to a compu-
ter scientist. Analytical and algebraic
techniques, logic, finite mathematics,
aspects of linear algebra, combinatorics,
graph theory, optimization methods, proba-
bility, and statistics are, in various ways,
intimately associated with the development
of computer science concepts and techniques.
... Unfortunately, the kind and amount of
material needed from these areas for computer
science usually can only be obtained, if at
all, from the regular courses offered by de-
partments of mathematics for their own majors.

Mathematicians are sensitive to these comments.
Recently, computer scientists and mathematicians
have been cooperating in developing suitable
courses for the first two years. There is con-
siderable agreement that discrete mathematics can
be introduced at the freshman level. Several pilot
projects, funded by the. Sloan Foundation, will de-
velop courses with material of this type that is
either integrated with material from the standard
calculus course or is a stand-alone companion to
calculus. Clearly, the topics eventually included
in the courses will significantly affect upper-
division mathematics courses.

However, something has already happened to
change mathematics at the upper division. In 1981,

CUPM issued, its Recommendations for a General
Mathematics Sciences Prusam. Course requirements
in 1978 could hardly haVe reflected this. Curric-
ulum '78, relying on previously recommended CUPM
courses, listed the following as required for all
computer science majors:

261

MAI Introductory calculus
MA2 Mathematical analysis I
MA2P Probability
A3 Linear algebra
MA4 Discrete structures

and for some students, also

MA5 Mathematical analysis II
(multivariate calculus)

MA6 Probability and statistics

Numerical analysis was listed as a computer science
course and not required in the core curriculum.

The Curriculum Committee, chaired then by Dick:
Austing, gives the distinct impression thatthese
courses are not really what was wanted, but that
the committee was not about to redesign the exist-
ing mathematics curriculum. Now that CUPM recom-
mendations have led mathematicians to modernize
their curricula, are the ACM goals being met more
satisfactorily?

Let us assume that a one year course in dis-
crete mathematics is-in place for freshmen. Assume
that computer science majors take at least one year
of calculus. The calculus recommended by CUPM
quite differerc in flaVor from what had been tradi-
tional. The course, -designed by CUPM for mathe-
matics majors as well as others, is standard in the
topics selected for the first semester, but they,
are to be taught with heavy emphasis on models and
applications. In the second semester; however,
twelve of the forty lecture hours are to.be used to
achieve a computer emphasis. This will mean that
there will be an early introduction of numerical
methods. The techniques'of integration'are de-
emphasized, while applications of the integral
using a modeling approach are introduced. The

treatment of sequences and series should also
change. Sequences, the report suggeste, should be
defined not only through "closed" formulas, but
also.via recursion and iterative algorithms. Rates
of convergence and error analysis should be high-
lighted. Power series should be stressed and the
use of Taylor series ss approximations with the
accompanying computer implementation introduced.

What follbws? I have taught statistics for
twenty years, and au convinced that students cannot
learn enough about probability or statistics in
less than a semester. Even if some topics are in-
cluded in the freshman course, computer scientists
who want to deal effectively with measurement and

278



www.manaraa.com

and evaluation of programs and systems, operating ,

systems theory, or canned statistical packages,
need more. New CUPM recommendations include a
nearly perfect course. It is a postcalculus
course in statistical methods. The emphasis is on

data collection, data organization and description,
probability, statistical inference, computer simula-
tion, and an introduction to statistical packages.
We offer this course at Towson State, and find it is

not only a service course for computer science
majors, but to those in other disciplines as well as
the mathematics major.

Linear algebra courses have been evolving for
some time. The CUPM recommendations address many
of the concerns that it may have failed as a serv
ice course. For example, the suggestion is that
the course make heavy use of models and applica
tions. Theory has not been abandoned, however, and
my own observation has been that this course is per-
fect for an emphasis on the algorithmic approach.
In addition, the course should introduce computa
tional methods as well as abstraction and accessi
ble proofs.

The recommendation of the ACM for a discrete
structures course cannot be met entirely by a
course at the freshman level. Although we do not
yet have results of pilot projects, I suspect
that many of the course outlines are a bit ambi
tious for the ordinary freshman whose high school
preparation in the area of abstraction is practi
cally'riil. I believe that a junior level dis
crete mathematics course may still be an ettrac-
-Live and necessary course for both computer
science and mathematics students.

One omission from the ACM list of courses is
one in operations research and/or mathematical
modeling. The objectives of such courses are list
ed as,desirable in ACM's report and are not met by
other previously mentioned courses. The CUPM
recommendations include several courses of.this
type, and my experience in teaching one for about
six years is that this is a superb way to teach
students how to abstract salient features from
practical and complicated problems, and to show
them how to-apply many mathematical and computa
tional skills to a single problem. Here is a
place in the curriculum for the enhancement of
their communications skills; where they can write a
meaningful paper and give a presentation on a
large project. Their ability to use linear algebra,
probability, statistics, differential equations:
numerical methods, graph theory, linear programming
and graphics can make students feel that they have
a command (albeit elementary) of powerful, beauti
ful and complementary subjects.

Mathematics is evolving, our course offerings
are changing, and_rather than growing-further
apart, mathematics and computer science can be seen
as helpmates.

262

REFERENCES

(1) "Curriculum '78, RecomMendations for
the Undergraduate Program in Computer
Science", Comiliunications of the ACM,

v. 22, n. 3, March, A979, pp 147-165.

(2) Recommendations for a General Mathemati
cal Sciences Program, Committe.2 on the
Undergraduate Program in Mathematics,
Mathematical Association of America, 1981.



www.manaraa.com

STIRRINGS IN THE MATHEMATICS CURRICULUM:

CHANGES MATHEMATICIANS ARE THINKING OF MAKING

Stephen B. Maurer

Mathematics Department, Swarthmore College, and
The Alfred P. Sloan Foundation

Other members of this Panel are
speaking to the question of what mathemat-
ics a computer scientist needs to know.
It is not exactly the same mathemat -ics as
mathematics departments teach. This sug-
gests that mathematicians ought to think
about changing what they teach. I am here
to report that some of them are thinking
about this, and to indicate what they are
thinking.

I should begin by acknowledging that
mathematicians have a love-hate relation-
ship with the other disciplines -which they
service. On the one hand, mathematicians
are very_pleased that so many other'fields
recognize that they need mathematics, and
pleased that students from those fields
who want mathematics training provide a
s*.eady source of employment in teaching
for mathematics faculty and graduate stu-
dents. On the other hand, mathematidians
are suspicious of the motivation of these
serviced students, believing they are
m6rely vocationally oriented, only,want
to know how to use techniques, and have
little interest in really understanding or
appreciating mathematics. Consequently,
when another department asks that. certain
mathematical topics be taught for the good
of their students, the typical math de-
partment reaction is either to:

1) Do nothing, in which case the
other department begins teaching the sub-
ject itself; or

2) Make up a special course for stu-
dents from that department, thus not let-
ting the new material have any effect on
the mainstream mathematics curriculum.

We can all sight examples where one of
these has happened. And when the other
department is one whose enrollment is
growing rapidly, and threatens to siphon
off most of the students who would other-
wise major in mathematics, well, the love-
hate feelings are that much stronger!!

The way to get a major change into
the mainstream mathematics curriculum is

to convince mathematicians that the change
is of value to students majoring in a -
variety of disciplines, including mathe-
matics itself. If there is a new subject,
or a new point of view, which mathema-
ticians come to believe is central for
understanding both mathematics and appli-
cations, then things may move.

263

Today we are in the unusual position
that many mathematicians have begun to
think that something this important has
come along - the algorithmic point of
view. I probably don't have to explain
what I mean by "algorithmic point of view"
at a computer conference. Let's just say
that when a mathematician thinks about
some mathematical object or operation, he
(or she) has an.algozithmic view if he
doesn't merely ask if the thing exists,
but asks how to find it, how to find it
systematically, and how many steps his
procedure takes. Such a viewpoint applies
to very elementary problems, like multi-
plying two numbers, as well as to high-
powered abstract mathematics. It adds
new life, and uncovers new, unsolved
problems, even in elementary mathematics.
For in-Stance, nobody knows the most ef-
ficient way to multiply matrices. It is
known that the standard method -- row i
of one matrix versus column j of the
other. - is not the best. There are other
methods which take fewer real-number
multiplications. (However, these methods
are much more complicated to understand--
and program, and thus they are of little
use, at least so far, for the small
matrices usually multiplied in practice.)

This algorithmic point of view is not
actually all that new. When ancient man,
confronted with the problem of represent-
ing, adding and multi,olying numbers, de-
veloped the abacus, r oman numerals and
the decimal system, he was dealing with
algorithmic questioAs. Mathema..ical in-
duction, the classical logical uethod for
proving all cases by proving how to get
from one case to the.next, is 'ntimately
related to iteration and recu,:sion, 'per-
haps the key ideas in modern algorithmic

23u



www.manaraa.com

thinking. Recursive definitions are also
old hat in mathematics. However, modern
developments make these topics much more
important, and tie them in with new
topics. With modern computer languages,
one has to have a much more precise con-
cept of an algorithm than one used to.
With the speed of modern computers, many
problems which were unthinkable to attack
computationally before are. now tractable.
On the other hand, many still are not.
So one needs to concentrate much more
mathematical energy on understanding when
an algorithm works and what is its order
of complexity (i.e., number of steps it
takes).

I have just argued that the algo-
rithmic point of view expands an old view
in mathematics and reinvigorates many
areas of mathematical investigation. For
this reason it certainly belongs in the
math curriculum. One cang5--further,
though. It has been claimed, rightly I
think, that such habits of thought as re-
cursive thinking (which includes reducing
to the previous case and seeing dynamical-
ly how the current stage arises from the
previous) and structured thinking (top-
down thinking, step-wise refinement, etc.)
are major components of successful human
thinking in almost any problem-solving
endeavor. Therefore, it is useful for
everybody to see embodiments of these
habits of thinking, in math courses and
computer-courses.

The sort of mathematical material I
am talking about is usually referred to
(by others and by.me) as discrete or
finite mathematics. However, this phras-
ing can be misleading. Finite mathemat-
ics courses were introduced 25 years ago,
and at that time they had neither computer
science students nor computing as a mo-
tivation. In fact, they were usually
aimed at social science students. While
it is true that most of the topic'names
in the new discrete mathematics courses
being proposed are the same as in the old
course, the point of view and the examples
today should be rather different For
example, one of the topic np.mes is "count-
ing methods". In the old c)urse, counting
methods would include the concept of a
combination of n things taken k at a time.
One finds a formula for the number of
such combinations and applies this formula-
in many counting problems. In the new
course, one would also ask: How can one gen-
erate a random combination, ora seguence
of random combinations, given that a com-
puter has a random number generator but
not a random combination generator? Also,
in the new course one would pay much more
attention to difference equations (equa-
tions relating one term in a sequence of
numbers to several preceding terms, a

type of equation often not covered at all
in the old course), because if one wants
to count the number of steps performed by
a computer program with a loop or a re-
cursive call, one immediately gets a dif-
ference equation to solve. In the new
course, several examples of such computer-
related applications would be given.

Another topic name common to both
courses is "graph theory". In the old
course, one might prove Euler's theorem
that, in a connected graph (network) with
an even number of edges at each vertex,
one can trace a path over all the edges
without lifting one's pencil or repeating
any edges. In the new course one would
pay careful attention to how one might
explicitly find such a path by an algo-
rithm, and to how one can prove the
theorem by first stating the algorithm
and then analyzing how it terminates. In
the old course, one typically proved this
theorem by a more "existential" method,
say, proof by contradiction: one sup-
poses there is a counterexample graph,
existentially imagines picking the coun-
terexample with the smallest number of
edges, and then finds a contradiction by
considering a related graph with fewer
edges which by hypothesis does have the
right sort of path.

In short, one cannot assume, just
because a math department offers a finite
or discrete math course, that the depart-
ment is meeting-the challenge of incor-
porating-the new algorithmic needs into

omits curriculum.

I have explained why there ought to
be stirrings in the mathematics community.
What stirrings-are there?

Most universities and many colleges
now have an upper level course in dis-
crete structures for Computer science
students, given either by the departr
ment or the math department, dei.ending
on which of 1) or 2) above prevailed.
The stirrings I am talking about are ad-
ditional stirrings towards offering a
broadly targeted course, intended for
freshmen and sophomores.

There are already a-smattering of
courses like this aronnd_the_Country.,_

When there are a lot of good reasons for
trying something new, some faculty at
some schools just start doing it, without
any prompting or for:Uing from outside.
When the Mathematical Association of
America (NAA) asked in its news .etter
last Sep7.cmber to hear from faculty who
were giving new courses of this sort,
several people wrote in.

264

Them has also been an increasing



www.manaraa.com

amount of writing on the subject. One of
the most forceful writers has been Tony
Ralston of this panel. One of his first
articles on the subject was titled The
Twilight of the Calculus". Although it
seems he has now recanted (in part), he
certainly got people thinking.

Another sort of writing which is very
important is text writing. Unfortunately,
texts for the new sort of course described
above are not yet available in print.
Fortunately, several are in preparation.

I have 3 more activities to report.
First, a whole conference has now been
held on this subject- last June at Wil-
liams College, organized by Tony and
funded by the'Sloan Foundation. The pro-
ceedings are out, titled "The Future of
College Mathematics", published by Spring-
er-Verlag. The articles are excellent and
wide-ranging. Many of the articles pre-
pared in advance 'discuss the potential
value of discrete mathematics to students
who major in discipline X, where X takes
on such values as computer science, mathe-
matics, physics, engineering, management
science and social science. Also included
in the proceedings are the reports of
several workshops held at the conference.
One workshop outlined a mathematics cur-
riculum for the first two collegiate
years consisting of a 1-year continuous
math course and a 1-year discrete math
course. Another workshop outlined an in-
tegrated 2-year prslgram, consisting of
various 5-week modules which could be
selected and ordered in various ways for
various students.

I urge you all to read these Pro-
ceedings. I believe they will have a wide
impact.

Second, the Sloan Foundation has been
sufficiently persuaded by the stirrings so
far that it has decided to run a program
of grants to mathematics departments will-
ing to try major reorganizations'of their
first two years of courses. This paper ie
being written shortly after letters went
out to approximately 30 colleges and uni-
versities, inviting them to apply Er one
of 5 grants of up to $40,000. Announce-
ments of awards should be'made by June 15.

Finally, the Committee on the Under -
graduate' Program (CUPM) of the MAA has set
up a panel to study the development of a
new curriculum for the first two years.
This CUPM panel will both follow experi-
ments going on and make proposals about
what more to do. (See the paper by Martha
Siegel, one of my co-panelists at this
NECC conference. She is the chairman of
the CUPM panel I refer to.) The CUPM
panel includes members from ACM and from

265

the American Society for Engineering
Education. The MAA is the foremost
American organization concerned with
collegiate mathematics, and the work of
CUPM is one of its most respected acti-
vities. Reports of CUPM panels have had
significant impact on curricula before.
We have good reason to expect this to
happen again.

By the time this paper is presented,
perhaps the stirrings will be rumblings.
I look forward--to giving an update in
person.

2
0 4,



www.manaraa.com

USING A LARGE SCREEN COMPUTER
SYSTEM TO IMPROVE TEACHING

David R. Lundstrom
Mah.lquist Jr. High School
Plain City, Utah 84404

ABSTRACT
The purpose of a large screen computer

system is to increase the quality of

instruction in the classroom and to reduce
the teacher's.workload. The heart of this
system is a computer controlled, ten foot
television screen which functions as a

fully automated, electronic blackboard and
display for an entire class. It also
produces the majority of the science
curriculum materials and .controls the
management of most classroom records.

The system functions as follows: all

large group instruction materials such as
charts, diagrams, illustrations, and
lecture notes are instantly displayed with
the touch: of a button. This is

accomplisned through detailed graphic
pictures and text-which appear in color acid
animation to a whole class at a time. More

curriculumurriculum media such as

transparencies, opaque projections, and

chalkboard drawings are now created and
stored electronically with a computer.
These materials are recalled and revised,
displayed or printed at anIr time. This
includes all printed materials such as
worksheets, handouts and tests. The system
also manages and stores classroom records
on computer.

The overall effect of a large screen
computer system is to place the teacher in
an almost totally automated, electronic
classroom that provides higher quality
science instruction to the student while
actually reducing the teacher's workload.
The teacher, however, remains as the

essential teaching element in the

classroom. In addition, student motivation
and enthusiasm are increased and discipline
problems are reduced. The classroom
becomes a significantly better place to
learn and to teach for the students and for
the teacher.

256

f; 3



www.manaraa.com

Educational Software Copyright Issues.

Ronald E. Anderson, Chair
University of Minnesota

ABSTRACT
This session follows up issues raised at

the highly popular NECC '82 session
entitled "Impact of Copyright Laws on
Computers in Education." The panel will
address the implications of new technology
such as classroom networks for copyright
legislation. A special emphasis will be
placed upon the perspectives of the

PANELISTS

Carol Risher
American Association of Publishers

Kenneth E Brunbaugh
Minnesota Educational Computing Consortium

David Edwards
McGraw-Hill Publishing

Scott Mace
Infoworld

An Anonymous Software Copier

SPONSORS

SIGCAS
SIGCUE

267

educational publishing industry and what
alternative solutions such as site
licensing agreements and backup copies are
available. The session will begin with a
review of current software copyright
developments, then the panel will be asked
to recommend how educational institutions
can cope with restrictions on software
cod



www.manaraa.com

Teaching Structured Programming in the Secondary School

Jean B. Rogers
Computei and Information Science

University of Oregon
Eugene, OR

SPONSOR: ICCE

ABSTRACT
This session will consist of various

approaches to teaching programming in

secondary schools. Samuel F. Tumolo will
discuss teaching structured programming
using Pascal. Pascal was designed
primarily to aid in the teaching of good
programming style. By its' design, it

makes learning structured programmin easier
that many other computer languages do.

Procedures and other constructs of
Pascal make it easier to develop good
programming habits and style. The features
of pascal that aid in the development of
structured programming atmosphere will be
discussed.

There are characteristics of the Pascal
environment that may detract from its
effectiveness. Their effect on structured
programming will be explored.

Finally, problems that secondary school
students encounter in learning Pascal will
be discussed.

Structured language alternatives will be
discussed by Michael Ward. With the
hardware and software developments of the
last ten years, the ways that programming
is taught and learned have changed. For
the most part, serial batch environments
are no longer the norm. So once initial
familiarization with the system is gained,
the methods by which programs are created,
tested and corrected are much less
cumbersome and awkward. Therefore, there
is one less impediment to learning.

A much more important development has
been the discipline of structured
programming design as a problem solving
device and structured languages as a means
of implementing those solutions. As the
languages move from the artificial
statements and structures of the machine to
the more natural human like native language
another major impediment has been removed.

Students learn more, quicker. They are
actually able to solve much more complex
problems sooner than when they were using
the old methods, if they were able to solve
the problem using the methods at all.
Pascal is one of the above mentioned
languages and is not without fault It
solves many of the old problems but in the
process creates some new ones. There are
some BASIC and FORTRAN based alternatives
that facilitate the development of good
problem solving habits as well as force the
student into the discipline of structured
program design.

Language independent instruction will be
discussed by Anthony Jongejan. Pascal is
not available to students in most high
schools today for many reasons, including
extra cost, hardware and the inadequate
preparation of teachers.

Currently, the reality in most high
school computer science programs is that
BASIC will be taught. Thus, every attempt
must be made to convince teachers of
computer science to incorporate the problem
solving model and as many structured
programming concepts as possilm.e in their
teaching of programming when using BASIC.

Concepts that should be incorporated
when teaching programming using BASIC
include meaningful. variable names,
indenting your programming listing-to show
the scope 0-various program constructs,
the orderly use of the GOTO statement and
documentation. The modular solution of the
problem utilizing GOSUB's when programming
that solution should be emphasized.

Finally, it may be desirable to implement
the "while - do" loop, "repeat - until"
loop, "for - next" loo? and the "if - then
- else" statement it BASIC and emphasize
their use.

268 .



www.manaraa.com

With full knowledge that this will not
replace Pascal for implementation in an
appropriate structured language, this is a
partial solution for those teachrs who do
not have the resources to offer Pa-cal

PARTICIPANTS:

Samuel F. Tumolo
Cincinnati Country nay School
Cincinnati, OH 45243

Michael Ward
Willamette University
Salem, OR

Anthony Jongejan
Everett High School
Everett, Washington

269



www.manaraa.com

Nationwide Computer Literacy Project

Daniel Updegrove
EDUCOM

Princeton, NJ 08540

Steven Gilbert
EDUCOM

Princeton, NJ 08540

ABSTRACT

In response to the expressed needs of
many of its member college's

major
project

,and

universities, EDUCOM has begun a

on computer literacy in higher
education. Through mai3 surveys,' site
visits, literature seacones, conferences,
electronic mail and computer conferencingf.
EDUCOM seeks to determine the current state
of the art in computer literacy programs
for students, faculty, and staff. EDUCOM
plans to publish survey results; provide
evaluation criteria, exemplary models, and
guidelines; and develop consulting teams to
assist - colleges and universities. in

creating or upgrading computer literacy
activities.

The NECC presentation will (a) provide a
progress report on the project, including
the initial survey results; and (b)

describe how attendees can participate_in
the project through task forces, electronic
communication, and computer based project
activities.

Several recent studies document a real
and urgent national need for college
graduates who have had a solid introduction
to information technology, but-----three

primary obstacles exist:

1. No coherent definition and
conceptual framework for computer
literacy have gained -wide enough
support to provide criteria for
evaluating . present instructional
programs. and to direct the
development of new ones.

2. Higher education has no effective
feedback system for identifying
successful computer literacy'
program models in some institutions
and for adapting and disseminating
them to others.

3. flood of vendor claims about new
hardware,- software, and
"courseware" overwhelms the limited
capacity of most 'indNiduals, and
even institutions, to monitor the

270

progress of information technology
on their own.

This is a project of'great scope and
potential impact, focused on a complex
need. Consequently, we have designed
the project with four categories of
participation:.

1. Interested observers will receive
periodic announcements of project
activities, direction, and interim
results. They may. occasionally
submit reactions, suggestions,
interesting articles, reports of
noteworthy local programs, samples
of materials, etc., (to project
staff via phone or mail).

2. On-line participants will
participate in -the same way as
interested observers, but will also
join in one or more forms of-
electronic project activities;
e.g., exchanging news and ideas .via
electronic mail, helping with the
ongoing development of computer

__.___1i_teracy--data--bases--(literat.UreT
people, programs, etc.) and/or
contributing to a computer
conference.-

2s

3. Implementation Task Force members
represent their institutions

(both when attending meetings and
when on home campuses) by being
available for consultation and
assistance with . key project
activities; e.g., developing and
testing survey instruments,
organizing site visits to

noteworthy computer literacy
programs, commenting . on the
effectiveness of materials or
curricula on nearby campuses, etc.

4. Leadership TdtA Froce members will
join otter nationally recognized
leaders (from EDUCOM member.
institutions, form information
industries, from other bUsinestes,
from govetnment agencies, etc.)



www.manaraa.com

who are ready and able to commit
insight, time, and authority to
developing a compelling new
conceptual framework, set of
definitions, and program evaluation

SPONSOR: EDUCOM

271

criteria for computer literacy in
higher education. The will also
provide overall policy guidance and
advice to the EDUCOM staff and the
Implementation Task Force.



www.manaraa.com

Using the Microcomputer Creatively
with Young Children

Marilyn Church
June Wright

University of Maryland
College Park, MD 20742

ABSTRACT
This tutorial will address the question,

"Do Microcomputers Enrich the Preschool
Environment?" It will report the findings
of a two year pilot project which
introduced three, four, and five year-olds
to microcomputers. The presentation will
focus specifically on the techniques and
programs developed as a result of that
project. A preschool curriculum based on
the Logo philosophy which gives the child a
sense of mastery will be demonstrated. The
relationship of this curriculum to the
introduction of Logo Language in

kindergarten and primary grades will be
explained.

A videotape showing children interacting
with the microcomputer will highlight the
discussion of the kinds of early learning
which the use of the microcomputer offer.
Recommendations for fostering creativity
through the discovery approach will be
included. A consideration of the role of
the parent in computer education and the
concept of the teacher, the child and the
programmer functioning as a team will
complete the presentation.

272

2SJ



www.manaraa.com

HUNTINGTON III: MICROCOMPUTER COURSEWARE DEVELOPMENT PROJECT

by Thomas T. Liao

Department of Technology and Society, State University of New York
at Stony Brook, Stony Brook, New York

Abstract

In this paper, an overview of the

Huntington III Project is presented. The

primary objective of this National Science
Foundationfunded project is the development of
a set of interactive courseware modules for use
in grades 8-12 mathematics and science classes.
The project is an outgrowth of the Huntington I
and Huntington II computer simulation projects,
which were also funded by NSF.

Introduction

Huntington III is developing courseware for
the Commodore PET and Apple II microcomputers
because of their widespread use in education and
their graphical characteristics. The interactive
science and math courseware packages are of two

types:

Multiple Use Courseware

These courseware packages feature generic

programs that can be adapted for satisfying

various instructional needs; for example, an

educational game such as TicTacFlex helps

students learn simple arithmetic skills, algebraic
equations, or elements on the periodic table.

Also teachers can decide the version of the game
and questions that they want their students to

use.

Applications Courseware

These courseware packages focus on techno
logical topics that will help to provide
opportunities for students to apply and integrate
basic science, math, and programming concepts; for
example, an electrical energy inventory program
helps students to learn some basic physics
concepts and algebraic equations that are used in
analyzing a realworld program.

A comprehensive teacher's 'guide accompanies
each computer program, in which the rationale and
performance objectives are clearly stated and the
operational pattern and sample runs are provided.
Also included are master copies of student

handouts and worksheets and recommendations for
instructional strategies and additional resources.

273

Each computer program is fully documented for its
structure (flowchart and pseudocode), meaning of
variables, and equations used. A complete pro
gram listing and suggested methods for adapting
programs completes the teacher's guide. In

addition to the exemplary courseware packages, the
project staff plans to develop a courseware design
handbook.

Dr. Thomas T. Liao, Department of Technology
and Society, State University of New York at Stony
Brook, is Director of the Project; Dr. Ludwig
Braun, New York Institute of Technology at Old
Westbury, is the principal collaborator.
Initially copies of the exemplars will be

available for those interested in field testing
the materials.

Approach to Design Development

The Huntington III Project uses a team
oriented systems approach and a welldefined set
of design criteria. To help ensure quality
courseware, the project uses a systems approach to
instructional design and development and carries
out the work with a team of two or three
professionals who have the combination of

expertise that is required.

The development of quality microcomputer
courseware should be similar to the development of
other types of instructional materials. An
effective approach is one that is modelled after
engineering systems design and development. The
components of this systems approach to instruc
tional design and development are:

I. Identification of instructional need(s)
and characteristics of students.

2. Specification of design criteria and
learning objectives.

3. Identification of constraints such as
limitations of the learning environment
and the microcomputer to be used.

4. Brainstorming of alternative designs of
computer program(s) and support
materials.

5. Specification of the content of a

courseware package.

29u



www.manaraa.com

6. Development of a prototype courseware-\
package.

7. Field testing of the courseware packagie.

8. Revision of the courseware package based
on feedback from students and teachers.

The development of quality microcomputer
courseware requires the creative combination of
six areas of expertise:

1. Instructional design and development
experience.

2. Knowledge of subject matter.

3. Understanding of pedagogical methods.

4. Knowledge of microcomputer capabilities.

5. Knowledge of programming.

6. Ability to write curriculum materials.

Since it is unlikely that any one person can
be expert in all of the above areas, a team of two
or three people works together to develop quality
courseware. Our experience also demonstrates that
the giveandtake that occurs among team members
leads to the development of more effective
materials.

In the Huntington. III Project, we are guided
by the preceding suggestions and, in addition, use
a set of more specific design criteria that guide
the design and development of each courseware
package. These criteria are especially useful for
finetuning the materials; some are related to the
teacher's guide, while others deal with the

Computer program.

When developing a computer program, the team
uses four sets of design criteria, which are
related to the following four questions:

1. Is the program "user friendly"? To sat
isfy this criterion, program users should
have complete control of the pace of the
presentation. Not only should instruc
tions and other screen output be

easytounderstand, but the programs
should be designed so that they can be
easily modified.

2. Is the program "user proof"? To satisfy
this criterion, the program should be

able to continue even if the user strikes
the wrong key; the program should only
accept meaningful input data.

3. Does the program take advantage of the
unique characteristics of microcomputers?
Appropriate use of graphics is one way
of satisfying this criterion. Other
techniques include intelligent use of the
timing capability, provision of instant
feedback, and use of simulation gaming
activities.

4. Is the program highly interactive? The

user should be consistently involved in
providing

itrl:

responses to problemsolving
Learning should be as active

as is possible.

A teacher's guide accompanies each computer
program and contains information that: allows for

effective use in the classroom or learning
laboratory; is required for program modification;

provides additional documentation so that the
usedprogram can be as an example of good

programming.

of the table of contentsAn example of a

teacher's guide follows:

1. Overview
This includes an abstract, speck

fication of grade levels of users,
microcomputers to be used, and contents.

2. Performance Objectives

These state that students should be
able to do after using the courseware.

3. Rationale
This specifies why teachers should use

this package.

4. Operation of Computer Program and Sample
Runs

_

5. Student Materials
a) Description

Description of handouts and sample
responses.

b) Handouts/Worksheets
background

;01:1=1:111=
or guidance

6. Instructional Strategies

i:OUrseware package.

include suggested ways for

7.

using

of Computer Program
a) Structure (Flowchart and Pseudocode)

b) List of Variables

c) Ma...hematical Model(s)
d) Listing of Program

8. How to Modify Program

9. Additional Resources
a) Background Information

b) Extension Ideas
c) References

Field Testing of Prototype Courseware Packages

During the 1982-83 school year four prototype

packages are being field tested--each computer
program and the accompanying teacher's guide will
be used by at least 10 teachers and in 20

classrooms. Abstracts of the four packages and
the evaluation questions follow.

274

29 it



www.manaraa.com

and
observe
materials. During the summer
courseware developers will use
obtained from field testing to

materials and to develop additional
courseware.

Besides obtaining feedback via the student
teacher questionnaire, the project staff will

students and teachers actually using the
of 1983, the

the information
revise existing

exemplary

Abstracts of Some Huntington III Microcomputer
Courseware Packages

Domestic Electrical Energy Use and Cost
(Applications Courseware)

In this applications package, students

interact with two computer programs to learn how
much electrical energy is used in their homes and
how their electric bill is computed. They also
have the opportunity to explore the effect of

various methods of conserving energy to minimize
the size of their electric bill; in addition, they
carry out data collection and analysis.

Yellow Light Problem (Applications Courseware)

This courseware package provides an

opportunity for students to study the factors that
affect the motion of a car at a traffic

intersection. First, students can use a simula
tion to determine their response time, which is
then combined with four other factors (speed

limit, yellow light time, deceleration, and width
of the intersection) to determine the Go, Stop,

and Dilemma zones. By changing each of the five
factors, one at a time, students can study the
effect of each parameter. Finally, they can

graphicially analyze:

a) How the speed limit, yellow light time,
and width of the intersection affect the
Go zone.

b) How the speed limit, response time, and
deceleration affect the Stop zone.

Mass Spring_ (MultipleUse)

When using Mass Spring, students interact
with a computer program to learn how two

usercontrolled variables--spring constant (K) and
damping (B)--affect the displacement of an object
(M) over time (T). The resulting displacement of
the mass is shown in graph format. The students
also have the opportunity to decide what values of
K and B are appropriate for specific massspring
damping systems such as the suspension system of
an automobile.

TicTacFlex (MultipleUse)

This courseware package includes two.

drillandpractice programs that are modelled
after the tictactoe game. Teachers can modify
the programs in three ways: (1) choice of game
format; (2) questions and answers to be used; (3)

instructions to be used. The sample programs
contain a review of chemical symbols and practice
with algebraic relationships.

Concluding Comments

The objective of this paper, written in early

December 1982, is to provide an overview and

update of the approach and products of a

microcomputer courseware development project. In

Jane 1983, the Huntington III Project will furnish

an additional update for the oral presentation at

the 5th Annual National Educational Computing

Conference.

At that time we plan to demonstrate sample

courseware materials and to describe feedback from

the 1982-83 trial of courseware materials. In

addition, a preliminary edition of the Project's

Handbook for Microcomputer Courseware Design will

be available for inspection.

275

292-



www.manaraa.com

Questions from Teacher Evaluation Questionnaire

HUNTINGTON III: MICROCOMPUTER COURSEWARE DEVELOPMENT

Teacher School

Grade level of users Address

(Please use separate page for each grade level.)

Name of class for which this courseware is being used

Name of courseware package

(Zip)

Please comment on or provide suggestions for each question.

I. Does the program meet the objectives stated in the teacher's guide?

Yes No Partly

2. Are the pre-programming activities effective in preparing the students to use the program?

Yes No Partly

3. Do the worksheets interface well with the computer program?

Yes No Partly

4. Are the instructions in the computer program clear?

Yes No Partly

S. Does the computer program highlight the important concepts?

Yes No Partly

6. Do students find the topic being studied to be related to the real world?

Yes No Partly Does not apply

7. Does the program actively involve students in the learning process?

Yes No Partly

8. Did your students gain knowledge of applications of math/science concepts as a result
of using the program?

Yes No Partly

(continued)

276

293

Does not apply



www.manaraa.com

Teacher Evaluation Questionnaire (continued)

9. Are the graphics clear, relevant, and pleasing?

Yes No Partly

10. Is the program easy to modify? (answer if appropriate)

Yes No Partly

11. How much time did you spend in preparation for using this courseware package?

12. Do you consider the amount of required preparation time to be reasonable?

Yes No Partly

13. Do you have other suggestions for improving the courseware package?

277

29



www.manaraa.com

Questions from Student Evaluation Questionnaire

HUNTINGTON III: MICROCOMPUTER COURSEWARE DEVELOPMENT

Name of computer courseware

Your grade level

Name of class for which you are doing this program

1. Did the discussion presented before you used the program prepare you adequately?

Yes No Partly

2. Were the worksheets coordinated with the program?

Yes No Partly Does not apply

3. Did the instructions in the program enable you to use it effectively?

Yes No Partly

4. Diethe program help you to understand applications of math/science concepts?

Yes No Partly Does not apply

S. Did you find that parts of the program moved too slowly or too fast?

Yes No Partly

6. Did you choose to repeat parts of the program?

Yes No Partly Which parts?

Why? -:-Fun?

Explain

More information? Other?

7. Does the material in the program coordinate with the subject matter you are studying?

Yes No Partly

8. Would you like to use more programs on different subjects?

Yes No Partly

. How does the subject matter in the program relate to out-of-school experiences?

10. Do you have other suggestions for improving the courseware package?



www.manaraa.com

A Universal Computer Aided Instruction System *

Henry Gordon Dietz

Ronald J Juels

Polytechnic Institute Of New York
Route 110, Farmingdale NY 11735

PILE, the Polytechnic Instructional' Language for
Educators, is a consistent universal language designed
to provide a simple, yet versatile, language that
non-computer-oriented teachers can use to prepare
computer aided instruction (CAI) lessons. Developed
under a grant from the Initial Teaching, Alphabet
Foundation, PILE supports the Initial Teaching
Alphabet (and other character sets), graphics, and
audio cues; further, PILE is designed to operate
efficiently in microcomputer systems currently
available and to be portable across vastly different
hardware and software systems. However, the most
important LsiAct of PILE is that it encourages more
sophisticated use by hiding details of implementation,
unlike Pilot which is simple by excluding abilities
that do not have obvious implementations. This paper
discusses the techniques used in PILE to achieve
simplicity without sacrificing ability or
portability.

Introduction

The current dearth of quality CAI software is well
known. This unhappy situation parallels general
software availability prior to the existence of modern
software practices. Computer Scientists now recognize
the importance of language definition, modularity,
reuseability, and portability. PILE, a universal
modern system for CAI software development, has been
designed to address these important attributes. PILE
was developed by researchers at the Polytechnic
Institute of New York under a grant from the Initial
Teaching Alphabet Foundation (ITAF) and will soon be
distributed worldwide by the ITAF.

The system as implemented is portable to a wide
variety of microcomputers, minicomputers, and
mainframes, and encourages reuse of program modules.
Educators with minimal experience in computer
technology can easily learn to use the facilities made
available by PILE and can incorporate modules as
needed. While the cost of hardware is dropping
dramatically, the requirement for rewriting programs
already in place can greatly inhibit the widespread
and cost effective use of CAI. The PILE system,
designed for portability, can effectively operate
across the spectrum of current and future hardware.

* This research project has been supported by a
grant from the Initial Teaching Alphabet Foundation.

279

This paper discusses the design features and the
embodiment of the PILE system.

Ease Of Expertise

Many CAI lessons are written as little more than
the equivalent of a series of flashcards, hence it is

easy to write such lessons in BASIC, Pilot, or nearly
any other computer language. Unfortunately, more

complex (hence more interesting and more effective)
CAI lessons are difficult or impossible to write in
most CAI languages unless the programmer is an

expert. In defining PILE, the primary goal is to

create a system which is almost effortless to master
so that higher quality and reusable CAI lessons can be
produced by educators who do not have an extensive
background in computer science.

There are several major factors in design of a

computer language system that is easy to master.
These factors are: coherence of program structure with
conceptual program structure (5], ability to build
generalized software tools (modularity) EU, use of
data objects (rather than types and rigidly specified
structures) (1], and good readability inherent in the
language (self-documenting code).

Program Structure: There is a strong tendency to
adopt a trivial, inflexible, program structure for CAI
lessons. Pilot, for example, is such a language;
designed on the theory that trivial program structure
is easier to Learn. While, on the surface, it appears
that such an approach would succeed, forcing a program ,

with a different natural structure into a structure
the language accepts shows the futility of this
strategy. In Pilot, it is often impossible; in BASIC,

it is possible only with great effort and an excellent
understanding of the particular computer's
implementation of BASIC.

There are two separate aspects of the structure of
a program: the control structures used for looping and
conditional execution of parts of a program, and the
overall structure of the program. Neither aspect is

unique to CAI.

29G



www.manaraa.com

In the early days of computer programming, there

were many different theories concerning program

structure. There remain a variety of approaches to

overall structure, but Pascal-like control structures

have become somewhat standard.

The advantage of a Pascal-like set of control

structures is simply that people tend to think in

terms of them naturally. Structures like

if...then...else, while...do, and repeat...until are

all common ways of expressing, in natural language,

the concepts they represent. Since the semantics of

the control structure mirror the natural language

conception, fewer mistakes are made and more complex

programs can be written.

In PILE, we have chosen to adopt a set of control

structures as similar as possible to those in Pascal

(although Pascal programmers will notice that PILE is

more, tolerant of semicolon and missing keyword

errors). However obvious this choice may seem, these

control structures are unusual in a CAI language.

The overall structure of a PILE program is also

unusual for a CAI language, but consistent with the

state of the art in computer language design. Each

program consists of a main program and, optionally,

functions.

The most difficult concept for the programmer using

Pascal-like functions is nested scoping, so PILE has

only two scopes: local to this invocation of a

function or global (actually local to the main

program). Functions may be defined anywhere except

inside another function and may be invoked from

anywhere (as in the C language). Recursion is

supported.

No distinction is made between functions and

subroutines (the returned value is ignored when called
as a subroutine) and each invocation of a function can

pass a different number of arguments, using call by

value and referencing by position of arguments in the

function call.

Software Tools: The easiest way to write a program

is to reuse a program that is already written to

perform that function. If parts of a program are

designed as separate modules, or functions, then only

functions and control structure that have not

previously been written must be implemented; the

majority of functions within most programs can simply

be reused. There is nothing special about CAI that

would make this general rule of computer science

invalid.

In PILE, the implementation of functions makes

reuse exceptionally uncomplicated.

Part of the simplicity of modular design in PILE is
due to the generality of the arguments to a function.

For example, in most languages a function which would
return the maximum of a group of numbers could not be

written to accept a variable number of arguments, so

max(a,b) and max(a,b,c) would require two different

max functions to be defined; a single max function can

easily be written in PILE as:

280

function "max" begin
biggest = argl;
while (argent 11 "0") do begin

if (greater(Warg" ! argent),
biggest)) then

biggest n Ware ! argent);

argent = argent - "1";

end;

return(biggest);
end;

The other key feature of PILE in building modular

software tools is dynamic linking at run -time. Since

PILE is conmonly run on microcomputer systems with

modest resources, avoiding the overhead of having

multiple copies of compiled functions is important.

However, dynamic linking in PILE does much more

than save disk space. In PILE, the compiled code for

each function is merely the value associated with the

name of the function; functions can be manipulated as

data. The overall effect is that functions exist in a

huge virtual name-space (rather than in small main

memory), updates of a function inherently update all

references to that function. Modular use of functions

does not require special libraries nor linking, and

function names can be derived at run-time. A function

need exist only if it is actually called (useful in

testing programs before all the functions have been

written).

(Self-modifying code and programs that create and

then execute functions within themselves are possible,

however, sucil techniques are rarely employed, and

there are safeguards to insure against accidentally

executing data.)

Data Objects: Until computers and humans begin

naturally communicating in the sane language, there

will always be a trade-off between native language for

computer and programmer. Making the computer more

efficient is easier than making the human more

efficient, therefore, PILE opts for a form most

natural to humans. Data types, and data structuring,

are both at the center of this trade-off.

Traditional CAI languages standardize on a single

data type, but no data structures, which limits the

ability of the system to an unacceptable level.

Traditional computer science imposes a wide variety

of data types and structures. Pascal, C, and PL/1

have approximately half their complexity (measured by

the BNF productions) dedicated to data typing and

declarations. There is no need for this complexity

other than to increase the execution efficiency.

However, CAI programs are rarely limited by

computational speed, even on microcomputers.

The AI (Artificial Intelligence) community has

developed several languages that effectively use one

universal data type and one universal data structure.

Lisp uses atoms and lists, Logo uses objects and

lists, and Snobal uses strings and tables; the

appelations differ far more than the implementations

EU. In much the same way, PILE uses values and

environments.

29 7



www.manaraa.com

A value is really nothing more than a

variable-length character string. Variables in other
languages ace names in PILE. An environment is merely
a list of name-value pairs considered as a whole.
4ithin a non-local environment, a name is referenced
as "environment"Vname"), even if the environment is

stored in a file on disk. There are no data
declarations.

Operations on data are also similar to those found
in Lisp and Snobol, except that PILE uses conventional
algebraic notation for all expressions.

Powerful, Flexible, Features For CAI

Thus far, the features discussed have been
applicable to general-purpose computer languages as
well as to CAI systems. To this extent, PILE is a

general-purpose language. However, there are special
abilities that are so commonly used in CAI that, for

reasons of efficiency, Cley ought to be directly
embedded in the language. These features involve
database-like referencing, character fonts, graphics,
and audio cues.

Database-like Referencing: PILE environments hake
relational database operations simple (although
perhaps wasteful of disk space). For example, the

answer given by a student can be entered in a database
(on disk) by:

"question"Cstudent_namel = student_answer;

Although PILE also supports conventional disk I/O,

when using the array-like referencing of environments,
the simple assignment in the above example is all that
is needed... there is no open file, close file, nor

statements to scan for the student's name; it is all

transparent to the programmer. Reading is equally

simple. The only disadvantage is that there must be
one environment for each relation expressed in the

database.

Character Fonts; The Initial Teaching Alphabet
(ITA) uses a set of phonetic characters, in addition
to the traditional lower-case alphabet, to aid in
teaching written English. Since PILE was developed for
the Initial Teaching Alphabet Foundation, the system
must efficiently deal with non-standard (relative to

computers) fonts.

In order to provide flexibility, PILE supports the
ITA, and user-defined character sets, using
stroke-fonts. A stroke-font consists of a list of

character definitions. For each character, the
proportional spacing width, the sequence of pen

strokes to draw it, and the 8-bit code to represent it
internally are specified.

Using this implementation, PILE programs can

control the way in which text is written to the

display by choice of stroke-font, character size

scaling, and stroke rate (the speed with which the

pen-strokes of each character are drawn). Still, text
is written to the screen by a simple Pascal-like write
or writeln.

281

Graphics: Graphics used in CAI systems tend to be

simple drawings with little or no animation. PILE

graphics are designed to make drawings, at that level,
easy to create and to transport to different

displays.

To accomplish this, the PILE system includes an

image editor. The image editor writes a program which

results in the drawing when executed by the PILE

Interpreter (PILEI). Since the image is specified as a
mathematically-precise entity, although it is drawn in

a conventional manner, PILE programs can adjust the

image to the characteristics of different displays.

(Turtle graphics are also supported, but are not

embedded in the language)

Audio Cues: As many ether CAI systems, PILE
supports control of a cassette recorder. However,
PILE also supports phonetic voice synthesis. Each
font can have different pronunciation rules for

phonetic translation, and intelligible speech can be
produced from text. Text in the ITA font is

pronounced particularly well due to the phonetic
nature of the ITA. In addition, natural languages
which have no written form can be supported.
Regardless of font, pronouncing a phrase is as simple
as:

sayiphrase);

Portability

There is no standard computer- Hence, for purposes

of portability, PILE defines its own standard which is

easily emulatld on currently available systems.

Pseudocode: PILE is implemented as a compiler

(PILEC) that generates an internal pseudocode, an

interpreter (PILEI) that executes this pseudocode, and
a series of utilities to aid in building lessons

written in PILE. Unlike the pseudocode implementations
of Pascal, the speed of execution of PILE programs is

not significantly degraded by the overhead of

interpreting the pseudocode; like Snobol, the typical
PILE pseudocode instruction takes much longer to

execute than to decoOe.

The entire PILE system, including the pseudocode
interpreter (PILEI), is written in C. This, permits
porting to oost microcomputers and minicomputers.

While an assembly language version of PILE would be
faster, most of the spend increase is easily achieved
by re-writing only a few C functions in assembly
language. On a 4Hz Z80a, approximate relative speeds
are: 1 for PILEI in pure assembly language, 1.5 for

PILEI in -C with 5 simple functions re-written in

assembler, and 3 for PILEI in pure C.

In addition to the efficiency of generated code, C

is language of choice because of its popularity

and the quality of the standard definition of C. While
BASIC and Pascal have many mutant versions, C remains

relptively pure.

29s



www.manaraa.com

Internal Data Formats: Just as the PILE system and

compiled PILE programs must be portable, all other

forms of data used by the system must be hardware and

(operating system) software independent. To simplify

this, there is only one form used for disk storage:

the file format for PILE environments. Compiled PILE

programs, data, images, configuration tiles; all tiles
used by the system are in this same format.

Wherever possible, data is formatted in such a way
as to be crudely human-readable. Since these files
must be able to be transferre from one machine to

another, using printable ASCII for data files usually

is more convenient.

Graphics Meta-forms; The largest obstacle to

portable CAI lessons appears to be portable graphics.
No two displays are even remotely similar. The only

solution is to abstract a graphic meta-form which can
be applied to nearly all displays.

In PILE, this graphic meta-form consists of points,

vectors (lines), ellipses, and tilled areas (seed

fill). These constructs apply to any device (although
filled areas are not implemented on some displays),

and are used for character stroke-fonts as well as

graphic images. PILE graphics have been successfully

ported to Apple lIs, NorthStar Advantages, Tektronix

4006 terminals, HiPlot DMP4 plotters, and Zenith Z19

terminals.

Conclusion

In this paper, a system for developement of

sophisticated CAI software has been presented. This

system is very complex; however, this complexity is

not experienced by the typical user of the system. By

burying most of the complexity of CAI within the

system, the CAI author is freed from most programming

concerns.

The key to writing an effective program is the

ability to make the program do what is desired.

Although writing a trivial first program in PILE might

seem awkward, writing a complex program is much

simpler in PILE because the system is compatible with

modern programming practices and provides many tools.

According to the intermediate COCOMO model ID, a
significant software project requires only 44% of the

effort required for the same project without these

techniques. Ue expect that these claims will be

supported by a large user community shortly after

PILE's first general release later this year.

282

References

Harold Abelson, A Beginner's Guide to
Logo, BYTE, Volume 7, Number 8 (August
1982), pages 88-112.

Barry U. Boehm, Software Engineering
Economics, Copyright 1981, Prentice-Hall,
pages 114-144.

B. U. Kernighan and P. J. Plauger,
Software Tools, Copyright 1976,
Addison-Uesley Publishing Company.

T. U. Pratt, Programming Languages:

Design and Implementation, Copyright
1975, Prentice-Hall.

N. Wirth, Foreword to A Primer On Pascal,
Copyright 1976, Winthrop Publishers,
pages XI-XII



www.manaraa.com

A STUDY OF STUDENTCOMPUTER INTERACTIVITY

David Trowbridge
Educational Technology Center

University of California, Irvine, CA

Robin Durnin
Claremont Graduate School, Claremont, CA

Abstract

A research project being conducted at the
Educational Technology Center is
addressing questions about interaction
among individuals and small groups as they
use computer based learning materials. A
videotaping system that utilizes an
interface device between a microcomputer
and a videotape recorder is described. An
observational instrument is presented for
analyzing the interactions among group
members and the computer program. Results
of a pilot study and future directions of
a formal study are summarized.

Introduction

The primary advantage of computers in
education may well be the high level of
interactivity that properly designed
learning materials can provide to
students. Educational research has
indicated that active involvement of the
learner is an essential condition for the
development of reasoning skills, the
formation of concepts and the acquisition
of problem solving skills (Hilgard, 1975).
We would expect that learning environments
which provide greater opportunity for
active engagement would be more effective
than those which provide less. Certainly,
the computer has the potential for
providing a highly interactive
environment.

This project uses a collection of
highly interactive computer dialogs that
were developed under two previously funded
projects at the Center: Science Literacy
in Informal Learning Environments, and
Formal Reasoning Skills for Young
Adolescents. The learning modules we have
chosen for this project have been
described elsewhere (Bork, 1981;
Trowbridge, 1981). They are Batteries and
Bulbs, Speed, Optics, Tribble Families and
Sherlock Holmes. They all use extensive
graphics to simulate experimental
situations and place the student in the

283

role of a scientist or investigator. The
simulations are embedded in Socratic
dialogs. Students play the role of
experimenters, manipulating objects on the
screen, and engage in a dialog with the
program about the experiments. Both the
simulated experiment and the dialog
require frequent keyboard activity.

The learning materials developed at
the Center have been field tested in
junior high schools, science museums and
libraries and in various social settings.
We have found a high level of
interactivity among students using these
dialogs, whether one student is working
alone at the keyboard, or several are
working together.

Frequently, when there are more than
one student at the computer, conversation
is lively; group members talk with each
other often, offering assistance,
encouragement, opinion and argument. The
nature of the interaction in this
environment is diverse. A given
individual interacts both with the
computer program and with the other group
members. Primary interaction with the
program is via the screen and the
keyboard. Interaction with other
individuals has both cognitive and social
functions. Communication is both verbal
and non-verbal. Social interaction is
sometimes cooperative, and sometimes
competitive.

Pilot Study

In the initial stages of this
investigation, we have attempted to
identify variables of interest, choose a
research strategy, develop a system for
data collection; and construct and
validate an observational instrument.
These aims of the pilot study have been
met and are reported in this paper. In
the formal study, we will seek to test
certain hypotheses arising from the
earlier work. There, we will investigate

300



www.manaraa.com

the effects of group size on selected
educational outcomes: interactivity,
frequency of success and achievement.
Later in this paper, we will outline the
directions of the formal study.

Thirty-five students in grades 6-8
took part in the pilot study. They worked
at the computer as individuals or in
groups of two or three. In consultation
with their teacher, we selected groups
representing a wide cross-section of
students, of high, medium And low ability.
Some groups had worked together before,
others had not. Some groups were chosen
to be heterogeneous with respect to
ability levels, others homogeneous. Some
groups were composed of individuals of
mixed sex, others of the same sex. We
also used a variety of computer based
learning materials which varied in several
respects, such as in how much graphics
they used. Thus, the results of the pilot
study are drawn from a fairly diverse
collection of groups and computer
materials.

Research Strategy

We have chosen to use a method of
interactional analysis, coupled with a
videotaping system for investigating
interaction in this special environment of
groups and computer based learning
materials. We have attempted to
operationalize the idea of interactivity
by defining a quantitative measure of the
level of interactivity that can provide an
indicator of the degree to which a
particular student is actively involved in
the learning session. We use this to
examine the effect of group size on the
level of interactivity.

Videotaping System

As students use the computer based
learning materials, the sessions are
recorded on videotape. Three components
of the group activity are recorded:
(1) video of the students working
together, (2) audio of their conversation,
and (3) all key pushes on the computer
keyboard. The videotape data collection
system consists of a microcomputer that
runs the interactive learning materials, a
video cassette recorder with two separate
audio channels, an interface device for
connecting the computer to the recorder,
and associated utility software for

handling input and output during recording
and playback (Figures 1, 2).

Verbalizations are recorded on one of
the audio tracks of the cassette tape, and
keystrokes are recorded on the other.
During playback, the keystroke codes are
used to drive the computer in
synchronization with the video and audio
components. The computer programs have
been modified so that during the recording
session, all keystrokes are transmitted to
the videotape recorder. During playback,
the keyboard is disabled and all
keystrokes are received from the videotape
player. This underlying software is a
modification of the TextPort and GraphPort
systems developed under UCSD Pascal in
earlier projects at the Center.

Taping Sessions

Students were brought from their
school to the university at the end of the
school day. They worked alone or in
groups of 2, 3, or 4, spending up to an
hour at the computer. The television
camera was in full view, and students were
told that they were being filmed.
Usually, they became quickly engrossed in
the computer dialogs and paid little
attention to the fact that they were being
recorded. No adults were present in the
room during the learning session;
consequently, students were generally
expressive and uninhibited.

Observational Instrument

Our observational instrument has been
derived from the methods of interactional
analysis developed by Bales (1950) and
Flanders (1970). Bales' system for
observing small groups engaged in problem
solving situations has twelve categories
(e.g., Gives suggestion, Asks for
suggestion, etc.) grouped into two social-
emotional areas (Positive and Negative)
and one task area (Neutral). Flanders'
system for analyzing teacher behavior also
has multiple categories, most of which
relate to teacher talk in the classroom.

Our own instrument for interactional
analysis is suitable for recording both
verbal and non-verbal behavior. Use of
videotapes allows us to categorize
gestures, actions and facial expressions
which do not involve vocalizations. The
system of categories we have developed in
the pilot study is shown in Table 1.

30i
284



www.manaraa.com

Table 1. Interactive Behavior Codes

Keyboard Interaction

types at keyboard

Verbal-Cognitive Interaction

T tells, directs others

Q queries, as!-s for suggestions

A accepts, responds to suggestions of
others

L looks away to ponder or discuss with
others

I interprets in one's own words

X explains, formulates reasons

M formulates question or answer

P formulates prediction

E evaluates using criteria

D disagrees with program or objects to
message

Cooperative-Social Interaction

n neutral conversation, opinions

a approval, agrees with another

d disapproval, disagrees

s shares keyboard with others

t takes turns

h gives help, assists another (aid to
action)

polls others, solicits, votes

y delegates task to another

e encourages another

Coding Procedures

Observers view two screens during
playback of the videotapes: the computer
screen as it appeared to students using
the learning material and a television
screen showing the students themselves.
During the playback session, observers
have a coding form before them with a
sequence of boxes corresponding to each
ten-second time interval during the

285

session. They use the digital timer on an
auto search controller to keep track of
the frame numbers on the video. In each
ten-second period, each observer makes one
or more single-letter entries (typically,
no more than 4 observations during each
10- second interval) in a box.

1. Interaction with Computer

While it can be argued that reading
from the computer screen is a form of
interaction with the program, we have
chosen not to include this behavior in our
measure of interactivity. We have found
that for group sizes of 1, 2 or 3, each
member typically watches the computer
screen more than 95% of the time. It is a
relatively passive activity, akin to
reading from the page of a textbook or
listening to a lecture. It usually
indicates attentiveness to the learning
activity, but it is not active in the
sense that typing at the keyboard is.

Our category, K, for keyboard
activity was used to record instances of
keyboard input excluding simply pressing
the space bar to continue (a standard
convention used in these programs to
ensure that messages are not cleared from
the screen before the user is ready to go
on). We have included all cases of using
the arrow keys to move the graphics
cursor, pressing keys for single character
input and typing in words and sentences.
With the elimination of simple "page-
turning" input, the category, K, is
counted as active participation on the
part of the student.

2. Verbal-Cognitive Interaction

Ten categories of behavior represent
instances in which the subject is
apparently engaged in some kind of
cognitive activity related to the content
of the learning material. Most of these
categories are verbalizations concerning
the program. Verbalizations that were not
related to the program in any way were
categorized as Off-Task. Other
verbalizations that were not cognitive
could be identified as Cooperative-Social.

3. Cooperative-Social Interaction

Nine categories of behavior represent
socially supportive and cooperative forms
of interaction. While we did record a few
categories of anti-social behavior (e.g.,
wresting the keyboard forcibly from
another individual, verbally abusing
another person, or consciously ignoring
the talk or other behavior of another
person), this happened relatively
infrequently. Competitive behavior was
also relatively rare. The behaviors
labelled Cooperative-Social are all



www.manaraa.com

considered to be generally beneficial to
the learning process. Any social
behaviors that were distracting to the
learning activity were categorized as Off-
Task.

Measures of Interactivity

To quantify the observations of
interactive behaviors, we define
Interactivity, Interactivity Rate, and
three components of Fractions of
Interactivity Rate.

A numerical value for Interactivity
of a particular individual participating
in a given session may be defined as the
total number of interactive behaviors
observed for that session according to our
table of behavior codes. By dividing the
Interactivity by the corresponding number
of 10-second coding intervals over which
the observations were made, we obtain an
Interactivity Rate. The Interactivity
Rate represents the degree of active
involvement of an individual participant
in the learning activity.

We also define three components of
Interactivity Rate corresponding to the
categories Keyboard, Verbal-Cognitive and
Cooperative-Social. To determine the
Fractions of Interactivity Rate in a
particular learning session, we count only
the number of observations falling within
a particular category and divide by the
number of 10-second intervals.

Results from Pilot Study

In this section we present results
from a sample of sixteen sessions. Six
involved the first four activities of the
Batteries and Bulbs program (Bork, 1981).
Five sessions involved the first three
activities of the Speed program and five
sessions involved the final two activities
(Trowbridge, 1981). Four sessions
consisted of 3 students working together
at the computer, seven sessions had 2
students, and five sessions had 1 student
working alone (Table 2). Time to complete
the four activities ranged from 25 to 45
minutes. Students typically remained
attentive to the lesson for at least 30
minutes. Overall, interactive behaviors
occurred an average of once every 20
seconds.

Table 2

Interactivity Rate
by Group Size

Elec 1-4 .41 (2) .57(2) .43(2)

Speed 1-3 .45 (2) .82 (3)

Speed 4-5 .24(1) .45(2) .49(2)

1 2 3

Group Size

1. Interactivity Rate as a function of
group size

We would expect that an individual
working alone would have a lower rate of
interactivity than when working as a
member of a pair, simply because when
working alone, modes of verbal-cognitive
and cooperative-social behavior are not
available. Furthermore, we would expect
that if the group size were to grow very
large, then the Interactivity Rate for any
particular individual would fall.
Presumably, a small group with some number
of members greater than one would result
in the greatest interactivity.
Observations on this small sample is
consistent with this expectation
(Table 3).

On several occasions, we have
observed that in groups of three, one
person tended to withdraw from the group's
activities. In order to test whether this
is a likely occurrence, we have
categorized the members of each 3-person
group on the basis of the Interactivity
Rate of each into the High, Middle and Low
member of the group. Then we have plotted
the averages for the High person's Rate
from each group, the Middle person's Rate
and the Low person's Rate (Figure 3). A
conclusive generalization will have to
wait until we have obtained observations
from a larger number of groups. However,
if the graph retains the shape suggested
by these few data, we shall conclude that
for groups of three, there is a tendency
for one member to be left out.

31)3
286



www.manaraa.com

Table 3

I'
k

1

Interactivity Rates

Group Size
2 3

.21
low high low med high
.17 .20 .13 .13 .14

I'
c

.15 .21 .36 .08 .21 .28

I'
s

.00 .14 .17 .07 .14 .14

.36 (5) .52 (8) .73 (8) .28 (3).48 (4) .59 (4)

Note:
(1) Combined results from Elec 1-4, Speed 1-3,

and Speed 4-5

(2) (#) indicate the number of sessions analyzed

2. Mode of Interactivity as a function
of group size

Three modes of interactivity may be
separated from the overall Interactivity
Rates described above: Keyboard:
Cognitive and Social. As expected, the
fraction of Keyboard Interactivity
decreases as the size of the group
increases (Figure 4). In addition, both
Verbal-Cognitive and Cooperative-Social
Fractions are highest for groups of two
(Figures 5, 6). The two individuals who
worked alone were instructed to express
their thoughts verbally as they used the
computer materials; thus we see a
significant portion of their interaction
as verbal-cognitive. In the formal study,
we hope to ascertain whether the
observation of maximum Interactivity Rate
for groups of two is statistically
significant.

We are examining the effects of both
group size and prior group experience on
interactivity and achievement.
Interactivity is measured using the
observational instrument developed in the
pilot study. Achievement is measured
using a pencil and paper test which is
administered immediately after the session
with the computer. The post-test consists
of eight questions, each showing an
arrangement of batteries, bulbs and wires
and asking whether the bulb would light in
each case.

We have videotaped fifty-six 7th and 8th
grade students in 26 sessions with the
computer. They were generally college-
bound, of middle ability students, from
fairly affluent middle class backgrounds.
Taping sessions took place in the morning,
with an adult present in the room in a
non - supervisory capacity.

Directions for the Formal Study Table 4. Sample for the

Numbers of
Groups

formal study

Group Size

Ind. 2 3

As a result of the pilot study, we decided
that the variable of group size was worth
examining in greater detail, and this
became the focus of subsequent research.
In addition, prior group history seemed to Cooperative Yes 5 5 4 2
have an effect on interaction, so this
became a secondary variable of interest.

Experience? No 3 3 2 2

The mixture of ability levels also seemed Numbers of
to have an important role, but due to
limited resources, we chose to control for
this variable by selecting all of our
subjects from comparable, middle ability

Students

The hypotheses we hope to
formal study are:

8 16 18 16

test in the

students for the formal study. We have
not found sex to have a strong effect on 1. Students working in pairs have higher
interaction, so have chosen to combine measures of interactivity than students
single and mixed sex groups. For the
formal study we are using the same

working in other grouping arrangements.

instructional materials with all students
(Batteries and Bulbs).

287

2. Interactivity measures for acquainted
student groupings are higher than for
unacquainted groupings.

304



www.manaraa.com

3. Post-session achievement measures for
students who have worked in pairs are
higher than for students working in other
grouping arrangements.

Conclusions

The videotaping system described
here, which couples the computer to a
video recorder, provides a rich source of
information about the use of computer
based learning materials. We have only
begun to explore the possible applications
of a system that can reproduce human-
computer interactions at a detailed level.

The behaviors coding scheme we have
described enables us to quantify the
overall level and quality of interactivity
in this learning environment. Preliminary
evidence suggests that students working in
pairs have the greatest opportunity for
high interactivity. Soon, we expect to be
able to make some generalizations about
how various kinds of computer based
learning materials affect the
interactivity of the learner as well.

Results of investigations such as
this should provide guidance to developers
of computer based learning materials as
well as to classroom teachers who must
manage the logistics of computer usage in
their classrooms

Acknowledgements

The interface device was designee and
built by Michael Potter. Associated
software was developed by John McNelly and
Steven Bartlett. Elinor Coleman and
Cynthia Powell have helped in the coding
of the videotapes. The authors wish to
thank each of these peole for their
contributions to this project.

References

1. Bales, R., 1950. Interaction Process
Analysis: A Method for the Study of
Small Groups, University of Chicago.

2. Bork, A., Kurtz, B., et al., 1981.
"Science Literacy in the Public
Library - Batteries and Bulbs,"
Proceedings of the National
Educational Computing Conference.

3. Flanders, N., 1970. Analyzing
Teaching Behaviors, Addison-Wesley
Publishing Co.: Menlo Park.

4. Hilgard, E. R. and Bower, G. H.,
1975. Theories of Learning, 4th Ed.,
Prentice-Hall: Englewood Cliffs, New
Jersey.

5. Trowbridge, D. and Bork, A., 1981.
"Computer Based Learning Modules for
Early Adolescence," Computers in
Education, R. Lewis and D. Tagg
(editors), North-Holland Publishing
Company.

288 3 ti iJ



www.manaraa.com

of
(
camera

computer

1%I
video cassette

recorder

interface

001

mic hone

Figure 1. Setup for recording sessions

.,11 0.8

>

0 0.6
rt

0
0 0.4
H

0.0

Interactivity vs. Group Size

High
*Middle

1 2 3

Group Size

Figure 3

VerbalCognitive

c Interactivity vs. Group Size

.>

>

g 0.6

)-1

0
g 0.4
H
0
co 0.2
)-1

0
>

0.0

1 2

Group Size

Figure 5

3

289

video monitor

Figure 2. Setup for playback sessions

>1' k
.1 0.8

0co 0.6
)-1

0

9 g 0 4

0b,

0.2
0
>

0.0

I'
s

0.8
4.)

>
0.6

0

)-1

0 0.4

0+ 0.2

)-1

0

fg 0.0

Keyboard Interactivity

vs. Group Size

1 2

Group Size

Figure 4

3

Social Interactivity

vs. Group Size

1 2

Group Size

Figure 6

306

3



www.manaraa.com

THE IMPLEMENTATION OF TECHNOLOGY AND

THE CONCERNS-BASED ADOPTION MODEL

By Dr. Cheryl A. Anderson

Department of Curriculum and Instruction
University of Texas at Austin

Abstract

This paper presents a brief synopsis of
the literature on the change and adoption pro-
cess as it relates to the task of infusing
computer technology into the school system.
The Concerns-Based Adoption Model (CBAM) is
also discussed. The model is based on ten
years of research on teacher behavior with
educational innovations. According to the
author, CBAM can provide a theoretical frame-
work for planning a computer implementation
effort. The model provides the change agent
with a set of tools for measuring the success
of the adoption; for measuring teacher atti-
tudes and feelings toward the innovation; and
for measuring teacher behaviors with the inno-
vation. By using these tools, a change agent
is assured of using a more systematic approach
to the implementation effort.

It seems that schools are anxious to jump
on the computer technology bandwagon. Many
people are concerned about the potential for
failure, in part because similar attempts to
change established school practices have failed.
A long line of innovations has preceded the
computer, including instructional television,
programmed instruction, teaching machines, team
teaching, individualized learning, and modern
math. Few of these made their way permanently
into the classroom. Why should we expect the
computer to be accepted with enthusiasm when so
many innovations have failed? Indeed, Oettinger
(1969) suggests that computer technology will not
be effectively used because its very nature works
against the rigidity of the school system. Karen
Sheingold (1981), in a study of the implementa-
tion issues relating to computers in the schools,
states: "While the new technology does differ
in many important respects from the old, expecta-
tions about educational impact must be viewed
cautiously. There are many steps between putting
a machine, albeit a powerful, engaging machine,
into a classroom and making a difference for
children and teachers" (p. 4).

For those agents of change who are respon-
sible for seeing that computer technology is
successfully infused into the school system,

290

there is a body of literature on the change and
adoption process which may provide some guidance.
There is also a change model called the Concerns-
Based Adoption Model (CBAM) which relates speci-
fically to the teacher and the adoption process.
The purpose of this paper is to present a brief
synopsis of the relevant change literature and to
provide an introduction to this model. First,

however, it is necessary to look at why the exist-
ing school system is so difficult to change.

Current School Model

Part of the problem in trying to implement a
new technology, such as computers, is that the
current school system is designed around the tra-
ditional teacher-learning model (Pitts & Schneider,
1981). The model is teacher- and textbook-
dominated. Computer technology challenges this
traditional focus because, instead of information
that comes from the teacher or the text, the
student's work revolves around the computer. With

computer technology, teachers' roles will also
change (Sheingold, 1981). Unfortunately, schools
are very stable institutions that are resistant to
any kind of change (Goodlad, 1976). Not only is
the system as a whole resistant, but the individ-
uals within the system are resistant as well. The
change process is very dependent upon the individ-
aul, particularly in the educational system. This

is because the individual teacher assumes a degree
of ownership over an innovation during the process
of assessing its benefits and testing its value
(Podemski, 1980). This concept of ownership is
critical in education because the individual
teacher is allowed a certain amount of autonomy
with regard to the curriculum materials and proce-
dures he or she uses in the classroom (Podemski,
1980). It is often the case that the individual
teacher's attitude toward an innovation determines
not only how it is used, but whether it is used
(Hall, Wallace & Dossett, 1973).

The Individual and Change

That the individual is the primary focus of
efforts at technological change is evident in
social science literature. Wolcott (1981) notes
that social scientists have much to offer the
change agent who is trying to implement a

307



www.manaraa.com

technology. He summarizes some of the problems
which have been uncovered through studies of human
behavior and change. These problems include the
following:

1. human will resist any change that
threatens their basic security;

2. humans have a tendency to resist any
technology that they do not understand;

3. humans will not vary their behavior
unless they can use the new technology
to satisfy a need that is not being
thoroughly met by existing technology;

4. humans cannot be forced to accept tech-
nological change;

5. in order to be accepted, an innovation- -
particularly one that originates from
extensive knowledge of science and tech-
nology--must be made intelligible and be
given a place of value by the adopting
culture; and

6. resistance to change is often centered
around the way in which the innovation
is administered rather than the innova-
tion itself.

Wolcott (1981) reminds developers and dis-
seminators of technologies ". . . that lessons
about change go unheeded only at considerable
risk" (p. 25). He also points out that the typi-
cal teacher rarely values innovations because most
do not address the teacher's real problems or
provide real help in the classroom. Thus, if the
computer is to be implemented successfully, it is
the individual teacher who must be won over. The
plan of action must present the computer in a non-
threatening, understandable manner in addition to
providing uses which will be valued by and of
interest to the teacher.

Concerns-Based Adoption Model

As mentioned previously, CBAM could provide
a useful framework for those who are respor.sible
for implementing computer technology in the
schools. This model is based on ten years of
research by the Research and Development Center
for Teacher Education at the University of Texas.
The model is based on the following assumptions:

1. that change is a process, not an event;
neither a principal's edict nor a one-
day workshop can assure change, because
change takes time;

2. that individuals within the institution
must change before the institution can
change--thus the individual is the pri-
mary focus of the CBAM research;

3. that the individual's personal feelings,
perceptions, and motivations concerning
an innovation play an important role in
determining the success or failure of an
innovation;

4. that change is developmental; that is,
an individual will move through identi-
fiable stages of concern about the
innovation and levels of skill in using
the innovation during the change pro-
cess;

291

5. that an innovation is being implemented;
it can be a curriculum material, a tech-
nology, or a teaching method that is new
to the school;

6. that the innovation is appropriate to the
system and has the potential to be effec-
tive within the school system; and

7. that there is an informal or formal leader
who represents the change agent for the
process. The function of this person is
to design the effort in an adaptive and
systematic way so that the state of change
is assessed and reassessed (Hall, 1979).
This allows the change agent to select
certain interventions based on the latest
diagnostic data. Thus, effective train-
ing in the use of an innovation occurs
when the trainer uses a diagnostic and
prescriptive model so that training can
be targeted to individual needs.

Within the model, several diagnostic tools
have been developed to assess where an individual
is in relationship to the training effort. Three
diagnostic tools have been developed: Stages of
Concern, Levels of Use, and Innovation Configura-
tions. What follows is a brief description of
these concepts.

Stages of Concern

Stages of Concern about an Innovation are the
feelings, motivations, and perceptions that indi-
viduals have as they progress through the adoption
process. The CBAM researchers have identified
seven stages:

1. awareness: at this stage there is little
involvement with or concern about the
innovation;

2. informational: here the individual is
only interested in receiving general
information about the innovation and he
or she is not thinking about how the
innovation will effect him or her per-
sonally;

3. personal: at this stage the individual
is concerned about the demands that the
innovation is making on his/her time;
consideration is given to the personal
benefits of using the innovation as well
as the potential perils;

4. management: the individual focuses on
the processes and tasks of using the
innovation; concerns deal with the best
use of resources, management of time,
efficient use of the innovation, and
organizing use;

5. consequences: at this stage the individ-
ual begins to consider the impact that the
innovation will have on the students; the
concerns focus on the relevance of the
innovation to students and on the out-
comes based on student performance;

6. collaboration: the individual has the
desire to cooperate with other people who
are also using the innovation; and

303



www.manaraa.com

7. refocusing: this is when the individual
begins to express concerns about replac-
ing or modifying his or her use of the
innovation (Hall, i979).

Knowing a teacher's Stages of Concern can be
of use to the change agent in planning in-service
training. The CBAM research indicates that, for
training to be effective, there must be a match
between the personal concerns, the expertise of
the trainee, and the method of training used to
facilitate the use of an innovation (Hall, 1978).
For example, nonusers of computer technology would
be most concerned with obtaining some general
information about the innovation and exploring the
implications that it has for them on a personal
level. A workshop dealing with the consequences
of using computers would be inappropriate at this
time; however, a simple hands-on experience would
meet their needs. CBAM research indicates that in
the beginning of the implementation process,
teachers are not concerned with the implications
for students and will not be until their own per-
sonal concerns are overcome.

Three different procedures have been deve-
loped for assessing the stages: an interview
technique, an open-ended question technique, and
a 35-item questionnaire. By analyzing the stages
through these methods, a profile can be obtained.
This profile will typically show that some con-
cerns are more intense. This intensity should
progress to different stages. This enables the
trainer to tailor the different interventions,
whether they be workshops or individual guidance,
to the profile. The Stages of Concern focus
on the attitudes or feelings that an individual
has toward an innovation. The next facet of CBAM
focuses on the behaviors that the individual
exhibits when attempting to use an innovation.

Levels of Use of an Innovation

The Levels of Use measurement focuses on
.eight behaviors which can be identified through
observation and interview techniques. These
behaviors include:

1. nonuse: the individual has no knowledge
or involvement and is not attempting to
change;

2. orientation: the individual makes a
decision to seek information about the
innovation;

3. preparation: the individual makes the
decision to devote time to learn to use
the innovation;

4. mechanical use: the individual is using
the innovation in an uncoordinated manner
and his or her behavior focuses on mas-
tering the task of use of the innovation;

5. routine: the individual stabilizes his
or her use, little time is required to
prepare for use, no changes are made in
how the innovation is used, and there is
little thought about improving use;

6. refinement: the individual initiates
efforts to increase student outcomes, and
thought is given to both the short-term
and long-term consequences for students;

292

7. integration: the individual initiates
efforts to combine his or her use with the
related activities of other teachers to
obtain a collective impact on the stu-
dents; and

8. renewal: the individual starts to re-
evaluate the quality of the innovation and
begins to make modifications or seeks
other alternatives to the innovation
(Hall, Louchs, Rutherford & Newlove,
1975).

Researchers at the R & D Center have discov-
ered that, regardless of the type of innovation,
the majority of the teachers stay at the level of
routine use. In the first year of use 60-70% of
the individuals will only reach the mechanical-use
level. They have also discovered that the pro-
gression is not always a lock-step one; an

individual can move out of sequence. However, the
CBAM researchers have found that individuals do
not collaborate until they have personally mas-
tered the innovation.

Innovation Configuration

The third component of CBAM is Innovation
Configurations (Hall & Louchs, 1978). It is based
on research which indicates that innovations are
often adapted or modified by individuals to suit
their particular needs or situation. Often an
innovation is so drastically modified that it is
no longer used in the manner originally intended
by the developer. Innovation Configurations
reflect the different patterns that result from
the selection and use of key elements or compo-
nents of an innovation. These components could
include: instructional objectives, materials,
equipment, grouping patterns, and tests or some
means of indicating that the innovation has been
implemented. The purpose of identifying various
patterns is to determine whether or not the imple-
mentation has been successful. The procedure
suggested by the CBAM researchers provides the
change agent with a checklist that can be used for
this evaluation. The procedure is as follows:

1. conduct interviews with either the devel-
oper or the person who is responsible
for facilitating the adoption of an
innovation--the interviewer tries to
identify key components by determining
What the innovation will look like in
relationship to the behaviors of the
students and the teachers;

2. conduct interviews and observations with
a small number of users to determine the
possible variations of the components;

3. develop interview questions and interview
a larger number of users--questions are
asked about teaching practices with the
innovation;

4. construct a checklist which contains the
key components and the possible varia-
tions within each component; and

5. fill out a checklist on all users and
determine what dominant patterns exist
(Hall & Louchs, 1978).

30j



www.manaraa.com

The benefit of developing a checklist is that
it can help clarify how the innovation is supposed
to operate when it has been fully implemented.
This model is important in evaluating the success
of the implementation effort. Facilitators of
change and in-service trainers can use this con-
cept to identify the components that need to be
targeted for further effort (Hall, 1978).

Conclusion

This has been a very brief introduction to
the Concerns-Based Adoption Model and the change
literature which supports its use. The model
gives those of us interested in implementing com-
puter technology a theoretical framework and a set
of tools for measuring our success in our imple-
mentation efforts. It provides us with a method
for systematically analyzing our efforts to faci-
litate change. By using the Stages of Concern,
we can determine how teachers feel about using
the computer in the classroom. By using the
Levels of Use, we can determine how skilled they
are at using the computer. And by using the
Innovation Configuration process, we can first
identify the key components needed for full imple-
mentation of computer technology in the classroom,
and then evaluate Our success in relationship
to those key components. CBAM has been used by
the Montgomery County Public Schools in Rockville,
Maryland, in their efforts to implement computer-
literacy training for K-6 teachers. School
representatives state "Rooted in both theory and
practice, CBAM includes strategies that may be
used to guide teacher education as well as to
provide a basis for determining when elements of
curriculum have been implemented" (Phillipp,
Muntner, & Cutlip, 1982, p. 321). There are valu-
able lessons to be learned by looking at this body
of literature. If we choose to ignore these les-
sons, then it is likely that computers will join
other technologies which have failed to impact
teaching practices and which are relegated to the
storage closet.

REFERENCES

Goodlad, J. I. "Schooling and education." In R.

Hutchins (Ed.), The Great Ideas Today. New
York: Encyclopedia Britannica, Inc., 1976.

Hall, G. E. Concerns-based inservice training:
an overview of concepts, research and prac-
tice. Paper presented at Conference on
School-Focused Inservice Training, March,
1978.

Hall, G. E. Using the individual and the innova-
tion as a frame of reference for research on
change. Paper presented at the Annual Meet-
ing of Australian Association for Research
in Education, Melbourne, November, 1979.

293

Hall, G. E. & Louchs, S. F. Innovation configura-
tions: analyzing the adaptions of an
innovation. Research and Development Center
for Teacher Education, University of Texas at
Austin, November, 1978.

Hall, G. E., Louchs, S. F., Rutherford, W. L., &
Newlove, B. W. "Levels of use of the innova-
tion: a framework for analyzing innovation
adoption." Journal for Teacher Education
26(1), 1975.

Hall, G. E., Wallace, R., & Dossett, W. A Devel-
opmental Conceptualization of the Adoption
Process Within Educational Institutions.
Research and Development Center for Teacher
Education, University of Texas at Austin,
1973.

Oettinger, A. G. Run, Computer, Run. Cambridge,
Massachusetts, Harvard University Press,
1969.

Phillipp, C., Muntner, J. & Cutlip, P. Computer
literacy for K-6 teachers. Paper presented
at the 20th Annual Association for Educa-
tional Data Systems Conference, Orlando,
Florida, May, 1982.

Pitts, M. & Schneider, J. Educational Technology:
Bright Promise or Dim Future. CEDAR Proceed-
ings of a Cooperative School Improvement
Seminar, Washington, D.C., June, 1981.

Podemski, R. "Computer technology and teacher
education." Journal for Teacher Education
32(1), 1981.

Podemski, R. "Educational technology and the
development-adoption process." Educational
Technology 20(5), 1980.

Sheingold, K. Issues related to the implementa-
tion of computer technology in schools: a

cross- sectional study. Paper presented at
NIE Conference in Issues Related to the
Implementation of Computer Technology in
Schools, February, 1981.

Wolcott, H. "Is there life after technology?"
Educational Technology, 21(5), 1981.

310



www.manaraa.com

ELEMENTARY TEACHER EDUCATION: INCLUDING LOGO IN TEACHING INFORMAL GEOMETRY

by M. Moore and W. Burger

Department of Science and Mathematics Education and Department of
Mathematics, Oregon State University, Corvallis, Oregon

Abstract

Elementary education majors have little back-
ground knowledge in geometry. Also, there are few
opportunities for courses with computer activities
integrated in the teaching of the content. Yet,
it is recognized that teachers tend to teach using
the methods by which they learn. Although
students are exposed to one computer literacy
course during their senior year, their mathmetics
courses do not utilize computer methods.

:,nition of these problems directed the
vi :on of the informal geometry course for

-,:ieme:,tary teachers at Oregon State University.
analysis of Logo exposed strengths and weaknesses
in the language for demonstrating geometric
concepts. The revised course includes a Logo lab-
oratory in addition to a variety of additional
environments for concept development. Evaluation
of the course available in June 1983.

In An Agenda for Action: Recommendations for
School Mathematics for the 1980s, the National
Council of Teachers of Mathematics (NCTM) has
addressed the broad issues facing the mathematics
education community of the near future. Their
first three recommendations are that:

1. problem-solving be the focus of school
mathematics in the 1980s;

2. basic skills in mathematics be defined
to encompass more than computational
facility; and

3. mathematics programs take full advantage
of the power of calculators and
computers at all grade levels.

Incorpating these objectives into our elementary
teacher education program at Oregon State
University has been accomplished through a
cooperative effort involving the School of
Education, the Department of Mathematics, and the
Department of Science and Mathematics Education.
See (3).

Interpreting the third recommendation as a
call for at least minimal computer literacy, a
required three-quarter hour Instructional
Strategies/Computer Education course was
incorporated in the 18-hour mathematics/methods/

computer science component. This course has had
as its primary goals an introduction to Basic
programming and applications of computers in the

294

classroom. As such, the course provides a
computer literacy component. The course does
provide practical application of strategies in
solving problems using the computer. Yet, this

course does not intend to teach mathematical
concepts other than strategies in problem solving.
PUrthermore, because of the popularity of the
course for all education majors, most students are
unable to enroll until their senior year. This

aspect unfortunately restricts the possibility of
integrating the strategies developed in this
course with other mathematics programs for pre-
service elementary teachers which would be more in

line with recommendation three.
The mathematics content courses have

addressed a broad range of topics: problem solving;
an informal development of the real numbers and
arithmetic; mental, written, and electronic
computation; number theory; decimals and percent;
ratio and proportion; probability and statistics;
and a substantial amount of informal geometry.
Topics in informal geometry are included that
reflect the spirit of the second NCTM
recommendation. These topics enable prospective
teachers to develop skills in geometrical aware-
ness and perception, analysis of geometrical
Shapes, patterns and transformations, and the use

of informal deduction ( not based on axiomatics)to
Show relationships among properties of shapes and

figures. The specific topics include:
1. types of polygons and their properties
2. abstract measurement

3. geometric constructions

4. patterns of polygons and tessellations
5. motion
6. isometries, congruence and symmetry
7. magnification and similarity

8. polyhedra.
Approximately 13 weeks are spent on these topics.

Our experience has been that many of our
elementary education majors have little background
knowledge in geometry, and benefit greatly from
working in a variety of. geometrical environments:
graph paper; geoboards, and dot paper; blocks, and
cutouts; drawings, and constructions; paper
folding; or Logo. This educational method is
consistent with learning theory. The abstract
notion of symmetry via isometries, for example, is
first understood in concrete embodiments, or
models, of the concept. Varying the irrelevant
attributes, including those that determine the
particular environment, and stressing the relevant
attributes enables the student to formulate a
precise idea of the concept at hand. This

311



www.manaraa.com

description of learning is advocated by Dienes,
Bruner and van Hiele, among others.

Each of the environments mentioned has
certain advantages. Graph paper, for example,
allows one to study such topics as symmetry in
terms of numerical relationships among coordinates
of points in the plane. The transformations T1
(x,y)=(-x,y), T2 (x,y)=(xy-y), and T3 (x,y)-(y,x)
produce reflectional symmetries, while T4 (x,y)=
(-x,-y) produces another type. Interesting
questions arise quite naturally about which types
of isometries are "easy" to represent with such
transformations. All can be done in the complex
plane, but not all are so easy in Cartesian
coordinates, the "graph paper" environment. See
(2) for other graph paper applications. A possible
disadvantage of the graph paper environment is the
loss of "hands on" manipulation of objects, and the
necessity for a certain amount of prerequisite
technical knowledge about coordinate systems,
positive and negative numbers, and so on. This
serves to point out that each environment
facilitates concept formation and the development
of problem-solving abilities in certain ways, but
that no environment is complete by itself.

Recognition of the strengths offered by using
more than one environment led to the interest in
including Logo and turtle geometry as one of the
environments in the informal geometry course.
Additional intereet in incorporating the use of the
computer in learning mathematics was generated with
the recognition that teachers tend to teach using
the methods by which they learn. Although students
are exposed to a computer literacy program during
their senior year, their mathematics courses do not
utilize computer methods. The decision was, there-
fore, to experiment with incorporating turtle
geometry and Logo in the informal geometry course
because of the special pedagogical advantages of
that environment and the usefulness of displaying
computer methods of teaching mathematics.

Turtle geometry is a computational style
geometry in which the fundamental building block is
an entity called a turtle. The turtle, similar to
the point in coordinate geometry, is described as
having two independent characteristics, a position
(as with the point in coordinate geometry) and a
heading (which is not a characteristic of the
point). The turtle responds to commands which
form the language called Turtle Talk. The commands
make it possible for turtle transformations in
local space rather than in relationship to a fixed
global referent. A set of primitive commands
provides the language building blocks. All other
commands are created using these commands. There-
fore, turtle geometry is a mathematical system
based on turtle movements. It is a geometry with
an undefined term (the turtle), a set of axioms
which when implemented in a computer language,
Logo, has aspects of coordinate geometry and vector
geometry.

Logo is a computer language used for a
representation of turtle geometry. The turtle is
typically represented by an isosceles triangle. In
Logo the turtle becomes what Papert calls "an
object to think with." See (8). Use of the
computer as a programming tool and the turtle as a
geometric drawing device aids the student to

295

combine his own body motions in a familiar space to
develop formal geometry.

Adapting ideas expressed by Weir and Watt
(9), learning to program in Logo provides an
environment for:

1. developing logical thinking and problem
solving;

2. using strategies and variables;
3. exploring symmetry, design, angles,

geometric forms;
4. developing and testing student's own

theories;
5. understanding computers.
An understanding of these characteristics of

Logo and turtle geometry encouraged the inclusion
of Logo activities in the geometry course for pre-
service elementary teachers. The informal
geometry course content had previously been care-
fully defined and described as mathematically
necessary in the preparation of elementary
teachers. It is important -.to recognize the intent
was not to change the content-but to enhance the
teaching of the content in another environment.

Thus, it was necessary to evaluate the Logo
environment in comparison with other possible
environments for each geometric concept. The
process exposed strengths and weaknesses in both
Logo and other laboratory embodiments. In some
cases the capabilities of Logo facilitated concept
formation more clearly thee: other environments.
However, in some cases operations in Logo inhibited
concentration on the concept.

As an example, consider the construction of
the set of regular polygons. In Logo the
construction is trivial when compared to the
environment offered by use of straightedge and
compass. More importantly, the constructions of
the regular polygons through Logo procedures
emphasizes the properties of the regular polygons
in a non-abstract manner.

This Logo procedure (which students create)
draws the set of all regular polygons of less than
12 sides (see Figure 1) when called with the
command polygon 3.

TO POLYGON :N.SIDES
IF :N.SIDES<3 THEN MAKE "N.SIDES 3
IF :N.SIDES>12 THEN STOP
PENUP
SETXY -100 0
PENDOWN
REPEAT :N.SIDES [FORWARD 50 RIGHT

(360 /: N.SIDES))
POLYGON (:N.SIDES +1)

END

312

Figure 1



www.manaraa.com

The compass-straightedge environment for the
construction of the same ten regular polygons is
significantly more abstract although it does
present the mathematically interesting Theorem of
Gauss. According to this theorem, three polygons
in the set of regular polygons with less than 12
sides, the 7-gon, 9-gon, and 11-gon, cannot be
constructed using a compass and straightedge.
This discovery can provide a nice mathematical
generalization but may result in an abstraction
for which the students are not prepared when first
learning to use the straightedge and compass.

The straightedge and compass procedure for the
construction of the regular n-gons begins with the
construction of a circle, easily done with the
compass. At this point the student must locate the
n vertices of the regular n-gon on the circle. A
procedure for finding the vertices of the regular
pentagon for example, is as follows:

1. Label any point on the circle V1 and
draw -013 perpendicular to 1071.

2. Join V1 to C, the midpoint of mr.

3. Bisect angle OCV1 to obtain the point N,

on OV1.

4. Construct the perpendicular to 71 at N

and obtain the point V2.
The segment V1 V2 is one side of a regular

pentagon and from it points V3, V4, and V5 can be
found. These points are then connected to complete
the construction. See (6). Figure 2 demonstrates

this construction.

Figure 2
In contrast, the Logo environment can create

an inaccurate mathematical understanding when
discussing the procedure to construct a circle.
Use of the compass to construct a circle embodies
the definition of a circle, the set of points
equidistant from a specified point. The

construction is trivial with a compass. However,

in Logo, drawing circles begins with the use of
the human body to walk a circle and progress to the
procedure, CIRCLE.

TO CIRCLE
REPEAT 360[FORWARD 1 RIGHT 1]

END
Although this procedure "appears" to produce a

circle on the output, it is, in fact, a 360-sided
regular polygon. The discussion can be extended to

include the idea of the circle as the curve
approazhed as the number of sides increases (with
the proportional decrease in length). Without some

recognition that the "look-alikeness" does not
indicate congruence, this example indicates one
risk in using only Logo environments for teaching

296

geometry, namely that the student can del: lop the
idea that a 360-sided polygon is a circle.

Another example of the contrast in environ-
ments ic the problem of triangle construction.
Compass and straightedge constructions of triangles
allows the discussion of the attributes which
completely define a unique triangle. This inform-

ation is then utilized in showing congruence of
triL.1gles (i.e., the three conditions sufficient to
determine congruence of two triangles: side-side-
side, side-angle-side, and angle-side-angle).
Given three sides (meeting the necessary condition
that the sum of the lengths of two of the sides is
greater than that of the third), construction of
the given triangle is trivial with compass and

straightedge. Without trigonometry, construction
of this triangle in the Logo environment is a
significant problem. Elementary teachers typically

do not know trigonometry. Therefore, it is not

reasonable to change the content of the course to
include the discussion needed in order to construct
"general ", non-equilateral, triangles in Logo.
However, the Logo environment provides an excellent
environment for the construction of medians,
altitudes, and perpendicular bisectors of the sides

for any triangle. Halving angles is easily done

computationally and then incorporated in a Logo
procedure to construct the angle bisectors of a
triangle, given the length of each side and the
measure of each angle. Similarly procedures can be

easily defined for the construction of medians,
altitudes and perpendicular bisectors. As a

result, the relationshp of the centroid, the
orthocenter and the circumcenter can be studied in
a less complex manner than through paper folding,

protractor and straightedge, or compass and
straightedge environments. And, the concentration
remains on the concept rather than difficulties
presented in theli'COnStruction.

Logo is p4ti6iarly well-suited to illustrate
concepts in simUnrity and magnification.
Nhgnification and reduction are easily described in
Logo procedures using inputs. For example, this

procedure draws squares, (See Figure 3) magnifying
them by a factor of two each time.

TO SQUARE :SIZE
IF :SIZE>100 THEN STOP
IF :SIZE<1 THEN STOP
REPEAT 4[FORWARD :SIZE RIGHT 90]
MAKE "SIZE :SIZE*2
SQUARE :SIZE

END

Figure 3
By simply changing the size factor in this proced-
ure to

MAKE "SIZE :SIZE*.25
the squares will reduce in size by a scale factor

of one-fourth.

313



www.manaraa.com

During spring quarter, 1983, students enrolled
in the informal geometry course for elementary
teachers will register concurrently for a one
credit course, Logo In Informal Geometry. This
course will follow the content of the informal
geometry course but will provide Logo environments
to describe the content. The goals of the course
will be as follows:

1. Learning to program in Logo;
2. Having students create Logo procedures

which;
a. construct regular polygons;
b. construct components of triangles:

angle bisectors, medians,
perpendicular bisectors of sides,
altitudes and the related "centers"
of a triangle, incenter, centroid,
circumcenter, and orthocenter;

c. create tessellations of the plane
using recursion;

d. illustrate the isometries of trans-
lation and :votation;

e. construct magnification images of
plane figures, both enlargements and
reductions using inputs;

f. combine magnifications with
isometries to produce similarity
transformations.

The addition of the Logo course will be
evaluated in three ways: (1) student success in
learning Logo and developing the procedures
described above, (2) student success with informal
geometry, and (3) student evaluation of the useful-
ness of the course for prospective elementary
teachers. Results of the evaluation will be avail-
able from the authors in June 1983.

REFERENCES
1. Agenda for Action: Recommendations for

School Mathematics for the 1980s. Reston,
Virginia: National Council of Teachers of
Mathematics, 1980.

2. Burger, William F. Graph Paper Geometry.
Mathematics for the Middle Grades (5-9).
Reston, Virginia: National Council of
Teachers of Mathematics, 1982.

3. Burger, W. F., Jenkins, L., Moore, M. L.,
Musser, G., and Smith, K. Teacher Education:
A Coordinated Approach. The Arithmetic
Teacher, March 1979.

4. van Hiele, P. M. Begrip en Insicht (Under-
standing and Insight). Dordrecht, The
Netuerlands: Muusses'Fnamerend, 1973.

5. Hoffer, Alan. Geometry is More Than Proof.
The Oregon Mathematics Teacher, March 1979.

6. OiDaffer, }hares and Clemens, Stanley.
Geometry: An Investigative Approach. Menlo
Park, Califormta: Addison Wesley, 1976.

7. Harper, D. 0. and Stewart, J. H. (eds).
Run: Computer Education. Monterey: Brooks/
Cole, 1983.

8. Papert, Seymour. Mindstorms:Children
Computers and PaiWiTirrilii415FR:Basic
Books, 1980.

9. Steen, L. A. and Albers, D. J. (eds).
Teachin: Teachers, Teaching Students:
eflect ons on Mathematical Education.Boston:

tirkhauser, 1981.

297

314



www.manaraa.com

A COMPUTER LITERACY CURRICULUM FOR PRESERVICE TEACHER EDUCATION CANDIDATES

Brent E. Wholeben, Ph.D., E.M.T., Associate Professor

Department of Educational Administration and Supervision
The University of Texas at El Paso (El Paso, Texas 79968)

With the advent of microcomputers in the classroom
to facilitate the ongoing instructional process,
an immediate need has simultaneously arisen for
the training of the classroom teacher regarding
the valid and reliable use of this newest instruc-

tional technology. For teacher education can-
didates who are involved in their semester

internship, a unique opportunity exists for pro-
viding the necessary preservice computer literacy
training coincidentally with their practice

teaching experience. As a formal course, computer

literacy curricula under the auspices of the

College of Education at the university-level must
be reviewed for approval by the appropriate state
coordinating agency. Such review procedures are
often of a year or more in length, yet the need
for such training continues to grow. To meet the
need for formal instruction in the use of computer
technology within the classroom, alternate methods
must be developed for beginning teacher training.

The Emergent Learning Technologist

With the advent of the microcomputer for

computer-assisted instruction (CAI), the beginning
classroom teacher has available the most formida-
ble ally for the conduct of teaching since the
printing press. The computer has been shown to be
capable of selectively facilitating the instruc-
tional efforts of the teacher in such a way as to
provide greatly enhanced learning on the part of

the student. But the use of CAI in producing

increased learning can only be made possible

through the careful training of the teacher-user.

The teacher today must therefore be viewed as
a learning technologist -- a professional whose

role must assume the structured intervention of
computerassisted technology within the learning

process of the child. To accomplish a successful

intervention however, a careful process of

training must ensue for instructing the teacher
how to best utilize CAI, for whom, when, and why.
To accomplish these several missions, the needs of
the teacher and student alike must be addressed
and understood.

The beginning classroom teacher must have a
basic understanding (or general literacy

knowledge) of the microcomputer, and its applica-

tion to the processes of the instructional

classroom. In addition, this same teacher must
have the ability to apply the use of the computer

for both CAI as well as the management of that

instruction (CMI). As school districts continue
to increase their expenditures for the purchase of
microcomputers for classroom use, teachers must
fully unaerstand the potential application of this
new instructional technology.

The student has basic needs also related to
the employment of computerized instructional tech-
nology. Although many needs address the issues
surrounding increased effectiveness, efficiency
and satisfaction regarding study and learning of
appropriate curricula, other needs require atten-
tion apart from the school environment itself.

Students exist in a technologically-oriented
world, and therefore must be helped to cope ade-
quately with such demands as will be placed upon
them by a technological society. Such objectives
as understanding the potential of computers (both

positive and negative), how computerized tech-
nology is currently utilized to benefit mankind,
and where computers could be utilized to invade
privacy rights of the individual -- can only come
from understanding the computer itself.

298

Training at the Undergraduate Level

It is the mission of this paper, to examine
the potential for training the beginning classroom
teacher during the'classroom internship cycle at
the undergraduate teacher education level of uni-
versity training. While the,role of an inservice
paradigm will always be necessary for continued
on-the-job training of the classroom teacher; the
cost-effective rationale for including-coMputer.
and CAI/CMI literacy training at the preservice
teacher education level exists in three areas.

First, preservice training at the undergra-
duate, teacher education level provides systematic
quality control related to the information pre-
sented regarding instructional technology

literacy. Secondly, the opportunity for providing
sufficient time for the structured implementation
of required learning activities exists during the
semester of the student-teacher internship.

Lastly, this same time will provide the necessary
opportunities for the preservice teacher to prac-

315



www.manaraa.com

tice various CAI approaches while in a regular
classroom (under the supervision of the regular
teacher) and to report on the varying success
experienced -- promoting optimal information

transfer to the student teacher.

Rationale for a Variable Instructional Sequence

As will be presented in the next section, the
proposed presentation of the literacy objectives
and activities occurs in a variable time sequence;
that is, activities and meeting times will vary
depending upon the material to be presented, and
when the actual presentation will take place.
Four issues of rationale are apparent in requiring
such a variable instructional format.

First, the literacy (instructional) objectives
and activities are themselves of variable-time
format, requiring significantly different dura-
tions to effectively present the material.
Secondly, these same objectives and activities are
linearly sequential. Therefore, rearrangement of
activity sequence is precluded. Thirdly, the suc-
cessful assimilation of the material requires
appropriate time lapses between activity
presentation(s). Lastly, these same time lapses
permit ample opportunity for student teacher prac-
tice and curricular development intervention(s)
during their classroom teaching activities.

Components of the Semester Curriculum

The implementation of the computer literacy
curricular program for teacher education candi-
dates will exist over a single semester, prefera-
bly the semester within which the candidate is
performing the required internship (practice
teaching) experience.

The components of the semester-length program
exist in three parts, each representing a serial
stage in the development of awareness, skills and
personal techniques concerning the utilization of
computers for instruction. These three parts are
defined as:

1.0 The Awareness Component (a single session,
four-hour sequence of activities designed to in-
troduce the participant to the idea of microcom-
puting, and its potential for classroom instruc-
tion utilization; and to provide a structured,
first-stage hands-on experience for each partici-
pant);

2.0 The Developmental Skills Component (a four-
session sequence of two-hours each, during which
the participant'is provided an in-depth coverage
of those topics initially introduced within the
preceding 'awareness' session, including such
topics as: CAI/CMI intervention techniques, pro-
cedures in the assessment and selection of in-
structional software and hardware, demonstration
of various curricular oriented CAI packages from
available vendors, and responsibilities associated

299

with the employment of instructional technology
within the classroom and learning process); and,

3.0 The CAI Incorporation Component (a three-day
profeTiTORT workshop of 12-sessions of 1k-hours
each, during which participants are afforded op-
portunities to explore the use of CAI/CMI software
in their classrooms as first-year teachers (the
following semester or year), to learn techniques
in the design of specialized lesson plans for CAI
applications, to understand the basic rudiments of
computer programming for specialized applications
in the classroom, to interact with colleagues of
like grade-level and discipline areas concerning
the incorporation of CAI within the classroom pro-
cess, and to research with local vendors the
potential of microcomputers for facilitating the
instructional process.

Component A: Awareness

The first component in the series of computer
literacy instruction for the preservice teacher
education candidate is intended as a first-stage
introduction to microcomputers and their potential
for use in the classroom, thereby providing the
initial fcundation for awareness development on
the part of the future beginning teacher. A
sample scheduling of activities for this four-hour
block of instruction exists as follows:

Activity 1 (0:30)

Activity 2 (0:45)

Activity 3 (0:30)

(0:15)

Activity 4 (1:30)

Introduction to Microcomputers,
and Their Potential Utilization
within the Schools;

Introduction to the Components
of Microcomputer Hardware and
Software, and Their Termin-
ology;

< audio-visual presentation >

** break **

Demonstration(s) of Appropriate
Microcomputer Hardware and
Software (round-robin format of
15-minutes per each station),
and including such topics as:
programming, simulation, CAI
packages, CMI programs, and
color graphics capabilities;

Activity 5 (0:30) Question/Answer Period (small
or large group), and Post-
Session(s) Evaluation and Feed-
back.

Component B: Skill Development

This second component in the series of com-
puter literacy topics for preservice teacher edu-
cation candidates exists as a direct extension of
those topics covered during the first (awareness)
component.

316



www.manaraa.com

During the skill development component, four
individual sessions of two-hours each are employed

to provide greater :J-depth treatment of those

topics introduced previously. Conducted as single

evening sessions in a seminar format over the

course of four-weeks, sample topics for these
four-on-two survey sessions will include:

1.0 INTRODUCTION TO MICROCOMPUTER APPLICATIONS
FOR THE CLASSROOM

1.1 Data-Processing via the Microcomputer

1.2 Computing Needs Assessment for Classroom

Activities

2.0 INTRODUCTION TO MICROCOMPUTER HARDWARE
DESIGNS AND CONFIGURATIONS

2.1 Components of Microcomputer Hardware
Design

2.2 Operation of the Microcomputer Hardware

System

3.0 INTRODUCTION TO MICROCOMPUTER SOFTWARE
APPLICATIONS FOR TEACHING

3.1 Components of Microcomputer Software for
Classroom Use

3.2 Demonstration of Instructional Software

Applications

4.0 INTRODUCTION TO SCHOOL MICROCOMPUTER
SELECTION AND ACQUISITION

4.1 Preparation of the Decision Matrix for

Microcomputer Hardware and Software

Selection

4.2 Solicitation and Validation Strategies
for Area Vendors

Component C: CAI Incorporation

The third and final component of the computer
literacy program for preservice teacher education
candidates involves a three-day sequence of 12

sessions of 11/2-hours each. This phase of computer

literacy training is designed to acquaint the

future beginning teacher with the skills and pro-

cedures necessary to actually utilize computer-
assisted instruction within their particular

discipline at the classroom level.

The incorporation stage of computer literacy

training commences with a full day of intensive
lectures on the use and design of CAI/CMI-oriented
instruction. In addition, two sessions allow

suitable opportunities for students to acquaint
themselves with instructional software specific to

their teaching curriculum. Group activities for

the sharing of information (reaction to the soft-

ware, suitability of the packages for instruction
at the particular grade level, and the potential

for CAI intervention in specific instances) are

300

structured at the end of each demonstration

sequence.

The second day is concerned mainly with the
specifics of planning, designing and implementing

CAI strategies for classroom application. These

sessions include such topics as: how to delineate

curriculum for CAI-intervention structuring, how
to develop the CAI-oriented lesson plan, and how

to apply CAI to special populations and/or

interest groups.

The third day primarily focuses upon the con-
tent and process associated with the evaluation of
microcomputer software and hardware for matching
the intended goals of instructional use. Special

interest groups allow the further sharing of spe-

cialized information, and provides a basis for
evaluating the perceived benefits of the three-day

sequence. Finally, vendor demonstrations and pre-
sentations at the conclusion of the incorporation
phase provide the students with the basis for

designed their equipment need requests for the
upcoming school year.

A sample outline of this three-day incor-

poration component follows:

Day-1/Ses-1 Presentation:

Design of CAI-Oriented Instruction

as a Classroom Teaching Strategy;

Suggested Presentation Topics:
A. six-stages of computer-assisted

instructional intervention
B. three-levels of computer-managed

instructional monitoring
C. cross-reference matrix for CAI

and CMI development

Ses-2 Individual Simulations:

Students interact with suitable soft-

ware packages; and participate in

small-group, follow-up discussion;

Ses-3 Presentation:

Design of CAI Programs -- What to
Expect and What to Require;

Suggested Presentation Topics:
A. student-user orientation
B. menu-driven routines
C. compatibility, of instructional

objectives
D. testing and progress monitoring

Ses-4 Individual Simulations:

Students continue their exploration
of suitable software packages related
to their specialized needs; and par-
ticipate in small-group discussion;

31 ?



www.manaraa.com

Day-2/Ses-1 Presentation:

Techniques in Applying CAI Packages
for Instructional Facilitation;

Suggested Presentation Topics:
A. individual student versus small-

group orientation
B. tutorial versus remedial versus

enrichment modes

Ses-2 Presentation:

How to Delineate Curriculum for
Identifying CAI-Oriented Potential;

Suggested Presentation Topics:
A. clarification of needs versus

desires
B. establishment of concept mission,

instructional goals, classroom
activities, and student tasks

Practicum Laboratory:

Students are afforded the immediate
opportunity to simulate curricular
delineation relative to their
specialized areas;

Ses-3 Individual Simulations:

Students continue their exploration
of instructional software, research-
ing software suitability based upon
their recently delineated curricular
objectives;

Ses-4 Presentation:

How to Design and Implement the CAI-
Applications Lesson Plan;

Suggested Presentation Topics:
A. considerations of equipment and

material availability
B. considerations of time, facili-

ties, and varying student needs

Practicum Laboratory:

Students are afforded the opportunity
to design a simulated lesson plan

based upon their knowledge of CAI
programs previously explored during
the individual simulation sessions;

Day-3/Ses-1 Presentation:

Special Techniques for the Evaluation
of Instructional Software and Compat-
ible Machine Hardware;

Suggested Presentation Topics:
A. content and process criterion

references for software quality
B. process and tooling criterion

references for hardware quality

301

C. four steps in approaching the
software/hardware compatibility
assessment

Ses-2 Special Interest Group Sessions:

Students meet by grade-level and

curricular discipline areas to discuss
common interests and needs related to
CAI application; and a formal evalua-
tion of the three-day sequence is

conducted;

Ses-3

Ses-4

Vendor Demonstration of Software:

!round-robin scheduling);

Vendor Demonstration of Hardware:

(round-robin scheduling).

'Scheduling of the Semester Program

Although differences exist in terms of time-
availability at various institutions regarding
their instructional sequence (semester, quarter,
trimester), little modification to the computer
literacy program presented would be required.

It is suggested however, that the program be
implemented as early as possible during the
'internship semester' -- preferably prior to the
mid-term period. Such early intervention provides
maximum opportunities for the student-teacher to
employ the full range of skills learned during the
preservice training sessions.

It is also suggested that skill laboratories
be scheduled during the second part of the
'semester period'. Such sessions will provide
opportunities for preservice teachers to address
and rectify problems which have developed during
their initial CAI incorporation efforts within the
classroom.

318



www.manaraa.com

DYNAMICS OF LEARNING AND MISLEARNING IN A SIMULATED MICRO-WORLD

Andrea L. Petitto & James A. Levin

Graduate School of Education and Human Developement
University of Rochester
Rochester, New York 14627

Center for Human Information Processing
Unvisity of California, San Diego

La Jolla, CA 92093

Abstract

This paper presents an overview of research on
children's learning processes in a computer
implemented micro-environment. A class of fourth
and fifth grade children played a set of "shark
shooting" games as part of their regular school
activities for a three month period. The games
required the estimation of numerical values on
number lines, and the coordination of vertical
and horizontal dimensions. Observations are made
concerning variations in the development of game
skills, and transfer of number concepts to
non-computer activities. Discussion focuses on
transcript analyses revealing specifics of
learning processes during play. Interactions
among cognitive skills, game features, and the
role of goals in structuring conceptual
development are discussed.

Introduction

At the Laboratory for Comparative Human
Cognition at the University of California in San
Diego, several of us have been investigating
cognitive implications of the use of micro-
computers in elementary classrooms. Some of this

work has concentrated on the use of computers as
learning environments. In order to understand how
learning occurs in these environments, we have
found it necessary to look closely at the details
of the interactions among the children, the
various helpful adults in the room, and the
computer itself. In this paper we describe a
study of learning in a simulated micro-
environment in which we take a close look at the
qualitative differences in performance between
the most and least successful players.

A well known example of a simulated micro-
environment is diSessa's dynaturtle which behaves
strictly according to Newton's laws of motion.

This research was supported by the National
Science Foundation, Research in Science Education
Grant SED-8112645. Many thanks go to Robert Rowe,
Marcia Boruta, Karen Johnson, Jose Vasconcellos
and Dan Rieswig for their help and support.

302

The main idea behind the use of such simulations
is that they embody general principles and
relationships in the material to be learned and
permit a kind of exploratory behavior that is not
usually possible when the same material is
presented in standard, expository writtei or
spoken formats. Students explored the properties
of this Newtonian object by manipulating it and
developing strategies to manage it. Exploration
is not simply a matter of trial and error, as
might be encountered in drill and practice. In a
computer implemented simulation feedback from an
error or an exploratory attempt is informative.
That is, it not only provides information about
accuracy, but gives additional information
about relationships embedded in the micro-
environment.

The type of simulation we will be concerned
with here takes the form of an educational game.
Games such as these usually simulate micro-
environments which incorporate a goal. In the
dynaturtle game, for example, the Newtonian
turtle is to be guided to a specific "port", or
in another version, around a circular track
without crashing. The point of introducing game
versions of simulated environments is that they
require players to develop and sharpen cognitive
skills in the service of attaining the game goal.
Because of the inclusion of goals internal to the
system, games are more able to stand alone than
are pure simulations which students manipulate to
achieve externally derived academic goals. The
inclusion of internally defined goals also
affords the opportunity for an internal tutor
function. Since the program can assume that the
goal of the player is the internally defined goal
of the game, it can monitor the effectiveness of
the player's performance. This allows the
program to recognize and respond to errors by
offering hints, and can alter game parameters to
adjust automatically to different levels of
skill.

The Shark Games

Working on the notion of exploratory activity,
several of us have developed a family of three
estimation games called the "Shark Games". The
games are intended to strengthen children's
knowledge of numerical relationships. Earlier
work by us and by other researchers had found
that fundamental concepts of numerical rela-

31,0



www.manaraa.com

tionships are often weak among poor achievers in
arithmeticl. We hoped that these games could
strengthen these fundamental concepts directly,
and that this would in turn affect classroom
arithmetic skills.

All the Shark Games utilize the same game
world - sailing on the high seas, hunting down
and harpooning sharks. All three games require
estimation along two dimensions marked by
numerical scales (see Figure 1). All three of the
games were used in our research, though for the
sake of brevity only one, called "Sonar", will be
described here. In Sonar, the player is sees a
pair of coordinate lines - one horizontal and the
other vertical - on the screen display. The
location of an invisible (underwater) shark is
indicated by a pair of numerical coordinates
written at the top of the screen. Using these
coordinates, the player must estimate the shark's
position visually. Each dimension is dealt with
in turn, first the horizontal estimate (labeled
"aim") then after the aim is set the vertical
dimension (labeled "distance") is entered. In
effect, each of the coordinate lines serves a
dual purpose, as an axis on one dimension and as
an indicator marking a numerical selection on the
other dimension. The player uses game-paddles
(though keyboard entry is a possible option) to
move indicator lines indicating the position he
thinks is specified by the numerical information.
The paddle button (or RETURN) is pressed to "set"
each numerical estimate once it is made. To
avoid the confusion that can arise from the dual
role of each axis line, while each dimension is
being estimated, the endpoint numbers and label
on the other axis line (now acting as an
indicator) disappear.

The "throw" of the Harpoon, "hits" and
"misses" all are represented in an interesting
graphic display with sound accompaniment. Once
both dimensions are entered, a "harpoon" moves
from the bottom of the screen to the point
specified by the intersection of the horizontal
and vertical estimates. Feedback is in the form
of a "splash", visually specifying the actual
location of each throw. The splash is labeled
with its actual numerical coordinates and remains
visible on the screen as an additional point of
reference through the next several tries.

The games also perform a tutor function. When
a player's shot misses the shark, verbal and
directional hints are written at the top of the
screen. When a player's estimate is too high, the
word "smaller" with an arrow pointing in the
direction of lower numbers (<=.) for that
dimension. If the estimate is too low, the screen
displayes "bigger" with an arrow pointing in the
direction of higher numbers (=>) for that
dimension.

To adjust for variations in skill, the games
all included multiple levels of difficulty such
that the computer took over some functions at the
easier levels. This was accomplished by creating
"beginner" levels in which only one axis
(horizontal or vertical) is used, while higher

303

levels involve two coordinates. Difficulty on the
two axis games is varied by reducing the size of
the shark with respect to the numerical span of
the axis, thus requiring progressively more
accurate "thows". Movement to higher or lower
levels on successive games is automatic,
contingent upon rate of success.

The Study

Our original purpose in carrying out the study
was to examine the possibilty of transfer of
game-related skills in numerical estimation to
other kinds of numerical manipulations,
particularly paper and pencil tests of number
line skills and classroom arithmetic. It is
impossible to overlook the variation in academic
achievement that is typically found in most
elementary school classrooms. For this reasons,
we were also interested in finding out how
learning to play the simulation-games themselves
interacts with these differences in academic
skill. Thus we were looking for a two-way effect,
game skills transfering to classroom performance,
and academic skills affecting the ability to
become skillful in the game.

Two structural aspects of these games were
particularly interesting to us from a theoretical
perspective. One is the inherent requirement for
successive approximations2, and the other is the
introduction of cartesian coordinates requiring
the coordination of two dimensions. Strategies
which use successive approximation are encouraged
by the game setup which allows for multiple tries
(or throws) with informative feedback
accompanying each miss. The coordination of
estimates with respect to the two axis system was
accomplished through a social coordination
between two players. Children usually played
these games in pairs, one child of each pair
playing one of the dimensions. We were interested
in the way that the social coordination of action
might serve as a basis for spatial coordination
on a two-dimensional plane.

With all this in mind, we placed the Shark
games in a combined fourth-fifth grade classroom
where they were used in a computer-based "center"
scheduled to be visited by specific pairs of
children each day. In this way, all the children
in the class were able to work with the Shark
games on a regular basis, amounting to about one
half-hour per child per week over a period of
threemonths. The Sonar game was first introduced
into the classroom with a range of 0 to 100 on
each axis.

At the first session, and at several important
transitions throughout the study, an
observer/helper attended the children's shark
game sessions. As the term implies, the
helper/observer had a dual role. One role was to
record events as they occured during game play.
The other role was to help the children if they
encountered any major difficulties preventing
them from effectively playing the games. The
specifications of the helping role were to keep
the game going while interfering as little as

32u



www.manaraa.com

possible. A graded sequence of hinting procedures
was to be used when intervention was necessary.
First, the observer/helper was to simply point
out relevant information on the monitor screen.
Then, if that were not enough, point out relevant
relationships between game elements. And finally,
if all else failed make suggestions about what to
do.

Several kinds of data were collected on game
play itself. The games had been set up to record
all sequences, of keypresses, all game parameter
values, and time information from an internal

clock. This data was taken on all games played
throughout the study. There were also the audio-
tapes and field notes taken at several transi-
tional points during the study. The audio-tapes
recorded conversation and other sounds and could
later be coordinated with the written field notes
and computer collected records.

Results

General Trends

Most children increased their skill at playing
the shark games themselves throughout this time
period, though there was considerable variability
among children in how well they played. Our

findings showed the classic pattern - those who
played relatively well in the beginning also
improved more than those who played more poorly
on the first few attempts. Nevertheless, even
with the skilled players, we could find no
overall transfer of game skill to paper and
pencil tests which assessed number line and
written arithmetic skills.

These findings were quite disappointing since
we had developed these games specifically to help

the poorer students, and had hoped that game
derived skills would show transfer to some paper
and pencil tests. We decided to look at the
children's game playing in some detail to find
out what had actually happened.

A preliminary analysis has been done on the
keypress data for the initial session and on
overall achievement within the game itself
throughout the study. Overall game achievement
was assessed as the percent of sessions in which

the players attained level 6 or better (out of a
possible 9 levels). This method of scoring
overall game achievement resulted in scores for
19 individual children ranging from 10 to 90%. We
then designated the 7 players who scored over 70%
as "high", the 6 players with scores between 40

and 69 as "intermediate", and the 6 below 30% as
"low" in overall game achievement. (There were no
scares between 30 and 40 percent.) This
presentation concentrates on the contrast between
the high and low game players. We found that in
the introductory session low achievers overall
had spent more time on the single-dimension lower
levels; used more "throws" per game to hit the
shark; and showed a much higher average deviation
of throw values within each game. In general, the
overall poorer game players appeared to be less

304

systematic in their initial approach to the

games.

Transcript Analysis

In order to account for these data, we looked
at the interactions among the players, the
observer/helper, and computer as recorded by our
audio-tapes and field notes. We found that there
were at least two major ways that game strategies
differed between players ranked as good or poor
in overall game achievement: the emphasis on
numerical judgements in making game decisions,
and the ability to learn and manage the mechanics
of the game. Differences in the use of numerical
strategies were striking. The better players used
numerical specifications frequently as a way of
explaining thier own actions or specifying some
game related information to another player. But

numerical judgements did not substantially enter
into the remarks or game decisions of the poorer
players.

It is not surprising that players with poorer
number concepts should use numerical information
less than those with better understanding of
numerical relationships. But the mechanics of the
shark games should be just as unfamiliar to all
the children, regardless of numerical skills.
Nevertheless, the poorer players also appeared to
have more difficulty adjusting to the mechanics
of playing the game itself - how to set up and
execute the shots, coordinate the actions of both

players on the two-dimensional levels, and so on.
Could the lack of certain conceptual knowledge
interfere with the ability to learn the mechanics
of a game in which that knowledge must be
employed? Or is there some other reason, perhaps
some fundamental problem underlying both poor
mathematical ability and game learning ability?

The data from this one study ran not provide
definitive answers to these questions. But an
analysis of the details of the children's actions
in the games reveals some interesting relation-
ships among cognitive skills, understanding of
specific relationships among game elements, and
recognizing the goal of the game.

All the children in this study quite easily
recognized the main goal of the game - to shoot a
shark with the harpoon. There appeared to be no
difficulty accepting the moving arrow as a
harpoon or the idea of a hidden shark which, when
hit, appears momentarily as a small triangular
dorsal fin. The unanimous acceptance of this game
goal, however, masks a host of ambiguities which
only become apparent from the children's remarks
and questions addressed to each other and to the
observer/helper. Because the misconceptions
arising from these ambiguities prove to be
functionally related to the development of
cognitive skills, two representative examples of
these misconceptions are discussed here at some
length.

Some Failures: Several children showed
considerable difficulty even on the low level
single-dimension games. After completing seven



www.manaraa.com

single-dimension games and in the middle of
multiple attempts to hit the shark during the
eighth game, one such child asked if the shark
were "roaming around in there". In this context,
the remark suggested that the player thought the
shark was a moving target, invisibly swimming
across the screen. Such a notion could derive
from repeated frustrated attempts to estimate the
shark's position, or It might be a misconception
from the start. After all, sharks an not
characteristically stationary, especially when
under fire. However it arises, the idea of a
moving target calls into question the player's
understanding of the relevance of the numerical
specification of the shark's position. If the
shark is moving, then the numerical information
is no longer relevant, and Sonar becomes a
guessing game in which the "smaller", "larger"
hints provide the only clues. This pattern
essentially characterized the game playing of
several of the poorer players. Instead of using
numerical information to progressively narrow
down the search for the shark (the process of
successive approximations we were interested in),
these players simply used the directional
information from the hints without calibrating
the distances or coordinating successive tries in
any way at all.

Notice that this erroneous conceptualization
makes fundamental changes in the underlying
goal of the game. Specifically, it makes
irrelevant the major goal that the game is
intended to support: get as close as possible to
the position on the screen which corresponds to
the numerical coordinates printed in the upper
part of the display. When a player does not
recognize the goal of a game, no amount of
practice will bring him closer to achieving it.
The child has missed the point and is simply
playing a different game, one involving
different skills, strategies and goals than those
intended by the game's designer.

There were many other technical pitfalls that
lead to major misconceptions about the game and
its goals. One which proved to be a destructive
factor as the game progressed roncerned the
function of the RETURN key. Programmers and users
of software tend to have difering views of the
function of the RETURN (oi ENTER) key. From a
user's point of view, r'ie RETURN key appears to
initiate an action, tc, start something. Where
the programmer inte,-As the RETURN keypress to
tell the program to read a line of characters
just typed in, the user sees it as a keypress
that directly starts an action. The tacit
assumption on the part of a naive user is that
the computer is reading along as information is
entered at the keyboard or other peripheral input
device. The RETURN key simply starts the next
machine function.

In the Shark games, the introductory text and
instructions end with the instruction: "Push
RETURN to start a game", further reinforcing the
idea of RETURN as "begin". Not surprisingly,
more than one of the children in this study
treated the RETURN key as an initiator. In at

305

least on case, this became a rather pernicious
bug in the child-computer interactions. The
problem first showed up when one child in a pair
of players read aloud the screen instruction:
"Set the aim, then push RETURN." The second child
then repeated the instruction in the following
form: "Then push RETURN? Push RETURN? Then I
start the aim?" Though the first child and the
observer/helper manipulated the situation so that
the aim was at least sometimes set before RETURN
was pressed, the "RETURN starts things" idea
persisted into the higher, two-dimension levels
of the game. This player would then press RETURN
to "start" her partner's turn, thereby firing the
harpoon before he could make any move to set his
own aim. This short-circuited the possibility of
cooperative, coordinated activity and the
children in this case (as in at least one other)
persisted in thinking they were playing
competitively against each other. The goal of
coordinating two dimensions was never
established.

These examples are typical of the difficulties
the poorer players had learning the mechanics of
the Shark games. In some cases, specific miscon-
ceptions were quickly corrected by adult inter-
vention. In other cases, misconceptions persisted
through several sessions and some were never
resolved. These technical difficulties, though
they are not directly related to the concepts we
wanted the children to learn, reorganized the
dynamics of the games so that they no longer
addressed the relationships the programs were
intended to embody.

This line of reasoning suggests that technical
misconceptions on the part of some players
reduced the effectiveness of these games in
promoting the development of numerical concepts.
But evidence from the better players indicates
that the causality implicit in the above
statement might also run the other way. Weak
numerical concepts might have left the poorer
players open to technical misconceptions by not
providing a coherent framework to guide learning
of the game.

Some Successes: In the introductory
sessions, as in subsequent ones, the better
players overtly and verbally refered to numerical
information in all aspects of play: in aiming the
harpoon themselves or in guiding each other's
actions, "Seventy-eight is about here"; in taking
roles in two- dimensional play "You got
sixty-four", and so on. This often lead to
successive approximation strategies. After two
misses, for example, one player remarked,
refering explicitly to the value of the second
miss and tacitly to the first: "Twenty-one. We
have to be right between here."

The numerically specified position information
and the familiar (though tacit) numerical
relationships on the number line provided a
coherent structure within which the technical
aspects of the game could be worked out. That is,
possible ambiguities such as the function of the
RETURN key and the nature of the shark's

322



www.manaraa.com

movements are worked out in the service of
maintaining coherence within the numerical
context. The process of working out the
technical details of the games usually went so
smoothly among the better players that it was
often difficult to detect transitions to serve as
examples. A few observations can be cited here to

illustrate the point.

In one case, a player had begun by randomly
aiming and shooting across the screen, apparently
without regard for numerical information. After
two low-level games in this mode, the
observer/helper simply pointed out that the
shark's position was numerically specified. The
player's next aim was again wild, but this time
she verbally predicted it's numerical value,
saying "That's probably gonna be two." This
prediction signaled her first attempt to
coordinate position and numerical information,
and her accuracy increased steadily with
subsequent tries.

In another case, we discovered that a player
had not clearly understood that the hidden shark
was not a moving but a stable target until his
ninth game. Though he had participated effect-
ively in quite accurate and strategic play in all
these games, this boy had been setting his aim
according to the specified numerical informaton,
not recognizing its relationship to the position
of the hidden shark. During the ninth game, he
expressed surprise that the shark so often turned
up where he had shot: "So wherever you hit the
thing, it goes?" This player had also assumed
that the shark was swimming invisibly around the
screen, but in contrast to the previous case
where the notion of a moving shark was so
debilitating, this boy's playing had been
consistently strategic and effective. This was
possible because he was using numerical
information to structure his activity before he
completely understood how all the game elements
were interrelated. Ultimately, he discovered the
"stable shark" feature because his actions were
consistently guided by appropriate goals which
were supported by his understanding of the very
numerical concepts that the game was designed to
teach.

Discussion

Though this very preliminary analysis of our
recently gathered data cannot give definitive
evidence about learning processes in interactive
media, several important points can be made.
First, stand-alone simulation-games cannot be
considered a panacea for the problem of remedia-
tion of low achieving children. The specific
game-goal of shooting sharks was not by itself
enough to organize behavior in ways that would
lead to development of the intended skill. In
order to insure that the players interpreted the
game the way the game designers had intended,
some adult intervention was necessary even for
the best players. Initial misconceptions are
difficult to alter once they are established3,
and can be perniciously detrimental.

306

It can be argued that these difficulties arose
because of flaws in software design or that
better tutor functions would more effectively
monitor and guide a player's actions. Both of
these arguments are probably valid. However, we
cannot assume that software - however well
designed - will ever be completely free of
either of these problems.

When unfamiliar goals are introduced requiring
a new application of undeveloped or under-
developed skills, it can not be assumed that a
novice player will apprehend all the relevant
relationships among game elements and correctly
infer the goal or goals intended by the game's
designers, however clearly these goals appear to
be presented. If a player infers a wrong goal,
then feedback from an autos stic tutor is not
likely to be effective. This feedback is only
corrective with respect to those goals the game
designers intended. But players would interpret
such feedback in terms of their own intentions.
If a goal is misconstrued, then automatic tutor
functions are rarely adequate to correct it.
Continued practice in the game rarely corrects
this misunderstanding and usually causes it to be
more deeply entrenched. At the same time, since
changes in game goals alter the dynamics of the
game itself, the skills and strategies that are
being developed through practice may not be those
which the designers of the game or the teacher
intended.

These principles might at least partly explain
the lack of transfer from game playing to paper
and pencil analogs of number-line estimation
tasks. With inadequate supervision at entry into
the game environment, children whose number line
skills were too poor to provide a way of recog-
nizing the salient structures of the game did
not play the game as it was intended to be
played. They effectively rearranged the dynamics
of it to avoid practicing those skills we wanted
them to develop. Children whose number concepts
were sufficiently strong to recognize the salient
relationship expressed numerically generally did
learn the game as it was intended, but did not
need to improve those skills very much to play.
At least not enough to be detected by pre- and
post-tests.

Conclusions

The function of education is to transfer to
children socially organized and formalized
knowledge in the case of this study, the number
system and the arithmetic and coordinate systems
based on it. Thus far, our analysis is able to
show that when these knowledge systems form the
basis for a simulation ur simulation-game,
players must rely either upon prior familiarity
with that system, or external guidance to
discover the relevant parameters for manipula-
tion. We expect to show from further analysis and
in future research efforts that once this basic
understanding is established exploratory activity
can be productive.

Beyond this, our observations have implica-

3 2



www.manaraa.com

tions for educational practice. They suggest that
it is important to consider the role of the
teacher when investigating the dynamics of child-
computer interactions. The use of computer-based
media might provide a new role for teachers. With
computers, parameters and rules for manipulation
are internal to the machine. They are not unam-
biguous, and novices - either children or older
students - need help to learn to manipulate them
effectively. Because of this, the teacher can
become an ally and helper to the student, a role
which contrasts to the usual one of task master
and judge. Future research should investigate the
potential of this teacher-student-computer inter-
action system in which the teacher's competence
serves as a resource for students ia problem
solving situations.

References

1. Petitto, A. L. "Developmental study of
arithmetic competence among children with
school related learning difficulties",
unpublished working paper, Laboratory of
Comparative Human Cognition, Univeristy of
California, San Diego, 1982.

2. Petitto, A. L. "Long division of labor: in
support of an interactive learning theory",
unpublished manuscript, Graduate School of
Education and Human Development, University of
Rochester, Rochester, NY, 1983.

3. Miyake, Constructive Interaction, CHIP
report #113, ONR report #8206, Center for
Human Information Processing, University of
California, San Diego, 1982.

Sonar : AIM = -22 Right on!
Reading : DISTANCE = -57 Smaller .1
Set the DISTANCE, then push RETURN

307

100

4:Ai -17

I-100 DISTANCE

igur.

This is a typical screen disp'ay in Sonar. The
numbers at the center top of the screen indicate
that the shark is hidden at -22 on the AIM
(horizontal) line and -57 on the DISTANCE
(vertical) line. The player has already made one
shot which has left a "splash" (ragged concentric
ovals) at -17 on the AIM dimension and -15 on
DISTANCE. Verbal hints appear to the right side
of the top of the screen. "Right on!" indicates
that the AIM estimate (-17 showing in the
"splash") was close enough. "Smaller" indicates
that the DISTANCE estimate (-15 showing in the
splash) needs to be revised downward. The
downward pointing arrow indicates the direction
that the indicator line must be moved.

Note that the AIM line is not labeled here. This
is because the player is in the process of
selecting an estimate on the DISTANCE dimension
and the AIM line is for the moment acting as an
indicator rather than a numberline.

324



www.manaraa.com

Observation and Inference - A Computer Based Learning Module

by Alfred Bork and David Trowbridge
Educational Technology Center, University of California, Irvine

Arnold Arons
Department of Physics, University of Washington

Abstract

This paper reviews a computer dialog to
teach the distinction between observation and
inference. It is a self-contained program
designed to work with a wide range of students.

An important distinction in undertaking the
nature of scientific knowledge is that between
what is observed, seen directly, and that which
is inferred from the observed evidence. While
this distinction is, like all human distinctions,
not absolute, it is nevertheless extremely useful
in understanding the nature of scientific
information. It might also be considered an
imottant intellectual tool, one we want to bring
to students at as young an age as possible in
order to enhance intellectual development.

3xperience shows, however, that many
students at all levels, have difficulties making
the distinction between what is seen, and what is
reasoned. Even at the college level many
students do poorly on examples of this type.
Some of the cremtionist literature furnishes
striking examples of fuzzy distinctions,
exhibiting a failure to distinguish observation
from inference.

The same kind of distinction arises in
other disciplines. In studying history, for
example, it is necessary to distinguish between
primary information or evidence on the one hand
and interpretations or inferences drawn from such
material by the historian on the other.

The program to be described here is a
computer based learning module, intended for
students from about 12 yeaers of age or over,
concerning the distinction between observation
and inference. It involves a variety of
situations to illustrate and establish the
distinction. This project was funded by the
National Science roundation, through the
Development in Science Education Program. It is
primarily concerned with aiding students in early
adolescence, about the age of 12, to develop
intellectual skills which are important for later
life. Although initially the primary focus was
on various standard Piagetian tasks, we have also
considered other exercises in abstract logical
reasoning such as the one presented in the

308

present paper. This program has been tested with
a very wide range of students, in several
different environments, as will be discussed.

Environment

This module is about 15 to 20 minutes long
for the average student. It is embedded in a,
longer program called "Spacelab." The longer
program presents a fantasy about space travel in
which the student is the captain of a starship
which comes across another, derelict, starship
carrying some supposed "energy crystals."
Measurements of mass, volume and other properties
are made on these energy crystals to try to
decide which ones'might be a possible source of
energy (Fig. 1). Students are introduced to the
concept of density and use this idea to search
for crystals consisting of the same material.
From the standpoint of Piagetian tasks, the

El o czi A 0
NM Ni 111, AM IF ND INN

It 21 II 13 21

tress 11" ter eNuM er 1" ter reersug a blest.
Press I[11101 do tie seta is tit Mime.

Figure 1

A weighing experiment in the Spacelab dialog.

exercise is principally concerned with ratio
reasoning, involving the ratio mass/volume, but
an opportunity arises to lead the student into
making the distinction between what is observed
and what is reasoned.

The observation-inference module comes as

323



www.manaraa.com

the last sequence in "Spacelab," but it can also
be used independently of the larger program in
which it is embedded. In fact, we have two
versions of the module, one in which there are
reference to the "parent" Spacelab program and
one in which there are no such references, so
that the module can be used alone.

Program Outline

The program begins with a sequence from a
Sherlock Holmes novel, The Greek Interpreter,"
by Arthur Conan Doyle. There are many passages
in the Sherlock Holmes novel in which Holmes, or
in this case, his brother Mycroft, make a series
of startling deductions about a person or
situation based on what appear to be relatively
few, apparently insignificant, observations. We
have picked one of these passages to begin the
current program (Fig. 2). The entire passage is
first presented to the student in an attractive

Flame piss saute bars

NAt OM
Its eisoplete elmeing Mess

that be boo loot seam opt ewe.
Tbe fast Not he Is betas his we Mesas

late as though It we his elles
Is In bees bows, this. for WIPP.

...bort is a rattles
shish shoos that en it them is wry pose.

Tbe gift probable IWO la Mile
Tbe fast that be In platen best sir Its ire

shun that there is astir ohne to be the* of.

Figure 2

Excerpt from a Sherlock Holmes story.

way and with some associated visual information.
Then the program analyzes the passage,
classifying for the student several examples of
what is seen directly and what is reasoned out.
In each case, this is done by using a blinking
box surrounding a phrase or sentence of text, and
then classifying what is in the blinking box. At
this point the computer is being used in an
expository manner, but this is only a short
episode. Note that we are not using the
"technical" terms, observation and inference, as
yet.

The second activity in the Sherlock Holmes
sequence requires the student to make his own
classification of items still remaining in the
passage. The blinking box is still used to set
off a phrase or sentence, but now the student
must decide, on the basis of the earlier example,
whether each item refers to something that
Mycroft sees or to something which Mycroft
reasons out. If mistakes are made, they are
corrected.

309

When the examples in the passage are
exhausted, we finally introduce the words
"observation and inference" (Fig. 3). In much of
our materials at Irvine we have taken taken care
to avoid using a technical term until the idea it
denotes has been .-.,stablished operationally
through specific examples and shared experience.

>4[f tlTdlMi

la is nano, blest
miles pastilles

sae Footage is a rattle
use pastas is a metre beet

III the thisap Ia the first alum
an site dinette.

Is all thee

11151311TIN6.

Please wen spat bars

Figure 3

lest mew deer
Meg

es
eve

etwinlt his fe
Ne MAW wog Two

Oft IteI Ia shtleirth
has asother And

III the dams la tie NNW seise
we nivel beGL'

Meg ere armee_ at g rump.
free the 'Mutations.

kallthee

Introduction of terms, Observation and Inference.

The next sequence in the program concerns
counting the elapsed time interval between
lightning and thunder and calculating the
distance between the observer and the lightning
strike, the student having to answer questions
about observation and inference in this
connection. This sequence, however, is not
needed by all users. If someone shows no
difficulty going through the first "Sherlock
Holmes" sequence, then the lightning and thunder
activities are bypassed.

Please tress stage bars

Figure 4

Graphics for activity on counting grasshoppers.

323



www.manaraa.com

that statt gas It rant t

taw fetid asks get be use pasOieWs tare art ta 1k dale MIL

It is ugessile t mat nen pask,
bat pa eat to title wet Mod pt a mg% tin about In sag than ere.

Figure 5

Opening question for grasshopper problem.

The next component of the program involves
statistical inference. The student is presented
with a large field containing many jumping
grasshoppers (Figs. 4-5). The student is told
that it is impossible to count all the
grasshoppers directly, and he is invited to
suggest alternate strategies for getting some
idea of how many grasshoppers there are in the
field. Thus approximation and sampling come into
this activity. The student is led, though a
series of questions, to the idea of counting the
grasshoppers in a one meter square. The students

then count directly, watching the one meter
square with the jumping grasshoppers (Fig. 6).
The number of grasshoppers in the square
fluctuates slightly. The program checks
their value and gets them to count again if they
are far off. Students then determine the total
area of the field, and obtain an estimate of the
number of grasshoppers in the entire field.
Again, questions are asked about what is an
observation and what is an inference in this

oquenens

There is a final sequence providing further
exercises in discriminating between observation
and inference. We also show the student that not
everything we do can be classified as either an
observation or inference. For example, defining
a concept or inventing a name do not fall in
either category.

Observations of Usage

The modules developed under this grant, and
under a FIPSE grant concerned with public
understanding of science, have all been tested in
a variety of environments. The principal testing
environment has been public libraries. We have
found this to be a very useful environment, not
only to identify conceptual weaknesses in the
programs, but also to be sure the programs are
motivationally strong, holding viewers even in a
library environment where there is no pressure

310

1 kter

1 weer

lee Is a elese q glee of Ile rater spare.
Sat& It for a 'bile,
aal til la attests bee easel risibenes there art ta

Press epee bar eke pa are reed'.

Figure 6

Exercise on counting a fluctuating number of
grasshoppers.

to stay at the display.

This program has gone through a number of
revision stages after such testing. It now works
well with a wide group of individuals. We are
also using it as one of the programs in another
research program involving the behaviour of
groups in using computer based learning material.
In this case we videotape groups employing the
material, capturing their conversation, emotions,
and key pushes at the computer. This, too, has
been useful in understanding how the program
works and in leading to additional revisions.

Plans

The program currently runs on its
developmental hardware, the Terak 8510/a. The
choice of delivery hardware will be made by the
Educational Technology Center and the
distributor. We are currently conducting
discussions with several companies about the
possibility of having these materials available
commercially.

At the moment, users with Terak 8510/a's
can obtain copies of the program at our cost. An
order form is available from the authors.
Currently the program is not availaW.e on other
personal computers, although segments run on the
IBM Personal Computer in connection with another
program.

327



www.manaraa.com

DOES USE OF MICROCOMPUTERS IN JUNIOR HIGH SCHOOL INCREASE PROBLEM SOLVING SKILLS

Barbara Kurshan
Joyce Williams
Nancy Healy

Hollins College
Hollins College, VA 24020

ABSTRACT

This Is a study to determine if the use of the
microcomputer increases problem solving ability
of seventh grade students. Two seventh grade
classes from similar schools in Roanoke, Vir-
ginia were selected for the study. The first group
was exposed to introductory computer literacy/
computer programming activities for an entire
year in a microcomputer lab. The second group
did not have a computer lab in the school. The
preliminary results indicate that students
exposed to computers show increased problem
solving ability. Hopefully, this study will
encourage others to explore the benefits of the
computer as a tool for increasing problem
solving skills.

Introduction

"Children learn by doing and by thinking about
what they do" (Papert, 1980, p.161). This process
of doing and thinking should ultimately provide
children with the ability to solve problems. The
introduction of the microcomputer into the learning
process enhances the "doing" area of learning. It
gives children the "power" to view and solve
exciting problems. The skills used to solve prob-
lems are perhaps enhanced by the use of the com-
puter. Students appear to be able to grasp the
true significance of broader problems. They are
able to apply algorithms that in the formal rather
than experimental setting are lost to the learner.

The assessment of the impact of microcomputer
use on the problem solving abilities of students
has diverse benefits. Educational decision makers
can use the data for substantiating the need for
zomputers in the school. Curriculum designers
could redesign portions of courses that teach prob-
lem solving and include a greater emphasis on
computer learning. The classroom teacher will
hopefully be more inclined to use the computer for
project design, creation and implementation. In
general, the educational community certainly
realizes and enthusiastically embraces the need
for the computer in the classroom because of its

311

inevitable impact on society. However, if this
study and future research can give some evidence
to the increased problem solving ability that
students gain from "doing" then the issues con-
cerning the microcomputer in the classroom will
perhaps have a central focal point. This study
is an initial attempt to begin to form that base
of data to answer the question "Does the use of
the microcomputer for learning increase problem-
solving ability?"

Background

The emphasis of the research concerning the
effect of classroom computer use on student per-
formance has focused on comparing CAI (Computer-
assisted instruction) to traditional instruction
and the effects of computer programming.by
students on problem solving skills. The major
emphasis of research concerning general computer
use has investigated the effect of CAI use on
achievement when compared o traditional instruc-
tion (see for review Dence

'

E dwards, Norton,
Weiss and Dusseldorp3 Forman 4; Jamisoni,Suppes
and Wellsl° and Kulik, Kulik and Cohen"). Re-
search that has investigated the effect of CAI
and traditional instruction has generally shown
that the combination of CAI and traditional
instruction is the most effective and requires
less instructional time than traditional instruc-
tion.

The reviewers of the CAI vs traditional instruc-
tion studies generally support the effectiveness
of classroom computer use. Edwards, Norton,
Taylor, and Dusseldorp3, for example concluded as
a result of their study in elementary schools,
traditional instruction supplemented by computer
based instruction was more effective than tradi-
tional instruction along. Jamison's et al.10
survey of the effect of CAI studies found that dis-
advantaged elementary school students appeared to
show the most achievement gain when using CAI.
Further, Jamison's et al.1' concluded that CAI
was most effective when used as a supplement to
regular instruction and that the instruction time
was less. Edwards' et al.3 and Jamison's et al.i°

findings indicate that using CAI in conjunction
with regular classroom instruction improves
achievement, that students take less time to learn
the material and students that are less academic-
ally prepared and from lower socioeconomic appear
to benefit more from computer use.

Dence2, Forman4, and Kulik's et al.12 reviews
present a current perspective of the state of

328



www.manaraa.com

computer use on student achievement and identify
outcomes of computer use that are very similar.
In accordance with the aforementioned researchers,
Dence2 reported that CAI students that receive CAI
and traditional instruction obtain higher scores
than those students who receive only CAI or only
traditional instruction. Dence also reported
that CAI students appear to have a greater re-
tention of material than students that were taught
only by the traditional method. Students that had
prior familiarity with CAI or subject matter
benefitted more when using CA/ and students with
initially low levels of achievement tend to show
greater test gains (pretest and posttest)2.
Similar conclusions were made by Formang. It

appears that regardless of the age of the student
or type of hardware used students tend to show
improvement in achievement scores. Further, it
seems that students that have prior experience
with the computer or subject tend to benefit even
more from computer use.

The general conclusion drawn from the litera-
ture related to the issue of CAI vs traditional
instruction is that CAI, when used as a supple-
ment to traditional instruction, does produce
greater achievement. Further, there appear to be
factors other than the delivery method that in-
fluence achievement when CAI is used in schools.
For example, the socioeconomic factor introduced
by Jamison et al.1(); the prior familiaripffactor
introduced by Dence2 and the ability factor,
addressed by Jamison et al.1002 and Formed,:
seem to influence the amount of achievement gain
and instruction time.

Investigations of the effects of computer pro-
gramming by students on problem solving skills
(Johnson and Harding6, Milner13,Ronan14,
Wilkinson17, and Holoien9) have also been con-
ducted. Research has shown that studenti learn
the content better when they write and run their
computer programs (Foster52 Johnson and Harding6,
Milner13, Holoien9, RonanI4, and Wilkinson17.)
Foster5,for example, investigated how students'
use of computers and flow charts effect their
problem solving ability. Sixty-eight eighth
graders were placed in four treatment conditions:
(1) use neither computer nor flow chart; (2) use

flow charts only; (3) use computers only and (4)
use computers and flow charts s. Over a

period of twelve weeks each student was provided
with 24 tasks that required both computer and non-
computer solutions. Foster found that the third
condition (i.e. only used computer) had significant
mean differences on processing hypothesis, identi-
fying a pattern, and selecting relevant data. The

data also showed tha: group 2 and 4 performed
better than the grown that used neither the
computer nor flow chart. Milner13 and Ronan' s14

findings are very similar to Foster's5. That is,

students that were taught programming and given
problem solving tasks to perform showed greater
achievement gains than those students.that did not

use the computer.

Description of Study

The research comparing CAI to traditional in-
struction and the research investigating the

312

effect of computer programming on students'problem
solving behaviors indicate that general computer
use enhances students' achievement and problem
solving performance. The present study while
continuing in the same tradition as those pre-
viously cited, differs on several specific features.
First, the treatment consists of only one group of
students being exposed to the computer in math
class. However, the students were not trained in
a specific computer skill nor were they given spe-
cific CAI material to use. They were given a
variety of computer experiences including games,
programming, CAI and simulations. The control
group did not use computers in their math class.

The second feature of this study is data
obtained from school records of eighth grade stu-
dents in both schools. Third, problem solving be-
haviors were assessed by students' performance on
the problem solving subtest of the SRA Achievement
Series test and the Hartman Test of Causal Reason-
ing. Finally, prior familiarity was manipulated
by assessing students' general use of computer
through their ratings on the Prior Exposure to
Computers Index (Anderson, et al.1). It should be
noted that for the purposes of this study, general
computer exposure is defined as using CAI, gaming
and simulation, computer programming, and experi-
ence with arcade games.

The Prior Exposure to Computers Index was used
for the reasons of ecological validity; it was
reasoned that while general computer use has been
used to establish the power of a variable, valida-
tion in a natural setting with students of similar
SES and intellectual ranking, and the Prior Expos-
ure to Computers Index would strengthen the con-
clusion of the difference in performance being due
to general computer use in the math classroom.
Thus, the predictions based on the research are
that: (1) students that are exposed to computers
in their math classroom, regardless of their prior
exposure to computers, will show significantly
higher problem solvinc; scores on the problem
solving measures;(2) students that have had little
or no prior exposure to computers and are exposed
to computers in their math classroom will show
significantly higher problem solving scores on the
problem solving measures than no prior exposure
students that did not use the computers.

Procedure

The experimenters interviewed school officials
in the spring of 1982 to receive permission to pro-
ceed with the study and to receive advice on
choosing a control school. The experimental school
was chosen by the fact that it was the only junior
high school in the city where all students within
a grade would use computers. The control school
was chosen because it was more similar to the
experimental school than any other junior high
school in the city. In the fall of 1982, the
principals, teachers, and guidance personnel at the
two schools were involved in the study.

Standardized test scores and other relevant
data were gathered from school records by the
experimenters and recorded on the Check-Off Sheet
for Computer Study. They were assisted

by two Hollins College student assistants. Data

3 2



www.manaraa.com

includes scores for reading, math, problem-solving
and EAS - Educational Ability Series Tests.

The curriculum at Woodrow Wilson does not, at
the present time, include instruction using com-
puter instruction if funds become available.
Students at Breckinridge were offered the oppor-
tunity to enroll in microcomputer/math classes
during the 1982-1983 school year. A follow-up
study of standardized test scores for the spring
of 1983 is planned for both the experimental and
control gro'Ips.

Selection of Students '

Students selected for this study come from the
present eighth-grade classes at two of Roanoke
City's six junior high schools, Breckinridge and
Woodrow Wilson. These two schools have similar
socioeconomic profiles.

The population at both schools can be describ-
ed as middle-income but with some lower-income
and some higher-income families. Single family
homes predominate the neighborhoods from which
these schools draw students, but both school pop-
ulations include students who live in federally-
funded housing projects.

The city's school population is 20% black and
almost 80% white. At Breckinridge, almost 23% of
the students are black and 77% are white. At

Woodrow Wilson, almost 26% of the students are
black and almost 75% of the students are white.
Less than 1% of the students from either school
belong to other ethnic or racial groups.

Both schools consider their student population
very stable, with transient students not a problem.
The ability levels and achievement levels of the
total student population within the two schools
are similar to within several points on stan-
dardized tests.

The experimental group consists of the students
at Breckinridge Junior High School where computers
were used in math classes. The control group con-
sists of students at Woodrow Wilson Junior High
School were there were no computers in classrooms.

Students who transferred into or out of either
school were excluded from this study.

Selection of Tests

Several testing instruments were used in this
study. To test for problem-solving ability, the
problem-solving subtest of the Mathematics portion
of the SRA Achievement Series were used (SRA,1980).
Sixth-grade scores were used as a pre-test; seven-
th-grade scores were used as a post-test. An
additional measure of problem-solving ability was
the Hartman Test of Causal Reasoning, (Hartman7).
To determine the level of prior exposure to com-
puter use, questions were formulated from the
Anderson, Klassen, Hansen, and Johnsonl study.

The SRA Achievement Series was used for several
reasons. It has previously established levels of
reliability and validity. Since students take
these tests every spring as part of the school's
regular testing program, they cost students no out-
of-class time. They provided pre-test information
which could not have been obtained otherwise. The

313

Math Portion of the SRA Achievement Series included
a subtest specifically aimed at the area of problem-
solving.

The Prior Exposure to Computers Index
(Anderson, et al.1) was used as the measure of
students previous exposure to computers. It was
taken from a study of affective and cognitive
effects of microcomputer based instruction.

The Hartman Test of Causal Reasoning
was chosen as an additional measure

of problem-solving ability. It is not a mathemat-
ical test and requires more verbal reasoning skills
than mathematical reasoning skills. It requires
55 minutes of class time to administer. The
instrument is a multiple-choice Test of Multivari-
able Causal-Logical Competence, constructed by
Cheryl Hartman 7 to assess the four forms of
reasoning (i.e. Form I: the ability to validly
induce an equivalence causal relationship, Form II:
the ability to validly induce a multiple sufficiency
relationship, Form III: the ability to validly in-
duce a multiple necessity relationship and Form VI:
the ability to validly induce that a data contra-
diction can only be resolved by invoking a hypo-
thetical variable; Forms IV and V of the model were
not studied due to pragmatic limitations.)

Method of Testing

The SRA tests were administered by homeroom
teachers within each school. Students took these
tests in the spring of 1981 and 1982 as part of the
regular school program. Teachers giving these tests
received standardized instructions for administer-
ing them.

The Hartman Test of Causal Reasoning will be
administered to 30 students Irom each school popu-
lation. Students will be chosen randomly within
male and female groups. These students will be
tested in groups of five with the experimenters
serving as the tesbas. This setting should approx-
imate the individual testing done in Hartman's
research.

Analysis

T-tests were done on the groups (school, prior
exposure, and sex) the means of GainEAS scores,
EASproblem solving scores and the Hartman Problem
Solving test scores were compared by group. The

probability level of (p<.10) was set. Even though
this was an expofacto experiment, a 90% chance of
computer use in the classroom affecting students'
problem solving ability is important.

EAS Gain Score Analysis (GainEAS)

The T-tests comparing the "GainEAS" by school
and sex were not found to be significant at the
.10 level. There was a notable difference in the
"GainEAS" means scores in favor of Breckinridge.
However, the small sample sizes and large varia-
bility between the scores may possibly have in-
fluenced the findings of no significance (Table I).

There was a significant (p<.074) between the
mean "GainEAS" score of low exposure Breckinridge
students (X=5.8983, 0=9.234, N=59) and the mean
"GainEAS" score of low exposure Woodrow Wilson
students. These results indicate that the Breck-

3 3



www.manaraa.com

inridge low prior exposure to computers, students
benefitted more, in terms of "GainEAS", than any
of the other students in the study.

Group

Table I
GAINEAS

Mean SD Prob,

Schools
4.8280 8.872 1.26 .209Breckinridge

(N=93)

Woodrow 3.3269 7.708
(N=104)

Sex*
5.7736 8.617 1.21 .230Girls at Breck.

(N=53)

Girls at Woodrow 3.9153 7.544

(N -59)

Boys at Breck. 3.5750 9.156 .55 .587

(N -40)

Boys at Woodrow 2.556 7.936

(N -40)

Prior Exposure

2.9706 7.998 -0.43 .672High-Breck.
(N=34)

High-Woodrow 3.8750 4.518
(N=8)

Low-Breck. 5.8983 9.234 1.81 .074*

(N=59)

Low-Woodrow 3.2813 7.930
(N.96)

* Sex of some subjects were unknown.

EAS Problem Solving Gain Score (GainPSZ Analysis

Significant (p<.10) differences were not found
in the mean "GainPS" scores of groups (school and
prior exposure) (Table II). There was, however, a

- significant difference (p<.002) shown between the
"GainPS" in high exposure students at Breckinridge
(X=2.3056, SD -.208, N=36) and high exposure students
at Woodrow Wilson(X=-1.000, SD=1.549, N=6). The
high-exposure students at Breckinridge apparently
gained in problem solving skills over the year.
This gain may possibly be attributed to these stu-
dents use of the computer in the classroom. There
was also a significant (p<.04) difference in the
problem solving gain scores between the boys at
Breckinridge (X=2.5950, SD=4.150, N=40) and the boys
at Woodrow Wilson (X=.8000, SD=3.436, N=40). It is

apparent that more boys at Breckinridge increased
their EAS scores than boys at Woodrow Wilson. As

mentioned earlier, the level of significance may
have been influenced by the amount of variability
between the scores and the small sample sizes.
Nonetheless, it appears that students that were
exposed to computers in the classroom did show im-
provement in their problem solving scores on a
standardized measure.

Table II
GAINPS

Group Mean SD T. Prob.

Schools

Breckinridge 2.33 4.224 1.22 .225

(N=90)

Woodrow 1.6111 3.714
(N=90)

Sex

Boys 1.875 3.890 0.86 .390

(N=80)

Girls 2.200 4.060
(N=100)

Boys Breck. 2.5750 4.150 2.08 .041*
(N=40)

Boys Woodrow .8000 3.436
(N=40)

Girls Breck. 2.140 4.314 -0.15 .883

(N=50)

Girls Woodrow 2.2600 3.832

(N=50)

Prior Exposure

2.3519 4.274 .78 .423Low-Breck.
(N=54)

Low-Woodrow 1.7976 3.757
(N=84)

High-Breck. 2.3056 4.208 3.50 .002*

(N=36)

High-Woodrow -1.000 1.549

314

(N=6)

Hartman Problem Solving Test Analysis (PSScore)

The data from the Hartman test analysis is not
complete. However, preliminary analysis show that
there is no significant difference between the per-
formance of girls and boys on this test. The
analysis does show an unexpected significant dif-
feience between the mean test score of the two
schools. That is, it appears that the control
school (Woodrow Wilson) students performed better
on the Hartman test than the,Breckinridge students
who were exposed to computers in the classroom.
However, it is again noted that these data are in-
complete and inferences made from it are not reli-
able. This test is being repeated for Spring, 1983
data.

Discussion

The data support to a degree the beginning
assumption that students that have been exposed to
computers in the classroom will show high problem
solving scores. The data even though incomplete
indicates that high exposure students that have
been exposed to computers in the classroom tend to
increase their problem solving scores. There is no
significant evidence that students that have had
low exposure to computers and are exposed to com-
puters in the classroom perform better on problem

331



www.manaraa.com

solving measures. However, there is evidence that
students that have little prior exposure to com-
puters and are exposed to computers in the class-
room do improve their over all intelligence scores.
Perhaps upon completion of the Hartman analysis the
picture of students problem solving performance
will be clearer.

Conclusion

The use of computers in education will continue
to grow at an even more rapid rate than today.
Educators need to know that the computer is more
than a "fun" way to learn. If computer use does
increase problem solving ability then the designers
of curriculae should incorporate this factor into
learning programs. However, it is difficult to
satisfactorily design a program to teach problem
solving skills. Therefore, if the computer can be
used and one of the inherent benefits, whether
formally identified or imbedded in the "nature of
the beast", is an increased problem solving ability,
then learning with micros is certainly ideal.

References

1. Anderson, R.E., Klassen, D.L., Hansen, T.P.,
& Johnson, D.C. The affective and cognitive
effects of microcomputer based science
instruction. Educational Technology Systems
1981, 9, 329-35.

2. Dence, M. Toward defining a role for CAI: A
Review. Educational Technology, 1980, 20,
50-54.

3. Edwards, J., Norton, S., Taylor, S., Weiss, M.,
& Dusseldorp, R. How effective is CAI? A
review of the research. Educational Leader-
ship, November 1975, 33, 147-153.

4. Forman, Denyse. Search of the literature. The
Computing Teacher, 1982, 37-49.

5. Foster, T.E. The effect of computer program-
ming on student problem solving behaviors in
eighth-grade mathematics (Doctoral disser-
tation, University of Wisconsin, 1972).
Dissertation Abstracts International, 1973,
33, 4239A.

6. Harding, R.D. Computer-aided teaching of
applied mathematics. International Journal
of Mathematical Education in Science and
Technology. 1974, 5, 447-455.

7. Hartman, Cheryl W., The construction and
empirical investigation of a model of multi-
variable causal logical competence, Appendix,
Roanoke, Va., 1982.

8. Hatfield, L.L., & Kieren, T.E. Computer-assist-
ed problem solving in school mathematics.
Journal for Research in Mathematics Edu-
cation. 1972, 3, 99-112.

9. Holoien, M.O. Calculus and computing: A com-
parative study of the effectiveness of com-
puter programming as an aid in learning
selected concepts in firnt-year calculus.
(Doctoral dissertation, University of
Minnesota, 1970) Dissertation Abstracts
International, 1971, 31, 4490.

315

10. Jamison, D., Suppes, P., & Wells, S. The
effectiveness of alternative instructional
media: A survey. Review of Educational
Research, 1974, 44, 1-61.

11. Johnson, D.C. Programmed learning: A com-
parison of the school mathematic study
group programmed and conventional textbooks
in elementary algebra (Doctoral dissertation,
University of Minnesota, 1965). Dissertation
Abstracts Internationa, 1966, 26, 5294.

12. Kulik, J.A., Kulik, & Cohen, P.A.
Effectiveness of Computer Based College
Teaching. Educational Technology, 1981,
307-318.

13. Milner, S.D. The effects of teaching computer
programming on performance in mathematics.
(Doctoral dissertation, University of Pitts-
burgh, 1972). Dissertation Abstracts Inter-
national, 1973, 33, 4183A.

14. Ronan, F.D. Study of the effectiveness of a
computer when used as a teaching and learn-
ing tool in high school mathematics.
(Doctoral dissertation, University of Michi-
gan, 1970). Dissertation Abstracts Inter-
national, 1971, 32, 1264A-1265A.

15. SRA Achievement Series, Forms 1 & 2. Scienre
Research Associates, Inc., 1980.

16. Taylor, Robert P., editor, The Computer in the
School; Tutor, Tool, Tutee, Teachers College
Press, New York, 1980.

17. Wilkinson, A. An analysis of the effect of
instruction in electronic computer program-
ming logic on mathematical reasoning ability
(Doctoral dissertation, Lehigh University,
1972). Dissertation Abstracts International,
1973, 33, 4204A.

332.



www.manaraa.com

DIVERGENT ANSWERS TO THE QUESTION,
"WHERE SHOULD COMPUTER EDUCATION DOLLARS BE SPENT?"

Arthur Luehrmann
Computer Literacy

Eric F. B'irtis
President, Centurion Industries, Inc.

Beverly Hunter
Human Resources Research Organization

ANSWER 1:

Not on General Purpose Computers at the Elementary Level. All this emphasis on general
purpose computers is taking elementary school dollars away from where they belong:
teaching the basic skills of reading, writing, and arithmetic. What good are computer
skills and knowledge to a kid who can't even spell or add? Save the money and invest it
in effective systems for teaching basic skills. -- Eric F. Burtis.

ANSWER 2:

On the Social and Ethical Issues of Computer Use. Before committing vast sums to training
a generation of programmers, we should be certain that all students know how computer use,
proper and improper, can affect the individual and the society. Mere technical expertise
is not the answer. -- Beverly Hunter.

ANSWER 3:

On Teaching a New Basic Skill: Computing. Learning to use a computer is learning a new
way of writing and thinking. People who have this skill can solve more complex problems
than others, manage information better, and get better jobs. Schools should provide these
new skills for the same reasons they teach other basic skills. -- Arthur Luehrmann.

316

333



www.manaraa.com

An Evolving Model for Providing
Computer Education for Gifted Children

Mary Crist, Chair
The Ames Hill Center for Gifted Children

Wilbraham and Monson Academy
Wilbraham, MA 01095

NBSTRACT
The Ames Hill Center for Gifted

2hildren, a part of the Wilbraham and
Monson Academy, serves 340 students (ages
3-16) from the Greater Springfield
metropolitan area in western Massachusetts,
and northern Connecticut through the
Afterschool, The Saturday School, and two
summer sessions.

Although there often appears to be
little agreement as to the true nature of
giftedness, this presentation will discuss
five specific characteristics of the gifted
child that appear to be critical to
learning computer programming.
Ccasideration will also be given to the
influences of I.Q. and chronological age.
A challenge to educators is issued.

The computer education program at Ames
Hill consists of four programming
languages. The Logo language serves to
introduce students with no previous
computer experience into the
non-threatening world of computers. BASIC,
PASCAL, assembly language, and FORTH guide
students into creative areas of

Pat Semmes
Department of Computer Science
Trinity University
San Antonio, TX 78284

Elaine Henshon
The Ames Hill Center for Gifted Children
Wilbraham and Monson Academy
Wilbraham, MA 01095

317

computing--problem definition and solution
through algorithm definition. The pros and
cons of the programming languages we have
experienced will be presented.

Observed characteristics, including
individual learning styles of gifted
children in computing courses, will be
described. Factors, such as the ability to
work with a partner, tolerance for
frustration, and the needs for exploration
and limited structure will be examined.
The presentation of case studies of
students in Logo will provide additional
information regarding processes used in
problem solving and the relationship
between (1) age and level of achievement,
and (2) selection of goals.

The cost of microchips continues to
decline, and as it 'does, the economics
dictate that a whole new set of tools will
become available. We will examine these
tools, including speech, speech
recognition, robotics, and others, and
their anticipated impact upon the education
of gifted children.

334



www.manaraa.com

Training University Faculty in the Use of
Computer Graphics

Richard G. McGinnis
Bucknell University

ABSTRACT
Interactive computer graphics is a

powerful means of presenting and
manipulating complex data in visual form.
The technology of this field has grown
rapidly in the last decade; and computer
graphics is now widely used in the areas of
engineering and science that require
design, analysis, and the presentation of
digital data. Other, less well known
applications have been developed in
non-engineering disciplines: digital data
processing in linguistic studies, art and
dance applications, computer-assisted
musical score generation, demographic and
geographic mapping, medical x-r:y image
processing, and social science statistical
displays.

Recent efforts to incorporate this
technology into the curricula of higher
education have been largely restricted to
the engineering disciplines. There is,
however, enormous potential for the
application of computer graphics into other
curricula at both the undergraduate and
graduate levels. For example, in the
social sciences, computer mapping routines
could be used to show the distribution of
various demographic characteristics such as
income levels, ethnic populations, contours
of percents of political party
registrations, contours of the incidents of
various diseases, etc. In art, students
could use computer graphics packages to
experiment with various shapes and shadings
to produce different types of drawings;
while chemistry students could use graphics
to investigate the molecular structures of
various compounds.

In 1982, Bucknell University received a
grant from the Exxon Education Foundation
for the purpose of expanding Bucknell's
interactive computer 'graphics capability
and its curricular impact to appropriate
disciplines in the sciences, social
sciences, and humanities. Since computer
graphics is a relatively new teaching tool
and many faculty members have little, if
any, knowledge about its potential
applications in undergraduate instruction,
the project emphasized faculty training and
curricular revision.

In the first phase, the project director
met with the departments on campus to

explain the characteristics of computer
graphics and 1,;(3 identify potential
applications of computer graphics within
the various disciplines. Next, interested
faculty members submitted proposal
indicating how they would like to use

computer graphics within various
disciplines. Next, interested faculty
members submitted proposals indicating how
they would like to use computer graphics in
courses, and from these proposals software
needs and equipment needs were identified.
The third phase, faculty training and

course development, occurred during the

summer when the twenty-two participants
were given intensive instruction, including
an overview of computer graphics concepts,
the use of computer graphics devices,
"hands on" experience with available
software packages, and discussions of

appropriate ways to improve teaching
effectiveness through the use of computer
graphic technology. Following the

instruction period, the faculty
participants developed the teaching
materials necessary to integrate their'

proposed graphics applications into their
courses. Implementation occurred during
the 1982-83 academic year.

Case studies of two of the faculty
participants are presented. The first is
that of an English/Theatre professor who
had no prior computer experience and who
wanted to use computer graphics as an aid
to teaching scene design. One of the

difficulties of teaching scenic design is
that students with a keen interest and
talent for design often have poor rendering
skills and little or no understanding of
perspective drawing techniques; and thus,
they cannot accurately visualize their
ideas on paper. However, computer graphics
can lift theatre design classes from the
realm of drawing and composition into what
they are intended to be: courses in

scenography.

318



www.manaraa.com

Tfte secona case study presented is that
of an economics professor who had previous
computer experience but none with computer
graphics. Her project involved the
development of a program to produce
"bulging" pie charts that could be uses for
econometric analyses.

The project was very successful in
stimulating faculty and student interest in
computer graphics. During Fall, 1982,
there were over 14,000 programes run (total
student enrollment at Bucknell is 3,500)
using computer graphics, and the level of
activity should increase as faculty members
implement additional uses of graphics in
their courses.

PANELISTS:

Daniel C. Hyde
F. Elaine Williams
Jean A Shackelford
Bucknell University
Lewisburg, PA 17837

319
336



www.manaraa.com

Recommendations for Programs in Computing
at Small Colleges

John Beidler, Chair
University of Scranton
Scranton, PA 18510

ABSTRACT
An ad hoc committee of the ACM Education Board has been formed to update and revise the

curriculum recommendations for small colleges that was published in 1983. Since a number
of fine curriculum recommendations have been published by the ACM and other organizations,
this committee plans to develop its report as a consulting/planning document that takes
into consideration the special environmental and resource problems that many small

colleges must face.
The committee will complete its report before the end of 1983. At this time the

committee will present a preliminary draft of its report. The audience will be encouraged
to respond to the report and provide their input to the committee.

PARTICIPANTS

Richard Austing
University of Maryland
College Park, MD 20742

Lillian Cassell
Goldey Beacon College
Wilmington, DE 19899



www.manaraa.com

COMPUTERS AND QUANTITATIVE METHODS: HEALTHY FOR THE HUMANITIES?

by Rudy S. Spraycar

Data Processing Department
United States Fidelity and Guaranty Company

Baltimore, Maryland 21203

Abstract

The advent of the computer has enhanced the
ability of the humanist to apply the quantitative
and statistical research methods that have been a
mainstay of the natural and social sciences.
Controversial in nature, these techniques have at
times been misused. Further, a solid theoretical
foundation for quantitative approaches to research
in the humanities is still to be sought.

Introduction

Since C. P. Snow first pointed out "how very .

little of twentieth-century science /had/ been

assimilated into twentieth-century artj or into the
"Literary Culture" in general, and W. H. Auden wrote

"Thou shalt not sit / With statisticians...,
"2

many
humanists have made great strides in the learning of
science and technology for which Samuel M. Hines,

Jr., has called.
3

Indeed, C. E. Kaylor, Jr., went
so far as to argue that "much of the research in the
humanities has now become at least quasi-

scientific,
"4

and if this is so it can be laid in
great measure at the door of the computer. Perhaps
no technological development has had so great an
impact upon research in the humanities as the
computer has had. Apart from facilitating the
preparation of such traditional research tools as
bibliographies, indices, and concordances, the
computer made possible the proliferation of
quantitative and statistical analyses of the matter
of the humanities.

This is a salutary counterweight to the efforts
to fill such perceived vacuums in disciplines
outside the humanities as the need for ethics and

values, as Hines has stressed;
5
it is a hopeful and

healthy sign that humanists are now methodological
borrowers from as well as lenders to their
scientific colleagues.

The Problem

Nevertheless, this trend has exacted a
considerable price. Bowman L. Clarke recently
observed that humanists' welcoming new methods and
technologies in spite of their colleagues' rejection
of such "Faustian" behavior has polarized some
disciplines; he offers the example of the gulf

321

between 'humanistic psychology" and "experimental

psychology.
"6

Giles Gunn would add the extremes
among historians represented by "the computer
programming of the cliometricians" on the one hand,
and the studies of cultural historians of the
traditional school, on the other; Gunn also finds

European structuralism "scientistic to the core.'
Far less polemical is Morton W. Bloomfield's
distinction between the "part of the humanistic
process /That? is obviously analytic and scientific,"
concerned with knowledge "from the outside," and, on
the other hand, the concern_ with "inward

experience,"
8

as he recasts the commonplace
distinction between "objective" and "subjective"

elements of humanistic study.
9

It is the former
with which the present paper is concerned, drawing
examples chiefly from literary research. After all,
Monroe C. Beardsley has remarked that "in so far as
the student of literature is interested in...
describing or interpreting what he finds, he relies
upon plain (though by no means simple) empirical

methods."-
10

Eric Weil puts the interdisciplinary borrowing
of empirical tools in perspective when he reminds us
that "psychoanalysis, statistics, and structural
analysis provide the humanist with new tools he must
employ simply because they are there. These tools
g.ve him the opportunity to look at his material
from new perspectives.... What we have...are new
auxiliary sciences.... Auxiliary in relation to the
humanities.... But does it not then follow that the
humanities should have their awn kind of
'scientificity,' besides and above that of these

sciences...?"
11

Or as Clarke puts it, "What is
needed is a new philosophic stance /that/ must see
scientific methodology for what it is, merely a
sharpening of man's powersof accurate observation
and logical deduction.... On this depends the

future of the humanities."
12

But what of the peculiar problem raised when a
humanist borrows only the most rudimentary of the
quantitative tools and methodologies developed by
the natural sciences and in some measure
appropriated by the social sciences? Here, the
presence of a computer printout only seems to
enhance the objectivity of the results; the adage
"Garbage in, garbage out" seems apt. In other

333



www.manaraa.com

words, the dangers of the American version of the
two cultures really lie less with the stolidly
resistant humanist whose knee-jerk.reaction against
computers and .quantitative methods may well be
fundamen1-1,,Ay-anti-intellectual than in the
ignormmca_ :anwever tolerant or enthusiastic, of the
blftta_b.mm=m1=7.-who applies with apparently elegant
sir ,.city...aarathodology borrowed from our

sr------r4, 71y-trained colleagues to an age-old
humaniszic =xux. or conundrum.

Pseudo-Science

The study of Classical and medieval epic offers
an example that illustrates some generalities about
hasty and literally "undisciplined" inter-
disciplinary borrowings. It is to a would-be
scientific impulse that one may attribute the
attractiveness of an "acid test" to establish simply
and conclusively the provenance of a troublesome
text. I refer to the relatively well-known "oral-
formulaic" theory of Milman Parry and Albert Bates

Lord,
13

originally a rather subtly conceived and
carefully qualified hypothesis that the study of
Homeric style may be illuminated by the living oral
epic tradition in Yugoslavia. In latter days,
however, the attractiveness of an easy, quantitative
mode of analysis for troublesome Classical and
medieval texts, inspired less by scientific method
than by a credulous misunderstanding of what a
"living laboratory" of poetic composition might
signify to a "man in a white coat," does little
justice to Protessor Milman Parry's original genius.
To be sure, it is a radically attractive notion that
one might, simply by counting the number of poetic
phrases repeated elsewhere in a "literary" text,
adding them up, and dividing by the number of
phrases in the whole sample, thus calculating a
"percent formularity" as a measure of the
repetitiveness of the text, demonstrate
incontrovertably that a given poem--say Beowulf or
the Chanson de Roland--was composed by illiterate
means, despite the common-sense testimony of the
text's survival in written form.

But some of the followers of Professors Parry
and Lord have been plagued by such methodological
difficulties as the labelling as "statistical
analysis" of what should be called "raw data":
numbers generated by elementary arithmetical
operations like counting or adding up and dividing.
Indeed, few studies of this literary problem have
mentioned even so fundamental a qualification as
the "margin of error" resulting from the sampling
technique that we have come to expect from the
purveyors of public opinion polls. Similarly, the
discounting of a wide disparity in the relative
lengths of two samples of poetry analyzed for
repetitive diction (without apparent regard for the
probabilistic principle that the longer anyone, poet
or not, speaks, the greater is the likelihood of
repetition), flies full in the face not only of

mathematics but of everyday experience as well.
14

Further, to find, for example, in a disparity of
five percentage points between the degrees of
repetitiousness of two poems of unequal length
grounds for making a determination whether a text
was composed orally or in writing betrays a

misplaced faith in crude arithmetic.
15

Here one
might wish to be reassured that a five percent
difference in "percent formularity" cannot be
attributed to the margin of error.

Among studies in this area, there are few
instances of collaboration between humanists and
statisticians. To be sure, some recent
dissertations have been written by scholars with
serious training in both the humanities and in, for

example, statistics.
16

Though such scholars are
rare, and their works make unprecedented and often
nearly impossible-darands on their humanistic
readers, they nevertheless represent a healthy trend
that will in time contribute greatly to a solution
of a part of the problem.

In the meantime, however, while the ranks of
such interdisciplinary scholars are thin, other
problems are arising as less well prepared
humanists attempt to develop new methods on their
own. One of the worst consequences of this activity
is its effect on the humanities' credibility in the
intellectual community at large. Of much greater
destructive potential, however, are the consequent
resentments and divisiveness among humanists.

Methodological Caveats

What deserves our careful consideration, then,
is less our attitude toward new research tools in
general than our profound need to carry over along
with these tools the methodological caveats and
restrictions that responsible scientists place on
their use. The real problem in need of resolution
and requiring the concerted efforts of us all is
not a conflict between technological or quantitative
approaches and the matter of humanistic study; it
is the disregard for the very intellectual
apparatuses without which the scientists' tools are
little more than toys, that can be inimical to
traditional humanistic concerns.

322

For example, a bulwark of scientific method is
the formation and testing of hypotheses. But John
Reichert has pointed out that "one of the tests of
a scientific hypothesis is its predictive capacity.
To the extent that it predicts well other events
beyond the event it was designed to explain, its
validity is established. This aspect of hypothesis
testing points up nicely one of the fundamental
features of criticism.... Our critic in the role
of interpreter or teacher is not concerned with the
discovery of general laws that will apply beyond
the work. His target is an understanding of the
individual literary event in its uniqueness. In

this respect his task is somewhat like the
historian's as it was conceived by philosophers
like R. G. Collingwood and Michael Oakeshott, both
of whom stressed the uniqueness of historical events

and the need to "get inside" them."
17

Or, in Frank Kermode's more succinct terms,
"Certainly science is about reality experienced as
repetitive, and art about reality experienced as

constituted of unique events....
"18

Of course as
Eric Weil has observed, when the humanities, or

3 3



www.manaraa.com

more usually the social sciences, examine non-unique
phenomena, their methods approach those of the
natural sciences: "The social sciences are situated
on the same terrain as the humanities--that of
history. They are not interested in individual
acts as such, but they deal with such acts globally
considered. They do not go into the private
convictions of John Doe; they look at the group of
which he is a member or at him as representative of
this group. Their method is statistical; their
purpose is to discover necessary relations within a

certain series....
"19

But because the oral-formulaicists have
attempted to use statistics and are interested
precisely in the relation of a poem's style to that
of_others in a "series," the methodologies of the
natural sciences and consequently their inherent
strictures would seem to obtain here; Northrup Frye
sums up the latter well: "The physical sciences
at least are not simply descriptive, but are based
on prediction as well.... It is not the experiment
but the repeatable experiment that is the key to
the understanding of nature in the physical sciences,
and the repeatable experiment is what makes
prediction possible, and gives to science a

prophetic quality.
"20

The predictive value of a
hypothesis is at once tested and established by its
replicability: as Bruce A. Beatie insists, "only
when an hypothesis has been confirmed by repeated
experiments is it...provisionally accepted as a
valid interpretation of observed data.... The
original Parry-Lord hypothesis, however, remains

unconfirmed by repeated experiment....
"21

As I
have argued elsewhere, not only have the followers
of Parry and Lord repeatedly modified their

methodologies
22 in studying poetry in various

languages, undermining the hypothesis' claim to

universal validity, but my own attempts
23

to test,
in the very Serbo-Croatian tradition upon which the
hypothesis is based, its prediction that no
literate poet can write as formulaically as an oral
poet can compose, has cast further doubt on the
usefulness and reliability of the methodology: in

fact I found no significant quantitative
distinction between oral and written Serbo-Croatian
verse based on the number of repeated phrases that
they exhibit.

That the replicability or predictive power of
so explicitly quantitative an hypothesis was left
untested for decades is certainly cause for concern.
But I am troubled far more by the question whether
scientific and quantitative methodologies, even
when borrowed by humanists so as to preserve fully
their explanatory powers, are finally suited to the
analysis of poetry.

Random Behavior

Of special difficulty here is the dilemma
faced by those tackling the essentially quantitative
problem of the degree of repetition as a factor of
poetic style. "Degree" must be measured, and it is
no mistake to borrow here from our colleagues in
the natural and social sciences, for whom

323

measurement is often of paramount concern. But

statistical analysis evidently requires the
assumption at some level of random behavior,
whether that of the agitated vibrations of
moleculeS or of atomic particles or that of the
collective human expression of political opinions.
Northrup Frye ties the predictive power of the
natural sciences and of their adjunct quantitative
methods to the unconscious character of the
phenomena observed: "Where the phenomena are
unconscious or where the units involved are small
and numerous, like atoms, molecules, or cells, so
that there is no practical difference between the
highly probable and the certain, the language of
science is primarily mathematical. From the
natural sciences we move toward the social sciences,
where the phenomena are relatively large, few, and
complicated, like human beings. Here prediction on
a statistical basis is as important as ever, but,
except for some aspects of psychology, the
repeatable experiment is no longer at the centre of
the study.... We then move into what are generally

rcgarded as the humanities."
24

Thus the student of, say, literature, faces a
problem that does not trouble the chemist or the
physicist or even the sociologist or the political
scientist: while natural phenomena or perhaps even
human behavior in the aggregate can be measured
against the constant yardstick of random
distribution, the examination of an artifact of the

human will poses different perils. What does it

mean to speaL of a theoretical "random distribution"
of a poet's words or phrases, in terms of which the
significance of his choices or of his repetitions
may be assessed? Tests of statistical validity
generally require a random standard as a background,
against which the "significance" of data becomes
apparent by virtue of its difference from the
random pattern. Any artifact of the human will,
such as poetry, must therefore pose some
philosophical difficulties for statistical analysis.

Conclusion

I will not attempt to offer even a rudimentary

solution here,
25 but this problem serves as an

example of the central problem created by the
impingement upon the humanities of the scientist's
world. Very likely, we must also steer clear of
rigid "scientism," which "assumes a principle of
determinism. i.e., from the quantitative
description of an existing situation and from the
known laws governing the changes of the magnitudes
involved in the situation, a universal prediction
can be made regarding the changes occurring in the
situation in question.... Apart from measuring,
uul:ervation and statistics, only the deductive

method is considered to be valid.
"26

Problems such

as this one will not be resolved without recourse
to the fundamental philosophy of interdisciplinary
methodology. We have only begun to raise the right
questions about how the quantitative analysis of
literature that the computer makes more practicable
is to be carried out.

340



www.manaraa.com

References

1. The Two Cultures and the Scientific Revolution
(New York: Cambridge University Press, 1959),
p. 17. See also Snow, "The Two Cultures," New
Statesman, October 6, 1956; F. R. Leavis and
Michael Yudkin, Two Cultures? The Significance
of C. P. Snow and an Essay on Sir Charles
Snow's Rede Lecture (New York: Pantheon, 1963);
Snow, The Two Cultures: and a Second Look
(Cambridge: Cambridge University Press, 1964).

2. W. H. Auden, "Under Which Lyre: A Reactionary
Tract for the Time (Phi Beta Kappa Poem,
Harvard, 1946)," in Collected Poems, ed. Edward
Mendelson (New York: Random House, 1976), p.
262.

3. "Biological Science and the Humanities: Some
Considerations of Human Values and the New
Biomedical Technologies,"in Images and
Innovations: Update '70's, ed. Melinda R.
Maxfield (Spartanburg, S. C.: Center for the
Humanities, Converse College, 1979), p. 123.

4. "The Humanities and Medical Science: An
Epistemological Diagnosis," in Maxfield, ed.,
p. 137.

5. Hines, p. 127.

6. "The Future of the Humanities," National Forum:
The Phi Kappa Phi Journal, 69, No..3 (Summer
1979), 21.

7. "Reflections on the Humanities," National Forum:
The Phi Kappa Phi Journal, 69, No. 3 (Summer
1979), 15.

8. "The Two Cognitive Dimensions of the Humanities,"
Daedalus, 99, No. 2 (Spring 1970), 256-57.

9. See for example Bruce A. Beatie, "Measurement
and the Study of Literature," Computers and the
Humanities, 13 (1979), 185; Beatie's article
addresses Limner ptoblems from a perspective
comparable to mine.

10. "The Humanities and Human Understanding," in
The Humanities and the Understanding of Reality,
ed. Thomas B. Stroup (Lexington: University of
Kentucky Press, 1966), p. 13.

11. "Humanistic Studies: Their Object, Methods,
and Meaning,'" Daedalus, 99, No. 2 (Spring,
1970), 247.

12. "Future," p. 23.

13. See The Making of Homeric Verse: The Collected
Papers of Milman Parry, ed. Adam Parry (Oxford:
Clarendon Press, 1971), and Lord, The Singer of
Tales, (Harvard Studies in Comparative
Literature,' No. 24, Harvard University Press,
1960). For a general but dated account of
subsequent work, see Edward R. Haymes, A
Bibliography of Studies Relating to Parry's and
Lord's Oral Theory, Publications of the Milman
Parry Collection (Cambridge, Mass.: Center for

324

the Study of Oral Literature, Harvard
University, 1973).

14. Creditably, Joseph J. Duggan is unusually
keenly aware of the statistical problems
involved; but see his The Song of Roland:
Formulaic Style and Poetic Craft (Berkeley:
University of California Press, 1973), pp. 18ff.

15. Donald C. Green, "Formulas and Syntax in Old
English Poetry: A Computer Study," Computers
and the Humanities, 6 (1971), 92.

16. See, for example, Agnes M. Bruno, Towards a
Quantitative Methodology for Stylistic Analysis
(Berkeley: University of California Press,
1974).

17. Making Sense of Literature (Chicago: University
of Chicago Press, 1977), pp. 26-27.

18. "The University and the Literary f.!.blic," in
Stroup, ed., p. 69.

19. "Humanistic Studies," pp. 245-46.

20. "Speculation and Concern," in Stroup, ed., p.
36.

21. "Measurement," p. 186.

22. "The Aesthetic Implications of Formulaic
Diction: How Are We to Read Beowulf?"
unpublished paper read at the Conference on
Language and Style, City University of New York,
April 1977; see also Beatie, p. 189.

23. "La Chanson de Roland: An Oral Poem?" Olifant:
A Publication of the Socigtg Rencesvals,
American-Canadian Branch, 4, No. 1 (October
1976), 63-74 (Beatie seems to have been
unaware of this article); "Automatic
Lemmatization in Serbo-Croatian," ALLC
Journal (published by the Association for
Literary and Linguistic Computing), 1, No. 2
(Autumn 1980), 55-59; "Statistics and the
Computer in Formula Analysis of Serbo-Croatian
Heroic Verse," Proceedings of the International
Congress on Applied Systems Research and
Cybernetics, ed. G. E. Lasker, 5, 2576-80
(Oxford: Pergamon Press, 1981); "Formulaic
Style in Oral and Literate Opic Poetry" (with
Lee Dunlap), Perspectives in. Computing
(published by IBM), 2, No. 4 (December 1982),
24-33. This research was aided by grants from
the American Council of Learned Societies in
1979 and from the American Philosophical
Society in 1980.

24. "Speculation," p. 37.

25. Though a comprehensive review of promising
studies relevant to the problem at hand lies
well beyond the scope of the present paper, the
reader may find useful the bibliographies
recently offered by Susan Hockey on pages
141-43 of A Guide to Computer Applications in
the Humanities (Baltimore: Johns Hopkins,
1980) and by Robert Oakman on pages 170-71 and

3 4



www.manaraa.com

217-227 of Computer Methods for Literary
Research (Columbia: University of South
Carolina Press, 1980).

26. The definition is that of Joseph Kockelmans,
Phenomenology and Physical Science: An
Introduction to the Philosophy of Physical
Science, Duquesne Studies, Philosophical Series,
21, p. 75 (Pittsburgh: Duquesne University
Press, 1966); for his account of the history of
the trend of "scientism" in scientific thought,
see pp. 72 ff.

325

3 4 °



www.manaraa.com

A PERSONAL COMPUTER FOR EVERY COLLEGE STUDENT

David W. Bray

Educational Computing System
Clarkson College of Technology

Potsdam, NY 13676

Abstract

Clarkson College of Technology will provide

each entering freshman student with a personal
computer beginning in the fall of 1983. This pap-
er describes the history behind the establishment
of this program, how the prog7sm will operate and

be administered, and some expectations as to how
it may change the educational process at the col-

lege level.

Introduction

Clarkson College of Technology is one of the
largest engineering colleges in the northeastern
United States. It has concentrated in under-

graduate education in engineering, science, and

management for many years. Next fall, in August
1983, every freshman student entering Clarkson

College will be provided with a powerful pro-
fessional-quality Zenith Data Systems Z-100 desk-

top computer. By 1986 every undergraduate
student, and most faculty and graduate students,

will have his or her own personal computer. These
computers will be interconnected via a campus wide
network which will include the College mainframe
computers as well as the personal computers.

Clarkson is, to the best of our knowledge, the
first college to provide every student with a per-
sonal computer and to integrate its use into the
educational program.

The Zenith Data Systems Z-100 dual processor
desktop computer, has 128K of program memory, high
resolution bit-mapped graphics with 640 by 225

pixel resolution, one five and one-quarter inch
floppy disk drive, and three communications

ports. Each computer will be supplied with CP/M
for use on the eight bit 8085 processor, Z-DOS (a

derivative of MSDOS) for use on the sixteen bit
0 Mod processor, along with Fortran, Pascal, ZBasic

(IBM PC compatible), Multiplan, and a word proces-
sor, as well as Cobol for those who need it. The
computers will be used in all facets of the under-
graduate educational programs, and will also be

used by the faculty and graduate students for

their research.

At the present time the College .uframe

computers, an IBM 4341/Mod II and a Digital
Equipment Corporation VAX-11/780, support over two
hundred terminals. Even this amount of computa-
tion capability is not sufficient for the needs of
the College. It has been a long standing policy
to provide all students and faculty members with

326

all of the computer services that they require.
The requirements for service have been _steadily

growing, along with the waiting lines at the pub-

lic terming s. It has been clear for some time

that simpl r adding more and more terminals to

mainframe c puters is a losing battle. A solu-

tion for increasing computer resources is to put
the new generation of powerful personal computers

at the disposal of those who require it. At

Clarkson this is the entire student body and

faculty.

The introduction of the personal computer

will do much more than provide the required com-

puting power, it will change the educational

process. Before we consider the 'ways in which we

believe that education will change because of the
computer, we next discuss how this program came

into being, and how the Z-100 computer was

selected.

Computer Selection

The introduction of the personal computer

into the educational process at Clarkson had been
under consideration for several years. Last
during the Spring 1982 semester a group nf ;-
and students formed a "class". They met on a reg-

ular basis twice weekly to consider the re-

quirements and specifications of a personal com-

puter and an associated campus wide network that

would meet the College needs. The main rec-

ommendations of this group with regard to the per-
sonal computer were that:

year

1. The computer should contain a 16 bit proces-

sor. It was clear that the 16 bit processors
were coming into the market in force, and thus

it would not be wise to begin a new program
with a computer operating on an eight bit

processor, even though there was a large amount
of aoftware available for the eight bit proces-
sor computers. It was further felt that the

computer should be compatible with the IBM

Personal Computer (PC). The reason for this
was that there are a large number of--companies
producing software for the IBM PC. There is

also a fair amount of interest on the part of

universities in the IBM PC. If this interest
is strong enough, the IBM PC and compatible

computers, might be the foundation for a

standard in education. The benefits of a

"standard" computer in education would be enor-
mous, 1olleges could exchange software and

courseware freely without the current problems

3 i3



www.manaraa.com

of computer incompatabilty.

2. The computer should have a high quality
cathoderay tube display that is capable of at
least 80 characters per display line, and res
olution high enough for engineering and
scientific graphic applications. The 80
character display would allow the computer to
provide professional word processing
capabilities.

3. The computer should have a professional
keyboard to complement the high quality display
for word processing.

4. The computer should have bitmappped graphic
capabilities that would be suitable for en
gineering and scientific applications. If
possible the graphics should be upgradeable to
color, for those special applications that re
quire it.

5. The computer should have communications ports
that would be general enough to support network
interconnection, and to support local printers
should a student desire to attach one to his or
her computer.

6. The computer should have software support that
included at least: Fortran, Pascal, Basic,
Cobol, word processing, and spread sheet
accounting.

As a result of this study a set of guidelines
were prepared. These guidelines were sent to the
major personal computer manufactures which were
believed to have, or be developing, computers
which might meet our needs. These guidelines
suggested that the program might be implemented as
early as the fall of 1984. A wide variety of re
sponses were obtained. The first manufacturer to
respond indicated that they had a computer "on the
drawing board" that exceeded our specifications,
and suggested that our timetable could be pushed
up to the fall of 1983. Being encouraged by this
response we decided to attempt implemention of the
plan by the fall of 1983.

Early in the summer of 1982 we prepared a
formal set of specifications for the computer, and
sent it to those who received our original
guidelines, and others who had heard of our pro
ject. From this effort we received bids from five
companies. From these the Zenith Data System
Z-100 was selected for its price/performance com
bination. The Z-100 computer exceeded our
specifications in almost all ways. It has two
features that were considered most important. The
first of these is a second processor, an 8085.
This will allow the current eight bit software to
be used on the computer if desired. This
additional processor removes one of the concerns
that a 16 bit computer would limit use of avail
able software. The second feature is the in
clusion of four available S-100 industry standard
bus slots. This allows expansion of the computer
for use in the laboratory. The fact that the
student computer would be software compatible with
the laboratory computers would be very beneficial.

327

Implementation Plan

At Clarkson the plan for the introduction of
the personal computer is to start with the
freshman class entering in the fall of 1983, and
to continue with each entering freshman class
thereafter. Ownership of the personal computers
will reside with the College. However, when the
student graduates the ownership will be trans
ferred to the student. Should the student
withdraw from the College without completing de
gree requirements, the computer will remain with
the College. These computers will be reassigned
to transfer students. Beginning with the entering
freshman class, there will be a tuition surcharge
of $200 per semester to cover, in part, the
additional cost of the program. In addition, each
student will be required to make a $200
maintenance deposit to be used in the event that
servicing of the computer is necessary. It is the
students responsibi_ity to keep the computer in
good condition. After the ninety day guarantee
period has expired the student will be financially
responsible for keeping it maintained. The
College will insure the computers against fire and
theft.

This implementation plan has a number of
benefits. First, having the personal computer in
troduced over a four year period with each new en
tering class provides lead time for the faculty of
the upper class courses to modify and develop
their courses for the most effective use of the
computer. Second, the graduating students will
take with them a computer and much selfdeveloped
software that will help bridge the gap from col
lege to business and industry. Third, the comput
er can be a potential means of communications and
contact with alumni. It might even be a vehicle
for continuing education. Fourth, the College
will be free to select new model computers as
technology advances since each year new computers
will be needed for the entering freshman class.
Thus the computing facilities will not grow old in
time as do the current facilities involving
mainframe computers.

Following this plan, this fall each freshman
will be provided with a computer. For many years
every freshman student has been required'to take a
computer programming course. With the introduc
tion of the personal computer the subject matter
of this courses will not change substantially.
What will change is the availability of a computer
to the student. The course has been modified to
take advantage of ready access to a computer and,
of course, to teach the students how to use the
particular features of the Z-100 computer to full
advantage. Most students will not have had much
corputer programming training prior to entering
Clarkson, and almost none will be proticient with
the Z-100, its operating systems, and language
processors. Therefore, the other first term
freshman courses must restrict their use of the
computer to those problems that do not require ex
tensive programming knowledge, or to demonstration
programs that are supplied to the student in a
preprogrammed form. In the second semester
freshman year, the students will be able to do



www.manaraa.com

more programming on their own. Many will have

become very proficient with their computers. As

they progress from semester to semester the pro
fessors will be able to require more programming
knowledge.

To allow the faculty time to discover the

many potential uses of the personal computer in

their courses, computers have already been pro
vided to a number of faculty members. Those who
first obtained the computers have contact with
freshman and sophomore students (or other students

who will be using the Z-100 in the laboratories),
and wish to introduce the use of the computer into
their courses. The initial delivery of computers
for the faculty was completed before the end of

the Fall 1982 semester. This gave a minimum of

nine months lead time for course preparation

planning for the freshman courses, and more than

that on the average, Those faculty members who
are teaching upper divisor courses will be receiv
ing computers in the near future.

Administration of the Program

To administer the introduction of the per
sonal computer into the educational process at
Clarkson, a new position has been established.

This position is the Dean of the Educational

Computing System. The responsibilities of this

position are, in general terms:

1. To provide coordination for academic activities
concerned with the program.

2. To develop a personal computer network which

will interconnect with the current mainframe
network that now exists on campus.

3. To administer the purchase, distribution, and

repair of the personal computers.

A major responsibility will be in coordinat
ing the academic activities. This will include

training of the faculty in the use of the Z-100
operating systems and associated software, and

coordinating course development in the sense of
disseminating information about the activities of

the faculty and the software that is being de
veloped. It will also include conducting

workshops at the local college level so that

faculty members may learn from fellow faculty

members who have introduced the Z-100 in their

courses, and holding workshops led by professors

from other colleges who have used personal com
puters in various academic settings.

At the present time, the college mainframe

computers and several groups of remote terminals
are tied into a X.25 packet switching network.

The present thinking is that the personal com
puters will be tied into this network by forming a
series of local area networks consisting of

several hundred personal computers each. Each

local networks will be tied into a X.25 packet

switcher and thereby connected to the main

network. This network is under study at this

time. It is expected that it can be operational
with the personal computers within two years.

328

Repair of the computers, after the ninety day
warranty period, will be conducted by college per
sonnel. Being a technical college there is no
lack of qualified technicians and students already
on campus.

Educational Benefits

The computer has become a necessary tool in

the business world. After graduation current

students will be confronted with computers in

their employment, no matter what the field. A
tool that has become so much a part of business

and industry, surely has an equally important

place in the educational process. At this point
in time it is very difficult to even imagine the

effect that the personal computer will have on the
educational process. However, there are a few

clues as to what may occur. Just as the

calculator replaced the sliderule in engineering
and science courses, the computer will replace the
calculator. Its potential in education, however,

is much more than simply being a better tool to do
the same job.

Some of the important advantages of the com
puter in education are evident now. These are:

1. When a student is asked to perform a homework
assignment that involves a large amount of

calculation the process of performing the

calculations becomes the focus of the lesson.

That ia, the student studies the theory, or
ganizes the problem to be solved, and then

begins the calculation. At that point the

process of operating the calculator receives

the full attention of the student. The student
often loses sight of the lesson, concentrating
only on pushing the calculator buttons. If the
student is asked to perform the same problem on
a computer with which he is familiar, the solu
tion takes a different form. The student or
ganizes the theory in terms of language of the
computer. A language much like the equations

of the theory. Therefore the student's efforts
toward obtaining the calculation actually

becomes an effort of rewriting and rethinking
the theory of the problem. The computer can

then focus its attention on obtaining the

actual solution. A student who can instruct a

computer how to solve a problem has a good

grasp of the problem.

2. Computer simulations can be useful and

effective teaching tools. The computer can aid
the student in obtaining more insight into
scientific principles that are being studied.
Once a student has obtained a solution to a

problem that has been calculated by a computer,
there is very little effort involved in obtain
ing more solutions to the same problem with
different input parameters. The ability to ob
tain many solutions to a problem in a matter of
a few minutes can provide the student with in
tuition about the subject matter that is

generally not possible without a computer.

Particularly, if a solution to a problem is

presented in a form that is easily understood,

such as graphically, a student can learn much



www.manaraa.com

about a subject matter by changing parameters
and seeing the effect upon the result.

3. The computer can in many cases be a substitute
for laboratory experiments at the introductory
level. For economic reasons many colleges have
had to eliminate introductory chemistry and
physics laboratories. The personal computer
can provide, in simulated form, much of the in
formation that is gained in the laboratories.
It, of course, cannot substitute for the ex
perience gained in working with the physical
objects of an actual laboratory.

In those rajects which deal with complex
systems such as the stock market, management
systems, weather patterns, etc. the computer
can, through simulation, give the student valu
able albeit limited experience that could only
otherwise be obtained in the real world.

4. The computer has the potential for demonstrat
ing principles that are difficult to present in
lecture form. Lectures can be supplemented by
the student executing programs prepared by the
course instructors which would demonstrate,
possibly in graphical form, the fundamentals of
the lecture subject matter. In d sense, this
is another form whereby the student can gai7a

more intuition into the subject matter at hand.

Without question the personal computer will
have a dramatic effect on the educational
process. Only after a few years of experience at
the college level will we be able to access the
full impact that the computer can have in the
educational process. Clarkson .College is com
mitted to provide leadership in the use of the
personal computer in college education.

329



www.manaraa.com

COMPUTER-ASSISTED SIMULATION IN THE POLITICS OF

REAPPORTIONMENT/REDISTRICTING (CASPOR)

Jerry E. Bolick and James 0. Icenhour

Lenoir-Rhyne College, Hickory, North Carolina 28601

ABSTRACT

Written in Basic and implemented cn a
PDP-11/34 system, CASPOR is designed to enhance
the learning process in both computer science and
political science classrooms. It provides a
realistic project for computer science students
and renders manageable the classroom simulation
of the politics of reapportionment and redis-
tricting by political science students. CASPOR
is flexible, can be adapted to various classroom
situations, and can be modified to reflect the
political realities of vai.'-1.is states.

INTRODUCTION

The program presented and described herein
is called Computer-Assisted Simulation in the
Politics of Reapportionment/Redistricting (CASPOR).
This program grew out of the desire of one co-
author for improved instructional methods in the
teaching of the political dimensions of the re-
apportionment/redistricting phenomenon at the
state level and the need of the other co-author
for more realistic projects for his students in
a data structures course. CASPOR has been tested
and used in our classrooms with excellent results.
We believe this program is sufficiently flexible
to permit its adaptation to the political reali-
ties of various state political systems and that
it can be readily modified to fit the classroom
needs of a wide range of classes as well.

CASPOR is written in the programming lan-
guage Basic and is Implemented on a PDP-11/34
computer system. Data files, all of which are
stored in virtual arrays, are used extensively.
The structure of these files is an essential
ingredient in this simulation.

The data for this simulation were derived
from the public records of North Carolina. Vari-
ables include population, voter registration by
political party preference, and presidential,
congressional and gubernatorial electI ?\ 1:0sults,
all by county.

This paper describes the step by L,i.up pro-

cess by which computer science students, worki,-;
in teams, amassed the data base from original
sources, selected appropriate structures for the
data to maximize the efficiency of the program

and minimize the use of available computer memory,

developed the program, and tested its various

components.

The application of this simulation in the
political science classroom involves the use of an
outline map of North Carolina with county bound-
aries detailed, student role assignments, general
rules and limitations, and the use of CASPOR for
analyzing and verifying proposed redistrictinc
plans.

DEVELOPING THE PROGRAM

The program CASPOR was developed with the aid

of a beginning class in data structures. After

the class had analyzed the problems of reappor-
tionment/redistricting and understood exactly
what was necessary to produce a useful program,
the class of 12 students was divided into 4 groups
of 3 each. Under the professor's direction and
coordination, the groups completed the following

assignments:

1. Collected voting, registration and population
data for each county and stored it in a data

file.

2. Wrote a subroutine to determine if the coun-
ties in a proposed district are contiguous.

3. Wrote a subroutine that permits modification
of districts.

4. Wrote a subroutine to print the information
about each district and calculate cumulative
statistics for each district.

The simulation makes extensive use of data
that must be available each time the program is
used. One of the essential elements of the
simulation is the 23 items of data which describe
the population, registration and voting statistics
for each of the 100 counties in North Carolina.

The structure selected for this data is a
100 x 23 array - one row for each of the 100
counties and one column for each of the 23 data

items for each county. Since this data set must

be available to theill aX times and is

quite large for a ,RW41-:-i4 ?rCiMter, the students
chose to store the,data in array.

When the political science students begin
their reapportionment/redistricting simulation,
they can use the computer as their data source.

330

347



www.manaraa.com

To collect the needed data the student runs
CASPOR and selects the data collecting option.

When the political science students collect
the data needed for their decisions, they are also
supplied with a list of North Carolina's 100
counties which are listed in alphabetical order and
indexed with numbers 1 - 100. The counties are
stored in an array that contains 100 elements so
that each county can be referenced by its index
number. Again, the data structure class chose a
virtual array so that the list of counties can be
stored separately from the main program and yet can
be accessed by the program when proposed districts
are being developed.

With the statistical data related to popula-
tion, voter registration and election results
accessible, the next problem that must be solved
is that of contiguousness. Since all counties in a
congressional district must be contiguous, the com-
puter must be able to decide if the counties
selected for a district are in fact contiguous.

The data structures class found that the
problem of county contiguousness is really an
application of graph theory. If one lets the
nodes of a graph represent counties and agrees
that two nodes are joined by an edge if two coun-
ties are adjacent, a graph that describes the
adjacency of counties in North Carolina results.
Figure 1 shows a segment of this graph.

Figure 1

An obvious way to represent this graph is to
use a 100 x 100 adjacency matrix

[a..] 1; if counties i and j are adjacent
13

0; otherwise
A =

But this representation produces a sparce ma-
trix and is an inefficient use of memory. Hence,
the class chose a matrix representation in which
the entries in row i are the indices of the
counties that are adjacent to county i. For
example, Bladen County has index number 9 and
counties with indices 24, 26, 71, 78, and 82 are
adjacent. Thus Row 9 of the adjacency matrix has
24, 26, 71, 78, and 82 asits non-zero entries
(a zero indicates no more counties in the adja-
cency list). This matrix is also stored as a

331

virtual array. The following portion of the matrix
describes the adjacency of North Carolina counties.

9 78 26 82 71 24 0 0 0 0 0

24 78 9 71 10 0 0 0 0 0 0

26 67 47 63 43 82 9 0 0 0 0

71 65 10 24 9 82 31 67 0 0 0

78 83 47 26 9 24 0 0 0 0 0

82 71 9 26 43 51 96 31 0 0 0

Using this matrix, it is relatively easy to
write a subroutine that searches for a ,bath
through all of the counties that &re proposed for
a district. If a path exits then the counties are
contiguous. The followis.., program segment searches
for a path through a proposed district.

4105 S1(L1)=0 FOR L1=1 TO 90
4120 OPC-. °Are.iNCY-DAT° AS FILE 48
4200 S=D1-.1)
4210 FOR Cr-1 TO 20
4220 IF D1(C)<>0 THEN 4240
4225 CLOSE 08
4230 F$=YES°
4235 RETURN
4240 T=D1(C)
4250 IF T=S THEN 4450
4260 L=1
4263 S1(L)=S
4270 I1=2
4280 12=81(0
4290 IF S1(L)<> 0 THEN 4310 ELSE F$moNtr
4295 CLOSE 08
4300 RETURN
4310 J5=0
4320 J5=J5-1-1
4330 IF A4(I2,J5)=T THEN 4450
4335 IF A4(I2,J5)<>0 THEN 4340
4337 Lz-L+1\8OTO 4280
4340 FOR K=1 TO 20
4350 IF A4(I2,J5)<>D1(K) THEN 4400
4360 FOR M=1 TO I1-1
4370 IF A4(I2,J5)=S1(M) THEN 4400
4375 NEXT M
4380 S1(I1)=A4(I2,J5)
4385 I1=I1+1
4390 0070 .4320
4400 NEXT K
4410 GOTO 4320
4450 NEXT C

If a group of counties constitutes a valid
district, it is then necessary to determine the
cumulative population, election results and voter
registration statistics for the distri't. In
particular, it is essential that the population of
each district be recorded since the population of
each district must be compared to the average popu-
lation per district in terms Of deviation and
average deviation. These deviations must fall
within predetermined bounds.

If these bounds are not satisfied then the

348



www.manaraa.com

district must be adjusted. Therefore, the data
structures class wrote a subrout4nP to permit
counties to be moved from one district to anther.

North Carolina actually has only 11 Congres-
sional Districts, but for this simulation 12
districts are used with a maximum of 20 counties
per district. The indices of the counties that
are selected for district i are stored in row i of
a 12 x 20 matrix, C. After composition of the 12
districts has been determined, the print subroutine
uses matrix C to sort the population, registration,
and voting data for the counties in a district,
calculates the totals for the district, and
prints a complete description of the district. The

district totals are saved and the final printout is
a set of cumulative statistics for each of the
districts. Appendix 1 contains a complete descrip-
tion of the proposed 5th District.

The summary analysis in Figure 2 shows total
population, deviation in population, and relative
deviation in percent for each proposed district.

TOTAL STATE POPULATION 5,084,360

RATIO OF HIGHEST TO LOWEST 1.338

NUMBER OF CONGRESSMEN 12

AVERAGE POP PER CONGRESSMAN 423,696

DIST POP DEVIATION

RELATIVE
DEVIATION

1 354,040 -69,656 -16.4402
2 445,257 21,561 5.0887
3 473,794 50,098 11.8240
4 419,394 -4,302 -1.0154
5 415,252 -8,444 -1.9930
6 457,354 33,658 7.9438
7 405,817 -17,879 -4.2199
8 428,202 4,506 1.0634
9 429,285 5,589 1.3190

10 410,409 -13,287 -3.1361
11 420,830 -2,866 -0.6765
12 424,722 1,026 0.2421

AVERAGE RELATIVE DEVIATION
PER CONGRESSMAN

AVERAGE DEVIATION
PER CtieGRESSMAN

Figure 2

IMPLEMENTING THE PROGRAM

4.5802

19,406

The implementation of the simulation (CASPOR)
in the political science classroom begins with
the assignment of roles to the various partici-
pants. Collectively the class constitutes a
simulated state legislative committee charged
with the task of devising a congressional re-
districting plan to accomodate North Carolina's
presumed increased apportionment of congressional
seats. Each student is assigned a role that
includes specification of the following variables:
county of residence, political party affiliation,
age, sex, race, religion, social ntotus, economic
status, and legislative seniority and assign-
ment (Appendix 2).

332

All of this information is public knowledge
and is shared with all other participants

(Appendix 3). In addition to this public role,
each student is provided with a statement of confi-
dential political considerations which is not
shared. Each participant is urged to maintain this

assigned role in utmost confidence (Appendix 4).

The overall rules of the simulation are then
explained to the participants. Each is urged to
maintain high fidelity to the assigned role in all
negotiations among the group. Specific limitations

include the following:

1. Districts must be as compact as possible. -

2. Districts must include whole counties.

3. Exact mathematical equality of district popu-
lation is desired.

4. Overt gerrymandering will render proposed dis-
tricting plans suspect and should therefore be
consciously avoided or minimized.

- An outline map of North Carolina is provided
each participant and is to be used to outline pro-
posed district boundaries (Appendix 5). The

participants are now dire,:ted to the computer and
given access to all the aata stored in the CASPOR
program.

After considerable individual efforts to
develop acceptable district plans, the participants
convene as a group and begin the process of nego-
tiations necessary to reach workable and acceptable
solutions to the redistricting problem. When a
consensus is reached it is tested and verified by

the application of the CASPOR program. Remodifi-
cation and revalidation are pursued until either
an acceptable redistricting plan is devised or
until stalemate is reached.

When the simulation is terminated the
participants then share their confidential roles
with each other and the instructor summarizes the
learning experience mutually shared by the
participants in the simulation.

SUMMARY

While CASPOR was developed for use in both
computer science and political science courses, it
can be used independently in either. Furthermore,
any number of students can participate. Small
classes can participate as a whole while large
classes can be sub-divided into smaller teams
with each team developing or using the complete
simulation. Roles can be assigned to reflect
any constellation of political variables. And
finally, the concept can be applied to the politi-
cal systems of other states.

CASPOR has enhanced the learning process in
our classrooms. We hope that others may find it
useful in their classrooms as well.

3 4 j



www.manaraa.com

.

Appendix 1

DISTRICT 5

POPULATION STATISTICS
COUNTY TOT POP TOT WHITE X WHITE TOT BLACKX BLACK TOT OTHER X OTHER

BLADEN 26,477 16,151 61..00 10,326 39.00 0 0.00
COLUMBUS 46,937 32,997 70.30 13,940 29.70 0 0.00
CUMBERLAND 212,042 161,364 76.10 50,678 23.90 0 0.00
ROBESON 84,842 62,953 74.20 21,889 25.80 0 0.00
SAMPSON 44,954 29,445 65.50 15,509 34.50 0 0.00

TOTALS .:15,252 '302,909 72.95 112/343 27.05 0 0.00

REGISTRATION STATISTICS
COUNTY TOT REG TOT DEM. X DEM. TOT GOP. X GOP. TOT OTHER X OTHER

BLADEN 13,638 12,629 92.60 857 6.28 152 1.11
COLUMBUS 24,831 22,377 90.12 2,147 8.65 307 1.24
CUMBERLAND 57,936 44,536 76.87 8,938 15.43 4,462 7.70
ROBESON 48,340 45,300 93.71 2,357 4.88 683 1.41
SAMPSON 23,734 14,571 61.39 8,621 36.32 542 2.28

TOTALS 168,479 139,413 82.75 22,920 13.60 6,146 3.65

PRESIDENTIAL ELECTION STATISTICS
COUNTY TOT VOTE TOT DEM. % DEM. TOT GOP. X GOP. TOT OTHER % OTHER

BLADEN 7,589 6,009 79.18 1,546. 20.37 34 0.45
COLUMBUS 14,401 11,148 77.41 3,184 22.11 69 0.48
CUMBERLAND 38,683 24,297 62.81 14,226 36.78 160 0.41
ROBESON 25,699 20,695 80.53 4,907 19.09 97 0.38
SAMPSON 15,902 8,869 55.77 6,968 43.82 65 0.41

TOTALS 102,274 71,018 69.44 30,831 30.15 425 0.42

SENATE ELECTION STATISTICS
COUNTY TOT VOTE TOT DEM. % DEM. TOT GOP. X GOP. TOT OTHER X OTHER

BLADEN 5,140 3,093 60.18 2,047 39.82 0 0.00
COLUMBUS 9,630 5,610 58.26 4,020 41.74 0 0,00
CUMBERLAND 25,345 12,358 48.76 12,987 51.24 0 0.00
ROBESON 12,156 7,296 60.02 4,860 39.98 0 0.00
SAMPSON 14,609 6,423 43.97 8,186 56.03 0 0.00

TOTALS 66,880 34,780 52.00 32,100 48.00 0 0.00

HOUSE ELECTION STATISTICS
COUNTY TOT VOTE TOT DEM. % DEM. TOT GOP. % GOP. TOT OTHER % OTHER

BLADEN 6,665 5,853 87.82 812 12.18 0 0.00
COLUMBUS 14,466 12,904 89.20 1,562 10.80 0 0.00
CUMBERLAND 37,591 30,125 80.14 7,466 19.86 0 0.00
ROBESON 25,613 23,103 90.20 2,510 9.80 0 0.00
SAMPSON 15,966 8,654 54.20 7,312 45.80 0 0.00

TOTALS 100,301 80,639 80.40 19,662 19.60 0 0.00

GOVERNOR'S ELECTION STATISTICS
COUNTY TOT VOTE TOT DEM. % DEM. TOT GOP. % GOP. TOT OTHER % OTHER

BLADEN 7,363 6,432 87.36 861 11.69 70 0.95
COLUMBUS 14,216 11,994 84.37 2,152 15.14 70 0.49
CUMBERLAND 39,020 28,646 73.41 9,654 24.74 720 1.85
ROBESON 24,908 22,212 89.18 2,539 10.19 157 0.63
SAMPSON 15,810 9,718 61.47 5,980 37.82 112 0.71

TOTALS 101,317 79,002 77.98 21,186 20,91 1,129 1.11

333

35u



www.manaraa.com

Appendix 2

CASPOR ROLE ASSIGNMENT

STUDENT'S NAME: AGE:

REPRESENTATIVE FROM: (County) POLITICAL PARTY AFFILIATION:

SEX: FEMALE MALE RACE: WHITE BLACK OTHER (SPECIFY)

RELIGION: MAINSTREAM PROTESTANT FUNDAMENTAL PROTESTANT CATHOLIC JEWISH

ECONOMIC STATUS: UPPER UPPER MIDDLE MIDDLE LOWER MIDDLE

SOCIAL STATUS: UPPER UPPER MIDDLE MIDDLE LOWER MIDDLE

LEGISLATIVE SERVICE (SENIORITY):

CONFIDENTIAL POLITICAL CONSIDERATIONS
(Must Not Be Shared With Other Participants)

Appendix 3

STUDENT'S
NAME COUNTY

SUMMARY OF CASPOR ROLE ASSIGNMENTS

Nz P
O V

P
Q. EnoO p En 0z H H

4
ti 0 4

WW P g giE"
w m m0

0
N N COMMITTEE ASSIGNMENTS

Able Mecklenburg

Baker Madison

Charlie Durham

Delta Guilford

Easy New Hanover

Foxtrot Stanly

George Forsyth

How Cumberland

India Surry

James Wilson

King Buncombe

Love Wake

R 63 F W J U U 6

D 55 M W Fp UM M 16

D 45 M B MP UM UM 8

D 40 F B MP M M 4

D 52MWCUUM 14

R 48 M W MP M M 4

D 40 F W C U U 6

D 35 M B HP M M 4

R 30 M N FP LM M . -

D 60 M W iiP U UM 12

R 48 M W C UM UM 8

D 56 F W MP UM UM 6

334

351

V Ch House Comm on Humanities and
Fine Arts

Ch House Comm on Appropriations

Ch House Comm on Finance (Taxes)

House Comm on Social & Economic
Affairs

Ch House Comm on Natural Resources

House Comm on Commerce

Ch House Comm on Labor

V Ch House Comm on Transportation

1st term

Ch House Comm on Agriculture

Leader House Minority

Ch House Comm on Justice



www.manaraa.com

Appendix 4

SUMMARY OF CASPOR PARTICIPANT'S
CONFIDENTIAL POLITICAL CONSIDERATIONS

Able. Needs to retain seat for enhancement of per-
sonal social status. Political party is of secon-
dary importance. Passionately desires to see per-
sonal friend (also Republican) capture seat in U. S.
Congress (from Mecklenburg County) next election.

Baker. Wants to become first black U. S. Congress-
man from North Carolina in modern history. To do
this, Durham County must be part of a congres-
sional district that encompasses northeastern
counties with large black populations. Everything
else is of secondary importance. But does have
intense loyalty to own race and political party.

Charlie. Wants to become Speaker of the House, so
must keep own seat and curry favor with all other
legislative Democrats as well as Democratic party
leaders statewide. Seeks good publicity and
party harmony.

Delta. Wants to see U. S. congressional districts
drawn in a way that will make the major metro-
politan centers of North Carolina the focal points
of congressional districts, thus enhancing the
over-all political impact of black voting
concentrations.

Easy. Over-riding desire is to see the entire
outer-banks area of the state encompassed in a
single U. S. congressional district. Or at least
as much of it as can be achieved. Former N. C.
State Democratic Party Chairman with vast real
estate holdings in the outer banks area. Would
probably run for Congress from such a district.

Foxtrot. Views Stanley County as part of the
eastern section of the state. Wants to make sure
Stanly County is not placed in a congressional
district with any counties to the west of it.
Would also like to see district lines drawn to
enhance Republican voting power in congressional
elections.

Appendix

George. Passionately anti-organized labor. Wants
Forsyth County to be included with rural anti-
labor counties in a congressional district so as
to elect to U. S. Congress a senior vice president
of one of the Winston-Salem tobacco firms. Is

loyal to Democratic Party and rather liberal.

How. Owns local independent trucking firm.
Served in U. S. Army as officer for 4 years. Re-
lates well to military personnel at Ft. Bragg and
Pope AFB. Wants to be a king-maker by providing
winning margin in next election for new congress-
man from Fayetteville. Hopes for appointment as
U. S. Assistant Secretary of Transportation.

India. Wants to be Lt. Governor, or U. S. Con-
gressman by age 40. Politically ambitious but
adheres to a very strict personal code. Will
sacrifice principle only for personal political
advantage or gain.

James. Tobacco farmer and warehouseman. Dedicated
to his own economic self-interest. Above all else,
wants to keep high party power position and
ability to horse-trade in the legislative process.

King. Hopes to win seat in U. S. Congress from a
western North Carolina congressional district.
Must structure a congressional district that in-
cludes Asheville in a way that will enhance Repub-
lican chances of winning next election. Strong
party supporter and one who thrives on publicity.

Love. Wants to run for Office of N. C. Attorney
General or N. C. Supreme Court. Lawyer of some
note, with thriving practice in Raleigh. Seeks
greatest exposure statewide to create positive
personal image. Seeks party unity and would
like to see all N. C. congressional districts
elect Democrats.

NORTH CAROLINA

335

352



www.manaraa.com

INTEGRATING COMPUTING PACKAGES AND STATISTICS INSTRUCTION

William D. Schafer and C. Mitchell Dayton

Department of Measurement, Statistics, and EValuation
College of Education, University of,Maryland

College Park, Maryland 20742

Abstract

A computer-based, intermediate-level applied
statistics course is described. All course
assignments were carried out using BMDP and SPSS
routines and the results were integrated into
the course instruction. An evaluation of the
course is discussed and revisions based on the
evaluation are presented. A description of the

data base and the assignments are included.

Introduction

Many statistics courses have as one of their
goals providing a computational basis with which
statistical topics can be applied in practical sit-
uations. This goal is often met using devices such
as calculators which have undergone recent changes
in power and portability, but have retained limita-
tions in terms of storage capacity and. output.
With good reason, field applications of statistics
primarily use computers and there exists a large
body of software to support this use. It is natu-
ral, therefore, that applied statistics curricula
should increasingly reflect involvement with com-
puters.

Computing packages in institutions which are
users of statistics have become commonplace. While
they are somewhat restrictive in that one is limit-
ed to the analyses they provide, they do employ a
rather broad coverage of popular techniques and are
relatively easy to use.

A course is described here which was developed
in order to provide package programming skills to
students in support of the topics often found in a
second-semester applied statistics curriculum. In

this effort we had three guides: the traditional
content of such a. course, the capabilities of the,
local computing center, and an article by Thisted'

describing similar efforts.

The course was implemented first during summer
of 1979. This paper describes an evaluation of the
course during the fall of 1979, when a non-computer-
oriented section was available as a "control".
Finally, revisions to the course based on these ex-
periences are suggested and an updated version of
the course is discussed.

336

Characteristics of the Course

Materials. It was expected that students would
have had experience with some computing package
in a first course in applied statistics. Materi-
als used in a first course administered locally
were used when students did not have this back-
ground.

The textbook (Afifi and Azen)
1
was supple-

mented with various handouts and descriptions of
BMDP and SPSS packages (those used in the course)

developed locally. Use of the full manuals was

encouraged but not required. Single copies of
these materials and the syllabus may be requested

from the first author.

Topics and Assignments. Following an initial
introduction to BMDP and SPSS, the order of topics
was: bivariate regression and correlation; part
and partial correlation; multiple regression and
correlation; dummy coding and product variables;
ordered regression; one-way analysis of variance;
comparisons and contrasts; simultaneous inference;
two-way analysis of variance; interpretation of
interaction; non-orthogonal analysis of variance; .

fixed, random, and mixed models; analysis of co-
variance; generalized ordered regression;
Hotelling tests; discriminant analysis; multivari-
ate analysis of variance; and principal components
analysis. The topics were illustrated throughout
the semester using a total of 36 final computer
runs by each student, equally split between BMDP
and SPSS programs.

The data set for the majority of assignments
was taken from the 1979 Information Please Almanac
and consisted of sixteen variables relating to the
"quality of life" of each of 113 nations, along
with their continents. Arbitrary codes were used
for missing data. A description of the data set
and the assignments appear in the appendix.

Students were assigned corresponding computer
runs for virtually every topic which was presented.
By-hand computations were included in most cases,
as well. In three instances data from the text
were used to give students experience in preparing
data for processing by computers.



www.manaraa.com

Students. Forty-two students completed the
course. Of these, thirty-eight (90%) were pursuing
a doctorate. Their programs were in the areas of
human development (12, 29%), counseling and per-
sonnel services (11, 26%), secondary education
(6, 14%), health education (3, 7%), industrial
education (3, 7%), special education (1, 2%), and
measurement and statistics (6, 14%), the home
department of the course. Twelve students dropped
during the semester, representing 22% of the ori-
ginal registration, which is not particularly
unusual for this course.

Format. The course was taught on a twice-perweek
basis over one semester (16 weeks) by a single
instructor with no graduate assistant support.
Computer facilities were located some distance
from the classroom. Most students operated in a
batch mode because of inaccessibility of termin-
als and file space on the campus. Batch turnaround"
varied._ between five minutes and six hours during
the semester.

Topics were treated for the most part with an
introductory presentation of the material followed
by a discussion of package output in a later
class petiod, thus allowing students to refer to
their own completed assignments (and annotate
them) during the session. Assignments were collect-
ed and returned at the next class.

Student Evaluation

Procedures. Two sections of the course were offer-
ed during the fall semester of 1979, one on two
mornings (9:30 - 10:45) and one on two afternoons
(4:15 - 5:30) each week. The section given on the
afternoons was instructed using the computer-
oriented approach described here; the other section
was instructed by another faculty member of the
same rank using a non-computer-oriented approach
traditionally used in the department. Aside from
incidental information learned during the semester,
the students were unaware of the difference in
approaches. With minor exceptions, identical con-
tent was covered. The syllabus for the "control"
section may be requested from the first author.

Students were asked to complete an attitudinal
inventory covering their expectations in the course
during the initial class period. An anonymous
method was used to match these "pretests" with
"posttests" covering identical content at the end
of the course. also, students completed a ten-
item pretest covering prerequisite material during
the first class session. These were matched with
their performance on forty-eight common items
embedded in the two examinations in each of the
sections.

Subjects. Students registered for the two sections
normally. The "control" section originally regis-
tered 35 students of whom 19 (54%) completed the
course. The "computer" section originally regis-
tered 54 students of whom 42 (78%) completed the
course. The difference between the proportions is

significant (corrected x2 = 4.40).

337

Results. Scores on the common exam items were
paired with the correspomiing item on the pretest.
The observed difference between the sections was
not significant (see table 1) at conventional
levels.

The ten items on the affective posttest were
each paired with the corresponding item on the
pretest. The observed differences on these items
were significant at conventional levels in favor
of the "computer" group (see table 1):

I have come to understand many useful statis-
tical techniques in the course.

I learned many new skills which will benefit
me in my research in the future.

I had difficulty understanding the material
presented in class (reversed scale).

This course was particularly well-organized.

This course increased my interest in statis-
tics.

I enjoyed my experience in this course.

The observed difference on this item was sig-
nificant at conventional levels in favor of the
"control" group:

I had difficulty understanding the material
presented in the textbook (reversed scale).

The observed differences on these items were
not significant at conventional levels:

I spent too much time and effort on this
course (reversed scale).

I had adequate background preparation to take
this course

The material in this course was covered too
superficially (reversed scale).

Observations

Thisted3 presented three organizational
approaches for such a course: by package, by
topics, and by software systems components. We
chose to organize by topics. This method has two
major advantages: it maintains a logical flow of
content, building later topics upon earlier mat-
erial, and it allows comparisons to be made
between the computer packages on features relevant
to potential statistical analyses.

The data set has some advantages but we feel
it could be improved upon. One clear advantage is
its real, public nature (it can be located and
understood easily). Also, it contains some cate-
gorical variables, exhibits some interesting rela-
tionships, and presents some common difficulties
such as missing data and outliers, some which
arise through obvious error in the data set.
However, the data set is not educationally

354



www.manaraa.com

oriented. It would be valuable to have a set
which is more meaningful while maintaining the
desirable elements noted.

We have found that it is very important to
include some "by-hand" work based on each output.
If this is not done, there is a tendency for aome
students to regard their output as a final product
with no investigation of its meaningfulness until
class time. Also, since it is important that all
students have the same output for discussion pur-
poses, we have found it helpful to give students
some significant numerical value to look for in
the output in order to check their work prior to
class.

As noted in the evaluation, textbook support
proved to be a problem. we have had success re-
cently with Pedhazur2.

Our experience with this course has been posi-
tive. Students seem to develop facility with BMDP
and SPSS in this context and seem to appreciate the
tools they have learned how to use in support of
what they have learned about statistics. While the
design of the course evaluation is admittedly
modest, the results do not dissuade us from this
view.

References

1. Afifi, A.A. and Azen, S.P. Statistical
Analysis: A Computer Oriented Approach.
Academic Press, 1979, 2nd ed.

2. Pedhazur, E.J. Multiple Regression in
Behavioral Research. Holt, Rinehart, and
Winston, 1982, 2nd ed.

3. Thisted, R.A, "Teaching Statistical Computing
Using Computer Packages." The American
Statistician, 1979, 33(1), 27-30.

Computer Assignment No. 1
Due on Class Meeting Number 4

A. The element EDMS *STAT.QUALITY contains
data for 113 nations which relate to the "Quality
of Life" in those nations. A description of the
variables, the data format, and a source for the
data are presented in the element
EDMS*STAT.QUALFORMAT. A listing of that element
is to be obtained by setting up a run including
the following statement:

@PRT,S EDMS*STAT.QUALFORMAT

This data set will be used in this
subsequent assignments. To include the
SPSS or BMDP run, use

@ADD EDMS*STAT.QUALITY

when the data are needed (e.g., after a READ INPUT
DATA card in an SPSS run or after the /END card in
a BMDP run).

and several
data in an

338

B. For the variables POP and LITER, generate
histograms, ogives, and normal probability plots
using BMDP5D. Similarly, generate a histogram for
the variable FREEDOM using SPSS FREQUENCIES.

C. Use SPSS CONDESCRIPTIVE to obtain summary
statistics tor all 17 variables; also, use BMDP1D
for the same purpose.

D. From summary statistics 311 the printouts
in C., above, use a one-sample t test to test the
hypothesis that the true value for mean energy
consumption is 2000.0 kg of coal equivalent. Also

test the hypothesis that the true variance for
this variable is 5 million square units. These

computations must be done by "hand."

. E. Using two-sample t tests, compare Asia
and Africa on all of the remaining 16 variables.
Run the analyses with both SPSS T-TEST and BMDP3D.
Show in detail (by "hand") how the t test for the
variable GNP is computed.

F. Prepare a bivariate plot for the varia-
bles BIRTHS (vertical axis) and LITER (horizontal
axis). Use SPSS SCATTERGRAM and BMDP6D. For the

BMDP6D run, have the 6 continents identified on
the bivariate plot by unique symbols (i.e., the
letters A,B,C,D,E,F).

G. Using a chi-square test, test the inde-
pendence of the FREEDOM variable with respect to
the continents. Use both SPSS CROSSTABS and
BMDP1F.

Computer Assignment No. 2
Due on class meeting number 7

For the Quality of Life data set, we want to
predict the percent of the population in'higher
education (HIGHER) from selected variables. Using

FREEDOM, GNP, and AGLAB as predictors, obtain
solutions from SPSS REGRESSION and from BMDP2R.
Obtain all residual listings and plots which are
available from each program. By hand, use the
BMDP output to compute (1) the squared part cor-
relation (HIGHER,GNP.AGLAB. FREEDOM); and use the
SPSS output to write the final, raw-score regres-
sion equation.

Computer Assignment No. 3
Due on class meeting number 8

A. Use the adult literacy variable, LITER,
in the Quality of Life data set to predict BIRTHS.
Obtain solutions, including all available resi-
dual listings and plots, with both SPSS REGRESSION
and BMDP2R.

B. Create a variable equal to the square of
LITER (in SPSS, use a COMPUTE statement; in BMDP,
use a TRANSF statement) and redo the prediction
of BIRTHS with a quadratic model. Set up a sum-

mary table showing sources due to linear and
quadratic regression; compute the appropriate
statistical tests, by hand, and interpret the
results.

35



www.manaraa.com

Computer Assignment No. 4
Due on class meeting number 11

A. The six continents in the Quality of Life
data set represent a nominal variable. Create
dummy variables for this factor; use SPSS REGRES-
SION and BMDP2R to undertake comparisons among
the continents on adult literacy rates (LITER).
By hand, use the SPSS output to obtain the mean on
LITER for each continent using the regression co-
efficients and constant.

B. Create appropriate product variables and
test for parallelness of slopes for the regression
of LITER on BIRTHS using both SPSS REGRESSION and
BMDP2R. By hand, use the BMDP output to obtain the
regression equation for each continent using the
regression coefficients and constant; and prepare
an ordered regression summary table using the SPSS
output.

NOTE: On SPSS runs, expand the workspace
available for transformations; for example, start
your run with

@SPSS*SPSS.SPSS,F 5000

Also, for the BMIP runs, in the REGRESSION para-
graph, include the sentences ENTER=0.0.
REMOVE=0.0 and TOLERANCE=.0001. to ensure that all
variables enter the prediction equation.

Computer Assignment No. 5
Due on class meeting number 14

The nations of the 6 continents differ in
adult literacy rates. Confirm this by rvaning an
analysis of variance using SPSS ONEWAY. in addi-
tion, do the following:

a. Enter VALUE LABELS and take OPTION 6 so
that the continents are properly identified on the
printout.

b. Using ./ .05 level of significance, run
Tukey and Newman-Kuels pairwise comparisons.
Explain '..by the results differ.

c. Prior considerations suggest the follow-
ing contrasts:

NA versus SA
EUROPE and OCEANIA versus NA and SA
AFRICA versus average of all others
Test these contrasts with Bonferroni control

of Type 1 error (i.e., use a significance level of
.05/3 per test). Explain the basis upon which you
reached each of these decisions.

Computer Assignment No. 6
Due on class meeting number 16

A. Afifi and Azen present data and analysis
for a 2 x 4 design on pages 221-222. Confirm their
results using both SPSS ANOVA and BMDP2V.

B. A three-way factorial design is presented
by Afifi and Azen on pages 240-241. Confirm their
analysis using both SPSS ANOVA and BMDP2V. The AB
interaction is significant at conventional levels;
present a relevant plot and interpret this inter-
action effect.

339

Computer Assignment No. 7
Due on class meeting number 18

The Quality of Life data set contains two
categorical variables, Continent and Freedom
Status. Treating these as factors in analysis of
variance, use both SPSS ANOVA and BMDP2V to obtain
results for the following criterion variables:
HIGHER and LITER. Group the continents into a
dichotomy: West (N. Amer. and S. Amer.) vs East
(the others). For each dependent variable, pro-
duce a two-way table of cell means. Then, gener-
ate row and column means (a) by the simple average
of the cell means, and (b) by weighted averages,
weighting by the cell. sizes. If the interaction
effect is significant for either criterion varia-
bles, present an interaction plot of the cell
means. using the SPSS output, produce the two
ordered regression tables for each dependent vari-
able which resulted in the sums of squares given.
Note that the analyses will be "unbalanced". Whe._

effect does this have on the interpretation of the
analyses of variance.

Computer Assignment No. 8
Due on class meeting number 20

Afifi and Azen present a four-group analysis
of covariance design on page 267, with the analy-
sis occurring on the next several pages of their
text. Use both SPSS ANOVA and BMDP1V to reproduce
their analysis. For the BMDP run, include con-
trast cards so that each of the 3 treatment groups
is compared to the Cr,ntrol group. In addition,
run the scattergrams for the groups with BMDP6D
and sketch in the group-specific regression lines
(by hand). Note that the BMDP program provides
the homogeneity of regression test, but that SPSS
lacks this feature. Produce the two ordered re-
gression summary tables used by BMDP2V for the
tests of means and slope (you will need to refer
to the SPSS output in order to do this). Also,
produce an ordered regression summary table con-
forming to the SPSS order, but incl-.:Sing the test
for equality of slopes; in this table, use a
single denominator for all tests.

Computer Assignment No. 9
Due on class meeting number 22

The purpose of this analysis is to determine
the contributions to predicting GNP of groups of
variables from the Quality of Life data set. The
predictor sets are:

A EXPECT, MORT, PHYS
B PRIM, HIGHER, LITER
C FREE/NOTFREE(d.v. with NOTFREE including

partly)
D A by C Product Terms
E B by C Product Terms

Using SPSS REGRESSION, enter the sets of pre-
dictors in the above order (use EVEN inclusion
levels to force each set in on one step). Then,
by hand, set up an ANOVA summary table with appro-
priate statistical tests. Finally, re-do the
assignment using this order: B, A, C, E, D. In

all, you will have two regression orders and two
summary tables.

3 5 G



www.manaraa.com

Computer Assignment No. 10
Due on class meeting number 24

The problem is to compare, simultaneously,
the Free and Non-Free nations on the basis of the
15 Quality of Life variables. The Non-Free 'group
includes those nations which are Partly Free.
Also, in this analysis, the continents are not
used. Since the nations are currently categorized
into 3 freedom groups, it is necessary, when using
BMDP, to include a GROUP paragraph with a
CUTPOINTS sentence: e.g., use 1.5 as a cutpoint
to create two groups: those below 1.5 (i.e., the
l's) and those above 1.5 (i.e., the 2's and 3's).
For the analysis, use BMDP3D and include the
HOTELLING sentence in the TEST paragraph.

Computer Assignment No. 11
Due on class meeting number 25

The problem is to determine how well the 15
Quality of Life variables can discriminate among
the nations in terms of the Freedom variable. Use

BMDP7M to conduct a Discriminant Analysis with the
grouping variable being the 3 Freedom groups and
the criterion variables being the remaining 15
variables (excluding Continent). When setting up
the DISCRIM paragraph, use the following sentences
only: ENTER=0.0. REMOVE=0.0. JACKKNIFE.

Computer Assignment No. 12
Due on class meeting number 26

Once again using the Quality of Life data set,
perform a Principal Component Analysis using the
following variables: GNP, ENERGY, BIRTHS, DEATHS,
EXPECT, MORT, PHYS, PRIM, HIGHER, and LITER. Con-
'duct the analysis using BMDP4M. When setting up

.
the FACTOR paragraph, use only the following sen-
tences: METHOD=PCA. ROTATE=NONE. Also, include

a PLOT paragraph with the sentence INITIAL =2.
Repeat the analysis using SVGS. FACTOR. With the
FACTOR procedure; include the statements TYPE =
PA1 and ROTATE = NOROTATE.

Note 1: Codes for continents are: 1 = N. Amer.
2 = S. Amer.
3 = Europe
4 = Asia
5 = Oceania
6 = Africa

Note 2: Freedom Status codes are: 1 = Free
2 = Partly Free
3 = Not Free

Variables are right-justified in their fields without decimal punched with the exception of
population (cols. 6-10) and Annual Inflation Rate (cols. 26-30) which have the decimal punched.
Thus, all variables may be read using an F5.0 format, except CONT and FREEDOM which must be read

as.F1.0. Missing data are represented by -99., except for Freedom Status (column 5) which has
one missing case which is coded 9. The data appear on pages 134-136 of the Almanac cited above.

340



www.manaraa.com

Table 1. Adjusted Means, Standard Deviations, and ANCOVA Results

Data
Source

Computer Section
N = 29

Mean S.D.

Control Section
N = 17

Mean S.D. F Prob.
48 Common Examination Items 31.16 6.80 29.43 8.72 .77 .38

I have come to understand many useful
statistical techniques in this course* 4.47 .51 3.73 1.10 11.38 .00

I learned many new skills which will
benefit me in the future* 4.31 .55 3.76 1.16 6.85 .01

I had difficulty understanding the
material presented in class** 2.90 1.25 2.05 .94 6.02 .02

This course was particularly well
organized* 4.48 .74 3.59 1.23 9.64 .00

This course increased my interest in
statistics* 3.98 .96 2.80 1.32 15.00 .00

I enjoyed my experience in this
course* 3.68 1.00 2.55 1.42 11.81 .00

I had difficulty understanding the
material presented in the textbook** 1.45 .73 2.30 .93 12.25 .00

I spent too much time and effort on
this course** 2.45 1.30 2.23 1.19 .36 .60

I had adequate background preparation
to take this coursa* 3.42 1.24 2.81 1.19 2.89 .10

The material in this course was covered
too superficially** 3.81 .83 3.79 .85 .00 .95

*Scale is 1-5; 5 = agreement.
**Scale is 1-5; 1 = agreement.

Appendix

Description of the Data Set and Computer Assignments

The data set EDMS*STAT.QUALITY contains a number of variables which are related to the general
quality of life within nations. The source of the data is the 1979 "Information Please Almanac." The
names of the variables and the units of measurement are listed below.

Column Code Variable Fnme Unit Unit

1-3 Code $ for Nation
4 CONT Continent See Note 1, below
5 FREEDOM Freedom status See Note 2, below
6-10 POP Population, 1976 Millions
11-15 AREA Area Thousands of sq. km
16-20 GNP GNP per Capita, 1976 U.S. Dollars
21-25 ENERGY Energy Consump. per Capita, 1975 kg of coal equiv.
26-30 INFL -AnrWal Inflation Rate, 1970-76 Percent
31-35 AGLA3 Labor in Agriculture, 1970 Percent
36-40 BIRTHS Crude Birth Rate, 1975 per 1000 Population
41-45 DEATHS Crude Death Rate, 1975 per 1000 Population
46-50 POP2 Proj. Population in 2000 Millions
51-55 EXPECT Life Expectancy at Birth, 1975 Years
56-60 MORT Infant Mortality, 1975 per 1000
61-65 PHYS Population per Physician, 1974
66-70 PRIM Persons in Elem. School, 1975 Percent of Age Group
71-75 HIGHER Persons in Higher Ed., 1975 Percent of 20-24 Population
76-80 LITER Adult Literacy Rate, 1974 Percent

341

358



www.manaraa.com

A COMPUTER-BASED TUTORIAL ON MATHEMATICAL INDUCTION*

by J. MACK ADAMS AND MARVIN LANDIS

Department of Computer Science
New Mexico State University
Las Cruces, New Mexico 88003

Abstract

The development of a tutorial on mathematical
induction is described. The tutorial is based on
the notion of informal verification of correctness
of programs with one simple loop.

I. Introduction

This paper contains a description of a
computer-based tutorial on mathematical induction
and a discussion of the motivation for such a
tutorial. It also describes the development of the
tutorial, especially the problems encountered in
the development.

The tutorial was authored in the latter stages
of a project to develop computer-based learning
material in computer science and mathematics. It

represents an attempt to apply the techniques and
expertise gained in preparing tutorials on lower
level material, beginning programming and trigo-
nometry [Mac81], to a topic that seems more diffi-
cult to teach.

II. Motivation and Approach

Motivation for developing the tutorial comes
from a general difficulty encountered by the
authors and their colleagues in teaching induction
and, more specifically, from the following two
problems:

The General Problem

The abstract nature of the usual approach tr
teaching induction does not seem effective for
application-oriented students. More concrete ex-
amples than the usual formulas proved by induction
seem necessary.

The Specific Problem

Using induction to teach proofs of program
correctness [A1g78, Wir73] to students in upper
division computer science courses is quite diffi-
cult, since these students are generally very

*This paper is based upon w,:,rk supported in part
by the National Science Foundation under Grant No.
SER-8005317.

342

application-oriented and seem not to have acquired
a working knowledge of induction in their mathe-
matical prerequisites.

The specific problem stated above led to an
investigation of the following approach: reteach-
ing induction using the students informal notions
of program correctness as a relatively concrete
basis and only then using induction as a tool in
more formal proofs of correctness. Some success
with this approach led to the Following hypothesis:

Hypothesis

Concrete examples of informal justification
of program correctness of programs involving one
simple loop can be used as an effective basis for
teaching mathematical induction to students with a
knowledge of computer programming.

To test this hypothesis we decided to develop
a computer-based tutorial that embodied the pro-
gramming approach.

III. Authoring the Tutorial

The authoring followed the style developed at
the Educational Technology Center at the University
of California, which had proved effettive in the
development of previous tutorials for our project.
Although we encountered difficulties that were
much more challenging than those of previous tuto-
rials, they did not have to do with deficiencies
of the authoring style and thus no changes were
necessary.

Before actually beginning the authoring we
studied various approaches to teaching induction,
particularly geometric approaches [Spe69, Wis70]
since our material is designed for microcomputers
with graphics capabilities. We also studied the

origin of mathematical induction [Bus17, Caj18].
These studies provided good general background but
no specific techniques or examples amenable to our
approach.

We finally decided to use a relatively simple
programming example in flowchart form. The exam-
ple, given in Figure 1, was first used to intro-
duce the notation and the idea of assertions at
key points in the program. Then it'was used for
the informal verification of the output assertion.



www.manaraa.com

{ N > 0 }

True

{ S =

Figure 1

Simple Pr.-. with Input and Output Assertions

It thus provides a rela,:ively concrete example of
an induction argument.

The first major change in our preconceived
notions about the approach came when we thought
seriously about using the usual technique of a
loop invariant, or inductive assertion, in the
informal verification of correctness. We realized
the degree of abstractness was only slightly less
than that of traditional approaches to induction,
and we recalled that students did not usually
react well to loop invariants. In short, loop
invariants do not seem strongly related to the,
perhafs unconscious, pr:Dcess by which students
justify the correctness of programs.

We eventually reached the conclusion that
most students justify the correctness of a simple
loop by:

1. tracing the simple cases of 1, 2, or 3
iterations, and then

2. tracing a general case by checking the
final iteration, assuming that all has
gone well in previous iterations.

On this basis we decided to:

a. motivate the basis step of induction by
checking simple cases of a few iterations,
and

b. motivate the induction step by checking
the final iteration for an arCtr..lry value
of an input parameter, N in Figure 1, with
the explicit assumption that the algorithm
has worked correctly to that point.

343

COM CHART

RESP

TABLE

Figure 2

Port Layout

Essentially, we decided on an induction on the in-
put parameter, rather than the usual induction on
an "iteration variable ".

After authoring the first version of the
tutorial using the approach described above, the
tutorial was presented to students and colleagues
in a colloquium. One of the authors simulated
execution of the tutorial using the blackboard as
the screen, while the other author recorded
audience response to questions posed within the
tutorial and also suggestions for changes. This
had not been done for our previous tutorials and
we highly recommend it, particularly for tutorials
rn difficult subject matter. A second version was
prepared, based on response from the Colloquium,
and a brief description of this version is given
in the next section.

IV. Brief Description of the Tutorial

After displaying the title and credits, the
simple program given in Figure 1, without the
assertions, is displayed in the port named Cliputi
(see Figure 2). The terminology of assertions is
then introduced as the assertions are added to the
display.

The student is then invited to verify, by
computation, the output assertion for N= 1, 2,
and 3. These results are recorded in a table in
port TABLE.

At this point the student is asked to verify
the output assertion for a value at the upper end
of the table, and subsequently asked if he would
like' to verify the result when N is 209, a large
value chosen arbitrarily by the authors. If the
answer is "no", we heartily endorse the student's
reluctance, and otherwise we question the advisa-
bility of taking on this task. This is used to
motivate the need for :.4ome sort of general cor-
rectness argument.

The studentthen participatips in the develop-
ment of a correctness argument for an N of k+1,

360



www.manaraa.com

assuming the algorithm worked when N was k and
tracing another iteration. This is done in the
following stages:

1. the output assertion when N is k is
"backed-up" tr. an intermediate assertion,
preceding the test, which we hope the
student can correctly identify as being
the same as the output assertion.

2. The intermediate assertion is then taken
through the false branch of the test and
the body of the loop, resulting in a new
intermediate assertion and hence an output
assertion for an N of k+1.

3. The student participates in the algebraic
manipulation necessary to obtain the form
of the output assertion upon which cor-
rectness has been based.

The resulting "induction step" is displayed for
future use in port COM. This marks the beginning
of severe screen space problems since we have only
port RESP avi)able for use.

At this point the student is asked to apply
the induction .tep to the specific case when N is
3, which has previously been verified by computa-
tion. Thus he obtains correctness when N is 4
without computation of S. He is then asked to
apply the induction step twice, starting again when
N 3, to obtain correctness when 11 is 5.

We then observe that the induction step is
easier to apply starting from the value of 1 for N.
This is a somewhat ungainly transition, but we felt
it was desirable to first apply the induction step
to obtain results for 4 and 5, which had not been
previously verified by computation.

The student is then asked how many applica-
tions of the induction step are needed to verify
correctness for a value of 209 for N, and subse-
luontly for an arbitrary value, m, of N.

The process is then summarized in the form of
a basis step, induction step and application of
the induction step, and given the name "mathemati-
cal induction".

The length of the specifications for the ver-
sion of the tutorial described above is approxi-
mately the same as those of our previously devel-
oped tutorials, so we expect the running time of
the implementation to be about the same, 20-30
minutes. Implementation is now underway on the
IBM PC using UCSD Pascal Version IV and our version
of the packages Textport and Graphport obtained
from the University of California at Irvine. We

anticipate completion in time for trial usage of
the tutorial in the latter half of the semester
beginning in. January of 1983. There seem to be no
particular implementation problems except t11,1 one
of screen space mentioned previously.

344

;1.

V. Summary

We have described the development of a tutori-
al on mathematical induction based on informal
verification of correctness of a program with one
simple loop. The resulting tutorial has also been
summarized. We hope that relating the difficulties
associated with the development of a tutorial over
challenging subject matter may be helpful to others
contemplating such developments.

We would like to recognize the valuable
suggestions of colleagues and students, particular-
ly those of Pi fessor Warren Krueger and Mr. Jack
Medd.

References

[A1g78] Alagic, Saud and Arbib, Michael A. The
Design of Well-Structured and Correct
Programs, Springer-Verlag, New York
(1978).

[Bus17] Bussey, W. H. The origin of mathematical
induction. The American Mathematical
Monthly, XXIV, 5 (May 1917).

[Caj18] Cajori, Florian. Origin of the name
"mathematical induction". The American
Mathematical Monthly, XXV,5 (May 1918).

[Mac81] MacKichan, Barry, Adams, J. Mack, and
Hunter, Roger. Starting a computer
based learning project. Proceedings of
NECC 1981, National Education Comput-
IRT6Wnrence, Denton, Texas (June
1981).

[Spe69] Speck, Royce A. The number of squares on
a goeboard. School Science and Mathe-
matics (February 1969).

[WiriJ] Wirth, Niklaus. Systematic Programming:
An Introduction. Prentice-Hall,
Englewood Cliffs, N.J. (1973).

[Wis70] Wiscamb, Margaret. A geometric introduc-
tion to mathematical induction. The
Mathematics Teacher (May 1970).



www.manaraa.com

IMPLICIT FUNCTIONS AND COMPUTER GRAPHICS

Sheldon P. Gordon

Suffolk Community College
Selden, NY 11784

Abstract
The present paper deals with the use of
the computer to generate the graphs of
implicit functions in the form F(x,y) = O.
In particular, several algorithms are
discussed which can be used as the basis
for a computer graphics program which will
produce the'graph of most such implicit
functions. The value of having such pro-
grams available for use in both intro-
ductory and intermediate calculus classes
is also discussed. Finally, a variety
of examples are displayed to illustrate
the results of such a program.

One of the least satisfying topics
for students in calculus has to be that
of implicit functions. Most students
feel that there is nothing tangible for
them to grab hold of with the topic. The
old standby of performing algebraic mani-
pulations is usually useless on all but
the simplest expressions; for example,
consider

x
4 y + xy 3

= 1.
There is nothing to visualize in the way
of a graph and no elementary method to
solve for one of the variables in terms
of the other. The fact that an Implicit
Function Theorem guarantees the existence
of such function or its derivatives
subject to appropriate sets of conditions
is small consolation.

Fortunately, the power of sophisti-
cated computer graphics now presents us
with a tool which can draw the graph of
most implicit functions. This capability
allows us to add a valauble new dimension
to the subject at both the elementary and
intermediate calculus levels. At the
introductory level, the availability of
such a program provides the student with
a better grasp of the concept of implicit
function because he or she can actually
"see" it. At the more advanced level,
the underlying algorithm behind such a
program can be as valuable as the program
itself in teaching the students to analyze
and anticipate the possible shapes of
curves which can arise when dealing with
implicit functions.

345

In the present paper, we will focus
on an algorithm which will lead to the
graph of the majority of implicit func-
tions. We will also discuss some of the
limitations and problems with such a
program. Finally, we will demonstrate
the use of one such program in producing
the actual graphs of several implicit
functions.

Suppose we start with an implicit
function in the form

F(x,y) = O.
Since this represents a functional rela-
tion with y as a function of x, then
there should correspond (at least) one
value of y for each value of x. In
order to start the graph of such a func-
tion, it is necessary to determine one
point on the curve. To accomplish this,
we arbitrarily select a value for x, say
x
0,

and seek to locate a corresponding

value yo, by applying the Bisection Method

to the equation F(x0,y) = 0. We first

locate the desired root by considering
the sign for F(xo,y) on a sequence of

intervals Cy, y+k3 with sufficiently
small k with y between -1000 and 1000,
say. Once such an interval is found,
the Bisection Method zeros in on the
desired root fairly fast.

Now that a particular point (x0,Y0)

on the graph has b.:en found (presumably),
we seek to continua the graph by deter-
mining additional points and connecting
them. Since the graph can continue both
to the left and the right, we will have
to consider both directions. Suppose
we continue it to the 'eight initially.
We consider the sequence of points
x. = xo + ih (i=1,1,) and attempt to

1

determine the corresponding values yi.

We could continue to apply the Bisection
Method to generate the new points, but
it converges far too slowly to use repea-
tedly. In addition, it also requires
finding two values of y bracketing each
successive solution yi. Instead, we will

apply Newton's Method in the form

362



www.manaraa.com

- F(xi,Yn)/Fy(xi,Yn)

where F
Y

is the partial derivative of F with res-

pect to y.

With this approach, we note that each previ-
ously determined value yi at (xi,yi) is used as the

initial approximation to the next root at

(xi+h, yi+l) Since h is taken very small and the

curve is presumably continuous and fairly smooth,
yi+1 should be close to yi and the convergence will

usually be extremely rapid, if a solution indeed
exists.

However, the "if" can be a big one. A great
many oddities can occur when one deals with impli-
cit functions and provisions must be made to ac-
count for them, if possible. First, Newton's
Method breaks down when the denominator, Fy(x

i
,y

n
),

is (nearly) equal to zero. In the present instance,
this corresponds to a vertical tangent which can
take any of the forms illustrated in Figure 1. The

cases shown in Figure la and lb can be handled

(a)

(c)

FIGURE 1.

fairly easily using a simple modification of the
above procedure. If the Method does not converge
for a particular value of x, say xN = xo + Nh,

(as determined by either a count on the number of
iterations being performed or on the relative
changes in the values of the successive iterates),
then it makes sense to skip on to the next point

xN +l while still using y
N-1

as the initial esti-

mate. If Newton's Method converges at this point
within a reasonable number of iterations (cer-
tainly fewer than 10), then yN can simply be set

to the average of yN_1 and yNil for an acceptable

graph.

As an alternative or even subsequent "fix" for
the above problem, we can also resort to a secon-
dary method. One such might be to call on the
Bisection Method again. Another might be to use
an extension of Newton's Method such as the one
described by the present author in C13 which avoids
the problem of Fy = 0 while developing a cubically

convergent process based on approximating a curve
with parabolas instead of tangent lines.

If all of these techniques fail, it is probable
that the curve actually bends back on itself, as
shown in Figure lc. To attack this case, we have
to locate a point on the second (or later) branch
of the curve. This can probably best be done by
recourse to the Bisection Method once again where
we would have to take into account the likely
orientation of the anticipated branch. Thus, if
the y's are decreasing before the turn, then the
search for the next point, also corresponding to
x = xN, should occur from y = -1000, say, up to

y = yN. Once such a point has been located, we

simply set the step h = -h and continue on to the
left.

If this latter attempt also fails, we should
probably just accept the inevitable and not try
to extend the curve any further at that end.
Instead, we should return to the original starting
point (x

o
,y

o
) and attempt to extend the graph to

the left using the same algorithm as above.

We note that the above efforts should essen-
tially cover the case of a vertical asymptote as
well. If the graph has the appearance shown in
Figure 2a, then the continuation might be picked
up with a "jump" across the singularity. If it

looks like Figure 2b, then it is unlikely that
the algorithm will converge quickly enough to have
points on either side of the singularity connected.
Alternatively, we can provide for such a singu-
larity by keeping track of the relative sizes of
the values for y and if they exceed some preset
limit, then the graphing routine should allow for
the "pen" to be lifted and reset across the jump.

There are several other possibilities which
can also occur when one deals with implicit func-
tions. Primarily, these involve the case of a

346

363



www.manaraa.com

(a)

FIGURE 2.

horizontal cusp, as shown in Figure 3. Both of
these cases should he handled by the procedure
discussed above whet the curve turns back onto a
new branch. However, if the curve bifurcates at
a particular point, then the algorithm will con-
tinue along just one of the branches and it does
not seem possible to design any reasonable modi-
fication of the algorithm which can pick up such
a situation.

Another major problem, which appears to be
insurmountable in terms of any reasonable modifi-
cation of the present method, involves the situ-
ation where the curve consists of two or more
distinct and non-intersecting segments. For
example, consider the case of the simple hyper-
bola. The algorithm will trace out one portion
of such a curve, but will miss entirely the other
portions. Further, any effort to take such an
eventuality into account would seem to make the
resulting program incredibly unwieldy. Conse-
quently, we will ignore this case and hope that
it does not arise or simply be content with
tracing out a single portion of the curve.

A flow chart for the above algorithm is
presented in Figure 4. From this, it should not
be too difficult to write the corresponding
computer graphics program to implement the method
on most of the available high resolution computers.
The author has already done so for a PDP 11/34
system supporting Tektronix graphics terminals
(model 4006) as well as for the TRS 80 Color
Computer. However, it should be emphasized that
the actual procedure is an extremely time-con-
suming one, particular if a reasonably large
number of points are to be located. In fact,
the amount of number crunching is probably com-
parable to that needed to graph three dimensional
surfaces. As such, it is not well suited for
microcomputers on a real-time basis unless one
is using a preprocessor to handle the calcula-
tions. Alternatively, it is possible to generate
such graphs in advance and 'record" the images
for later demonstrations. Unfortunately, this
certainly involves a tremendous loss in spontan-
eity and a consequent reduction in impact on a
class. 7,-

It is worth noting that there is an alternate
algorithm which also works quite well in pro-
ducing the graphs of most implicit functions. In

fact, the author has found that it is usually
more effective than the one presented above. In

particular, the idea is to transform the given
function F(x,y) = 0 into polar coordinates in
the form

F(r cos9, r sing) = 0
and graph it with r as the implicit function of
9. A natural choice for a starting point might
be 9 = 0 and a full loop will often occur for 9
between 0 and 21r. One further advantage is that
most of the shapes shown in Figures 1, 2 and 34.
could be traversed smoothly in polar coordinates
while they present: major difficulties in rectan-

l% gular coordinates. One potential problem does
arise with a vertical cusp and a procedure for
handling this would be analogous to the method
used earlier when a rectangular curve bends back
on itself. Another advantage of the polar repre-
sentation is that it would be oftrq easier to
check for a complete loop of a closed curve (simply
compare r for 9 = 0 and for 9 = 217, say.)

(a)

FIGURE 3.

347

There are several further complications that
occasionally arise, particularly with the polar
representation. For one, if we utilize a function
involving the trigonometric functions especially,
then there are inherent difficulties built into

364



www.manaraa.com

the use of Newton's Method in terms of instability,
If we have a point on such a curve anywhere near
(and that can be quite far, relatively) a root of
the derivative, then the corresponding tangent line
will shoot off to a point far distant. As a
osult, m^wfon's Method can easily converge tl a
uccesion of distant pufat , di ,, branr.hes

of the curve and the resulting graph, when these
points are connected, will be highly unreliable,
albeit quite interesting in shape.

A second difficulty is a computational one.
In order to pick up the initial point, a search
method has been suggested to bracket the value,
involving a large range of values for y or for r.
However, if the given function involves exponen-
tial terms such as EXP(Y), then the capacity of the
computer can easily be exceeded causing an over-
flow error. Similarly, an all-purpose program
applied to a general expression F(x,y) = 0 cannot
anticipate all possible instances where a function
is not defined - say if LOG(Y) occurs or if frac-
tional exponents are involved.

In view of these comments, it should be clear
that while this type of program can be an exciting
and instructive one for students, it has to be
used with considerable advanced planning or a
willingness to encounter errors with good humor.

Incidentally, it might appear strange that
the major emphasis above was devoted to the rectan-
gular case despite the fact that the polar form
is usually more effective and easier to apply.
The author feels, though, that from a purely
pedagogical point of view, the rectangular approach
appears far more natural to the students. Almost
all problems in calculus dealing with implicit
functions are in rectangular form and, in fact,
in introductory calculus, the student encounters
implicit functions long before he or she sees
polar coordinates. Thus, if the student is to see

the program rather than simply the output, then
the use of the rectangular form is to be pre-
ferred. This is probably even more important in
intermediate calculus where the emphasis is likely
to be placed more on the possible behavior of such
functions than on the actual appearance of some
of them.

Finally, we illustrate the use of such a

program to produce the graphs of a variety of

implicit functions. In Figure 5, the graph of

(x+y)
3

+ (x-y)
3

= x
4
+ y

4
is shown. In Figure

6, the implicit function displayed is given by

x
5
+ 4xy

3
- 3y

5
= 2, while in Figure 7, we show

the graph of x
7

- 4x
3
y
2

+ 4y
6

= 1. Lastly, in

Figure 8, we show the graph of the implicit func-

tion xy
4
- sin(xy) + x = 1. Once such graphs are

available, an immediate followup would be to
investigate the results of modifying the values
for the constants on the right to examine the
corresponding families of curves so generated.
However, we will not do any of this here.

Reference:
Gordon, S. P. and E. Von Escfio, On a cubic

extension of Newton's Mettoii. (lubmittW.

Acknowledgement:
Tfie author gratefully acknowledges the

support provided in part for the developments
discussed in the present paper by the State Uni-
versity of New York under a grant from its pr , 'm

for Improvements in Undergraduate Instruction.

r FID vo US:NG

EtISECTION TETHOD

Fl%3 Y(L1) USING
METHLIO

{

f4lr__=H2

RESET TU
XD,Y0

348 36

Fig.a...! 4.



www.manaraa.com

Y RANGES
FROM-4.15882
TO 4.13787
IN STEPS OF

- .831589

Y RANGES
FROM-1.23899
TO 1.15388
IN STEPS OF
.239207

X RANGES FROM .924778E-6 TO 4.16212 IN STEPS OF .416212

Y RANGES
FROM-1.03143
TO 1.03693
IN STEPS CF
.286236

FIGURE J: (WI)
3

(X-Yr; Y

4
Y
4

X RANGES FROM-.306732 TO 1.34491 IN STEPS OF .165165

Y RANGES
FROM-4.13839
TO 4.1336
IN STEP7S OF
.832373

FIGURE 6: X
5

4XY
3

- 3Y
5 2

X RANGES FROM-.993599 TO 1 28314 IN STEPS OF .227674

FIGURE 7: X
7

- 4X
3
Y
2

4Y
6

349

X RANGES FROM .330507E-2 TO 1.63301 IN STEPS OF .16297

FIGURE G: XY4 - 5IN(XY) + X . I



www.manaraa.com

INTERRUPT DRIVEN I/O PROJECTS IN
AN ACM '78 CS4 COURSE*

by Greg Starling

Department of Mathematics and Computer Science
Western Carolina University

Cullowhee, North Carolina 28723

Abstract

In the ACM '78 curriculum recommendations for
CS4, Introduction to Computer Organization, the
three objectives of the course involve some aspect
of simple input/output devices at both the software
and hardware level. These recommendations also
call for the study of a simple minicomputer or
microcomputer system.

In a computer science program which is ori-
ented toward a time-sharing facility some objectives
of the course are impossible to meet. Even with
microcomputers some of the aspects of I/O program-
ming do not come alive without a facility for
binary input and output ports with interrupt
capabilities. We describe some hardware and soft-
ware I/O projects which we use in our version of
CS4. Included in the paper are details to allow
others to implement these projects. We use APPLE II
plus microcomputers, but the principles could be
adapted for other microcomputers.

Introduction

An abbreviated description of the ACM Curric-
ulum '78 CS4, Introduction to Computer Organization,
course is:

Course Objectives.

(a) to introduce the organization and
structuring of the major hardware components of
computers;

(b) to understand the mechanics of infor-
mation transfer and control within a digital
computer system; and

(c) to provide the fundamentals of logic

design.

Topics.

(a)

(b)

(c)

fhis material is based upon work supported by
the National Science Foundation under Grant No.

SPE-82-63111. Any opinions, fiLuings, and conclu-
sions or recommendations expressed in this publica-
tion are those of the author and do not reflect the
views of the National Science Foundation.

Basic Logic Design
Coding (BCD, ASCII, etc.)
Number Representation and Arithmetic

350

(d) Computer Architecture
(e) Example (an actual microcomputer system)

At Western Carolina University we are now in
our fourth year of teaching this course. In the
1979-80 academic year we used a Z-80 based micro-
computer (Exidy Sorcerer and TRS-80) to support the
hardware and programming topics of the course. In
1980-81 we established a microcomputer laboratory
with 15 6502 based APPLE II plus microcomputers and
a CORVUS Systems hard disk network storage facility
under NSF Grant number SER-80-04761. In both years
we found that some of the topics dealing with input,
output and logic design were rather artificial with-
out some means of non-keyboard, non-printer or CRT
I/O. In fact, the concept of interrupt driven
systems remained a mystery to most students, even
some of the best ones. In 1981-82 it was decided
during the logic design and memory organization
phases of the course to design a binary input /output
port with interrupt capability using 6520 Pas
(Peripheral Interface Adaptors). After studying
logic design, memory mapped I/O and the organization

of the 6502 and 6520 chips the class, under the
guidance of the instructor, established the design
criteria and designed the memory address decoder to
place the I/O port in a peripheral expansion slot
of an APPLE II computer. The instructor then did
the mechanical design and fabrication of Coe I/O
device. The students then wrote program exercises
using the port.

Hardware.

The design criteria decided upon were:
(a) Two bytes for input and two bytes. for out-

put to facilitate easy transfer of signed numbers
as large as 32,767 in magnitude and to provide both
a status register and a data register for programmed
I/O experiments. This requires two PIAs.

(b) Toggle switches for input and LEDs (light-
emitting diodes) for output so that the relation-
ship between characters on the video screen or key-
board can be easily observed by way of the I/O port.

(c) Momentary pushbutton switches and LEDs for
interrupt requests and interrupt acknowledge signals
using the peripheral input lines and peripheral
control lines of the Pas. It was agreed that each
byte of the input port and each byte of the output
port would' have an interrupt request button and
acknowledge LED. One button would have normallyopen
contacts and one would have normally closed con-

tacts to provide the possibility of an

3 ,



www.manaraa.com

interrupt on falling edge or on a rising edge
signal.

(d) A slope-front, Aesktop console to mount
the switches and LEDs for ease of use while con-
trolling the computer from its keyboard.

(e) An edge-card contacts circuit board
which fits an APPLE computer peripheral expansion
slot to hold the PIAs and address decoding logic.
(Soldering should not be done by a novice with a
soldering iron. Wire-wrapping is probably the
best choice, but use one level wire-wrap sozkets
so as not to interfere with other peripheral cards
inserted in adjacent slots.)

(f) Use a 50 conductor ribbon cable (2' - 3'
long) and IDC (Insulation Displacement Connectors)
to interconnect the console and the card.

Each of the eight peripheral slots on the
APPLE Computer's expansion bus is allotted sixteen
memory mapped I/O locations beginning at location
$ C 0 8 0 ending at location $ C 0 F F. For slot
k the address range is$C0n0-$COn F,
where n = $ k + 8. In addition, each of slots one

through seven has a 256 byte page of memory allo-
cated beginning at $ C 1 0 0 and ending at
$ C 7 F 0 (refer to chapter 5 of the APPLE II
Reference Manual), There is also a 2K byte block
of ROM space reserved for the use of all of the
peripheral slots so that service routines longer
than 256 bytes can be accommodated. Although we
did not implement either a 256 bytes primary page
or 2K byte expansion block in the class, we did
study their use and one student implemented both
in a one hour summer school special topics course.
The EPROMs are visible in figure 4.

The details of the hardware design are con-
tained in the following tables, figures and
diagrams. Table 1 and Figure 2 give the pertinent
architectural and organizational details of the
6520 PIA. Figure 3 contains information on inter-
facing the PIA s to the APPLE bus. For more
details than these, the Motorola data sheets for
the 6520 (same as 6820) PIA and the APPLE II
Reference Manual 1 should be consulted.

Address Lines
Control Register Bit

X = Don't Care
Register
Selected

RS1 RSO CRA-2 CRB-2

0 0 1 X Peripheral Register A

0 0 0 X Data Direction Register A

0 1 X X Control Register A

1 0 X. 1 Peripheral Register B

1 X 0 Data Direction Register B

1 1 X X Control Register B

CRA

CRB

Table 1. PIA configuration information

7 4 l 3 .2 1 J 0

CA1 ControlIRQA1 IRQA2 CA2 Control DDRA
Access

IRQB1 IROB7 CB2 Control ,, DDRB
Access

CB1 Control

Notes.

Data Direction Access Control Bit (CRA-2,
CRB-2). Bit 2 in each control register (CRA,
CRB) allows selection of either a Peripheral
Interface Register or the Data Direction
Register when the proper register select
signals are applied to RSO and RS1.

InterrutPlasoRA-7,CRARB-6.
These flags are set by active transitions on CA1,
CA2, CB1, CB2 respectively. They are reset by
peripheral read data operations.

Figure 2. PIA Control Registers (CA1,CA2,CB1,032 control)

351



www.manaraa.com

+5v CI,

ou C2>
IRQ

1K 330 1K

tad
VCC
VSS

DO <::
D1 <7.)

D2 <::)
D3

D4 .CD.
D5

D6

D7

AO

Al [D.,

+5v E>

A3 E2>
A4 ED,

CND E>

DEVICE SELECT E>

13 Y1

LS139

/W

Inn

DO

D1

D2

D3

D4

D5

D6

D7

RSO

EREICSO

PBS/NO

_a_
-4) 3. 330 P

xTyiS,ical

CB-2 1'BQI

FBI

PB2

PB3

PB4

PB5

PB6

PB7
PIAO

(6520)

PAO

PA1

.

1K n
Typical
"AM

Ar0---111.
PA2-0

-14-°-111.PA3 --O

PA4--0
-14r-0-111.

PA5

PA6

CS1

NC

NC

To CSO and CS1 of PIA1

+5 v

Notes.

1. All resisters are in 10 pin, 9 resist.= 4. Push button switches are NC (normally closed)

SIP packs. on PIA'.

2. Inverters are 74LS04. 5. Toggle switches are SPDT, long handled,

3. LEDs are Tl 3/4 red miniature.
6. LEDs and inverters on outputs are powered from

an external +5 v supply.

Figure 3. Typical connections for one of the PIAs



www.manaraa.com

Figure 4. The finished product

Software Projects.

Many of the programming exercises in an
assembly language programming course at the college
sophomore level are repetitions of the exercises
done in the beginning programming course in the
freshman year. Usually, only those exercises
involving code conversions are significantly
different from those done in the first course.
That is because traditional assembly language
programming courses have been taught on mainframe,
central, time-shared computers. This has prohi-
bited the undertaking of most basic I/O and
interrupt programming. In fact, in most systems
the students must be taught how to interface with
the system's I/O routines just to get input to and
output from their assembly language programs.
There is no such thing as raw binary input and
output. And as far as interrupt programming is
concerned there is none. These are two deprivaticns
that insulate computer students from some of the
most exciting capabilities of computers. Fortu-
nately, the growth of microcomputer usage in the
introductory computer organization course gives us
the possibility to rectify these shortcomings.
With the I/O port described here attached to an
APPLE microcomputer both I/O programming and
interrupt programming exercises are easily under-
taken. Indeed, basin data transmission programming,
an'increasingly more important partof programming,
is more easily understood.

Some of the programming assignments we use
with the binary I/O port are as follows.

353

(1) Configure the PIAs in the I/O port. (See
chapters 11 and 12 of 6502 Assembly Language Pro-
gramming3.) This gives quite a dramatic effect,
because the LEDs are all lit on power up, and all
go out upon successful configuration.

(2) Load the APPLE's accumulator from the
input switches and transfer the contents to the
output port. This may be done for both an eight
bit transfer or a sixteen bit transfer.

(3) Do exercise (2) in an unending loop so
that the output changes continuously with the
input (flip a switch on and the corresponding LED
lights).

(4) Take a character from the keyboard and
transfer it to tha output lights. The COUT sub-
routine in the APPLE's Monitor or Autostart ROM is
useful for this exercise. (See page 61 of the
APPLE II Reference Manuall.)

(5) Take a code from the input switches and
transfer it to the APPLE's video screen either as
an ASCII character or as hexadecimal digits. Tne
subroutines PRBYTE, PRHEX, PRNTAX, and RDKEY (see
pages 61-62 of the APPLE II Reference Manuall) are
used in these exercises.

(6) Take a binary number from input switches,
rotate or shift, display on the LEDs and repeat
after an appropriate time delay so that the bits
move slowly enough to observe. The APPLE's WAIT
subroutine (see page 63 of the APPLE II Reference
Manual 1

) is useful here.
(7) Take two 8-15 bit numbers from the

switches, add them and display the result on the
LEDs and the screen. The sixteenth switch is used



www.manaraa.com

as a strobe bit to signal the program that an
operand is set on Ale switches. This gives
experience on programmed or polled input status
checking as opposed to interrupt driven input
acceptance.

(8) Configure the control registers of the
PIA s for interrupts (see figure 3). The control
registers contain interrupt enable bits (CRA-0,
CRB-0, CRA-3, CRB-3) interrupt status bits (CRA-7,
CRB-7, CRA-6, CRB-6) direction select. bits (CRA-4,
CRB-4) and active transition bits (CRA-4, CRB-4).
For more details see pages 11-15 through 11-20 of
6502 Assembly Language Programming3.

(9) Configure the two PIA s so that the binary
I/O port is two 8 it input/output ports with CA1
interrupts enabled on both PIA s. Modify exercise
(3) so that input/output port 0 and input/output
port 1 can interrupt each other. Input and
corresponding output comes from first one and then
the other depending Upon which one had its IRQ
button pressed last. An added feature to this
exercise would be to light the ACK LED of the
active port. This is controlled by making CA2 an
output signal on both PIAs. We have not tried this
particular feature, but we believe it should work.
The program might be written to poll the status
bits (CRA-7) on the two ports to determine which
issued the IRQ.

There are several cautions about interrupts
on the 6502 MPU and the 6520 PIA. Upon responding
to an interrupt the 6502 disables interrupts, so
to make it possible for the other port to interrupt
an interrupt service routine bit 2 of the P (flags)
register should be reset. Also the service routine
should read the data register of the port sending
the IRQ to reset the interrupt status bit, CRA-7
and thus deactivate the IRQ for that port.

When the interrupt service routine is loaded
into the APPLE's RAM one must also load the address
of its first executable statement into locations
$3FE and $3FF. An IRQ causes an eventual jump to
the location stored there. This. is because the
locations $FFFE and $FFFF which hold the true
interrupt vector, $FA40, are in ROM space on the
APPLE II. On interrupt request execution is
vectored to that location which eventually leads
to an indirect jump to the location whose address
was stored at $03FE $03PF. Refer to page 143 of
the APPLE II Reference Manual.' If one were to
implement the page of memory allocated to an APPLE
expansion slot, then the service routine could be
located in there. If the routine is too large for
this 256 byte page, then one would have to include
a 2K expansion ROM (or RAM) so that the vF.rvice
routine could jump out of the single page Llto that
2K of memory. This 2K of address space is reserved
so that any board plugged into an expansion slot
can switch its own 2K of memory into it. The proper
protocol for this substitution can be found on
pages 84-85 of the APPLE II Reference Manual.' We
provided a unique decoding of the special location
address SCRIPT. One student who took the CS4 course
has subsequently done that. He put configuration
routines for the PIAs and some of the exercise
routines listed above into 2716 EPROMS. We actually
used 2716 EPROMS both for the single page and for
the 2K expansion ROM space because our EPROM
programmer doesn't program the 256 byte 1702 EPROMS.

Listing 1 configures the r/ As for APPLE

peripheral clot
switches values

Listing 1.

number 2 and tvInsfers the input
to the output LEDS.

LDA #0$9600
$9502 STA $COA1 ; SELECT

$9605 STA $COA5 ; DATA

$9608 STA $COA3 ; DIRECTION

$960B STA $C0A7 ; REGISTERS

$960E STA $COAO ; DATA REGISTERS

$9611 STA $COA4 ; A WILL BE INPUT

$9614 LDA #$FF
$961A STA $COA6 B WILL BE OUTPUT.

$961D LDA #04
$9611 STA $COA1 ; SELECT

$9622 STA $COA5 ; DATA

$9625 STA $COA3 ; REGISTERS

$9628 STA $C0A7
$962B LDA $COAO ; READ LOWBYTE SWITCHES
$962D STA $COA2 ; TRANSFERTOLOWBYTELEDS

$9631 LDA $COA4
$9633 STA $COA6 ; TRANSFER TO HIGH BYTE

; LEDS
STA $COA6 ; TRANSFER TO HIGH BYTE

; LEDS
JMP $962B ; REPEAT FOREVER (UNTIL

; RESET)

Summary.

The binary I/O device provides the means for
very basic input/output and interrupt programming
exercises which are not traditionally available
to computer science students. With it we believe
that students get a better understanding of code
conversions, the I/O interface and interrupt driven
systems. It prepares them better for the required
upper division courses and also makes it possible
for them to start at a higher level in some of the
hardware oriented elective courses.

Plans for the future are to continue the
projects but to change from the PIAs to a VIA
(Versatile Interface Adaptor) because it has all

the features of the PIA, two interval timers and a
serial output in addition. It will allow us to
have timed interrupts exercises which will be useful
in studying time-sharing in a systems programming
course.

REFERENCES.

1. APPLE II Reference Manual, Copyrighted 1979,
1981 by APPLE COMPUTER INC.

2. "Add a Peripheral Interface Adapter to Your
Apple II," by Kenneth J. Ciszewski, BYTE
Magazine, January 1982.

3. 6j9/j±nE±Etnhlnlivaiell,2rogra14mmin by Lance A.

Leventhal, Osborne/McGraw-Hill, 1979.



www.manaraa.com

ASSEMBLY LANGUAGE ON THE APPLE -- A THOROUGH INTRODUCTION

W. D. Maurer, Professor
The George Washington University (SEAS)

Washington, D. C. 20052

Abstract

An increasing number of colleges ana
universities are setting up APPLE computer
laboratories. These are being used for tike
teaching of BAS/C, as well as for experi-
mentel projects in, wide variety of cour-
ses. Assembly language, however, does not
seem at this time to be widely taught on
the APPLE. One reason forthis may be that
until recently the APPLE Corporation did
not produce a good assembler of their own.
One was forced to go to other, organirat-
tiona, such as Lazar Systems, which act as
distributors for assemblers written. inde-
pendently. The present paper outlines the
resultm of a project involving the prepa-
ration of a thorough syllabus for the tea-
ching of assembly language on the APPLE.
As a measure of the success of this ef-
fort, the department in which this author
teaches has just instituted a new course
in assembly language programming of micro-
computers, to be offered as an alternative
to the study of IBM 370 assembly language.

Introduction

There are many arguments for teach-
ing assembl" language on a microcomputer
such as the KPPLE. Of course, there is the
basic argument concerning progress in com-
puter science; microcomputers provide bet-
ter throughput (instructions per dollar)
than mainframes, and therefore constitute
an advance in computer science that should
be reflected in curricula. But there are
other arguments. Assembly language pro-
gramming on computers ouch as the IBM 4341
has been strongly discouraged for some
time now. Assembly language programming on
microcomputers, on the other hand, is of-
ten necessary because of the small memory
size of the microcomputer system being
constructed.

It may be argued that microcomputer
assembly language is of particular impor-
tanc in a compiler-writing course, since
most of the new compilers being written
these days are being written for microcom-
puters. Many new assembly language con-
cepts are available in microcomputer as-
sembly languages which are not available
on the IBM 4341; these include stack-ori-

355

ented call and return instructions, push
and pull pop) instructions, and status
flags (an improvement on condition codes).
Even some more traditional assembly lan-
guage concepts, such as immediate addres-
sing for comparing and subtraction, indi-
rect addressing, and direct memory incre-
ment, decrement, and shift, are available
on the APPLE and not on the 4341. Finally,
there is the sheer challenge of working on
a micro -- learning to do without multiply
and divide, without floating point, and,
in the case of the 6502, without 16-bit
operations or add-without-carry.

Existing Literature

The existing literature on the as-
sembly language of the 6502 (the particu-
lar microprocessor used in the APPLE) was
quickly found wanting. There are several
short books on APPLE assembly language,
many of which have no exercises, and none
of which was felt to be thorough enough.
(Our syllabus, which runs to over 500 ma-
nuscript pages, has, however, been accep-
ted for publication [1] by Computer Sci-
ence Press, Rockville, Md.) There is also
a very thrbuugh book on the assembly lan-
guage of the 6502 [2]. This book, however,
is intended for the teaching of logic de-
sign replacement. As a consequence of
this, the student, in using it, does not
require a knowledge of BAS/C, but does re-
quire an elementary knowledge of computer
hardware (equivalent to Volume I of [3],'
for example), whereas the reverse is true
in a typical assembly language programming
course as it is given in colleges and uni-
versities (and in our syllabus) .

In teaching a course on APPLE assem-
bly language, it is essential to specify
an assembler. We use the Lazer Systems In-
teractive Symbolic Assembler (LISA), for
several reasons. It is one of the few pri-
vately produced assemblers for the 6502 to
be systematically maintained, down through
the years; new versions continue to be
produced, involving new features as well
as correction of problems discovered in
older features. It is very fast, being
what used to be called an "in-core" as-
sembler; that is, assembly is directly
into memory rather than to a diskette

372



www.manaraa.com

file. It has consistently been rated as
the best APPLE assembler, overall, in the
evaluations that we have seen. Finally, it
is reasonably priced.

Our APPLE laboratory cons'ists of 12
APPLE II+ systems and eight APPLE III sys-
tems. At the moment LISA runs only on the
APPLE II+, and PASCAL runs only on the
APPLE III (and on one of the APPLE II+
systems, which has the Language Card).
Hence PASCAL classes are scheduled for the
Ills, LISA classes for the II+ systems,
and BASIC classes for either machine. In
the fall of 1982, six sections of assembly
language were run, of which four were ori-
ented towards the 6502.

Description of the Syllabus

A heavy emphasis is placed on writ-
ten exercises. In the teaching of assembly
language, one finds far more concepts that
have to be learned than is the case with
FORTRAN, BASIC, or even PASCAL. Some of
these can be learned by hands-on experi-
ence in assembly language programming, but
there is a limit.to the amount of material
that can be learned in one semester in
this way. Accordingly, we have arranged
the syllabus in 100 small sectionu (a max-
imum of three manuscript pages per sec-
tion), with three written exercises per
section, each of which has no more than
three parts. These have been assigned to
the students as homework in each of three
semesters (spring, summer, and fall 1982),
and checked very thoroughly, both as to
possible incorrect answers supplied by the
instructor (who makes more mistakes than
he cares to admit) and as to difficulty (a
number of the exer ises were revised .and
made easier). Several students submitted
acceptable alternative answers, which have
been included in the section on answers to
selected exercises.

The student is introduced to the
computer at a much later time, during the
semester, than is customary in programming
_courses. Assembly language differs from
other programming languages in that a tre-
mendous amount of material must be under-
stood before the student is capable of
writing reasonable programs. It is possi-
ble to write a program which adds two num-
bers, for example, in the first week, but
this, in our opinion, does not facilitate
learning how to write and debug more so-
phisticated programs. In the outline of
the syllabus, given below, it is made
clear how much material we cover (about
two-fifths of the total) before the first
actual hands-on programming assigndent.

In quite a number of texts on assem-
bly language, the student is presented, at
the start Of the course, with a complete
list of all the instructions of the given

machine, and this is followed by a number
of chapters on specific programming tech-
niques. In our syllabus, we have taken a
different approach. The introduction of the
carious instructions, status flags, regis-
ters, and addressing modes is spread out
over the wheLe syllabus. Thus the PSW (the
status register), for example, is not in-
troduced until section 67; the interrupt
status flag and the last three instructions
(CLI, SEI, and RTI) are introduced in sec-
tion 68; and the last three addressing
modes (zero-page and the two kinds of indi-
rect indexed addressing) are saved for sec-
tions 74 through 76. Our motivation here is
to provide a thorough introduction to every
separate instruction, register, status
flag, and addressing mode. Thus there is a
separate section on the logical exclusive
OR, for example, giving several applica-
tions, and introducing the truth table and
the two alternate mnemonics (EOR and XOR).
Similarly, each status flag is introduced
in a section of its own, together witn a
discussion of its uses. (The uses of the
carry flag are spread over at least a dozen
sections.)

Detailed Outline of the Syllabus

(1) Coces (Section 1). The basic idea
of representing all data in a computer as
codes is introduced by analogy to the se-
cret codes which children pass back and
forth.

(2) Number systems (Sections 2-5) . An
introduction to binary and hexadecimal,
conversions between one number system and
another, and addition and subtraction in
binary and hexadecimal.

(3) Registers (Sections 6-7). The
basic ideas of registers and memory cells;
the A, X, and Y registers (the others are
introduced later); the basic fact that n
bits can hold 2n codes; multibyte quanti-
ties and twos' complement arithmetic.

(4) Load, store, increment, and de-
crement (Sections 8-9) . The first twelve
instructions: LDA, LDX, LDY, STA, STX, STY,
INC, INX, INY, DEC, DEX, and DEY. (We do
not introduce ADC or SBC until later, be-
cause of the need to discuss carrying and
borrowing.)

(5) Machine and assembly language,
and pseudo - operations (Sections 10-11). At
this early stage, the student is shown, in
a simple form, the difference between as-
sembly language and machine language, and
is introduced to three pseudo-operations:
ORG, END, and DFS. These will be enough
for the writing of simple programs. (We
may note that many syllabi start out with
machine language, and only later introduce
assembly language, hoping to make the point
that the tediousness of machine language
suggests the need for assemblers. We take a
different tack here because we see no need
to make this subject any more tedious --
there are enough f4.ne points to learn as it



www.manaraa.com

is.)
(6) Two-byte quantities (Section

12). We are going to be doing 16-bit ope-
rations throughout the syllabus (as is
clear from what follows). At this point
our purpose is merely to introduce the no-
tation K+1 (as in LDA K+1) for the upper
byte of the two-byte quantity K, and to
start clearing away the common misimpres-
sions about K+1 (distinguishing LDX K+1
from LDX K followed by INX, for example).

(7) Indexing. (Section 13). An un-
usual note here: this early_ in the sylla-
bus, we in roduce LDX J followed by LDA
T,X for the loading of T(J) into the A
register. It is our strong opinion that
subscripted variables are usually intro-
duced far tco late in the semester, re-
gardless of the programming language be-
ing taught. One must face the fact that
over 95% of all programs contain arrays
and indexing.

(8) Adding and subtracting (Sec-
tions 14-17.) This includes 8-bit and 16-
bit addition and subtraction, the carry
flag, and the relation between carry and
borrow. Two-byte numbers are considered as
two-digit numbers in a number system with
base 256, so that their addition and sub-
traction can be seen to follow the same
rules as with other number systems. We may
also note that a careful and precise
treatment of the carry flag as used in
subtraction, specifically, is markedly ab-
sent from many treatments of microcomputer
machine language programming.

(9) Transfer instructions and com-
ments (Section 18). Two topics here:
first of all, four more instructions, TAX,
TXA, TAY, and TYA, and their use in the
evaluation of expressions such as T(J+K)
(where T is an array); then, comments
(which follow a semicolon, if the LISA as-
sembler is used). The reason for introdu-
cing comments at this point is that our
programs are just now starting to get big
enough that the student can see the need
for some memory aid to remember what has
been done.

(10) Branching and labcls (Section
19). Since we have introduced the carry
flag, we can introduce BCC and BCS, and
this leads naturally to a discussion of
the syntax of labels. Here the student who
has had BASIC or FORTRAN needs to get used
to the idea of an alphanumeric label. An
application of BCC and BCS (adding or sub-
tracting two quantities, one eight bits
long and the other 16) is also given.

(11) Loops, and zero status (Sections
20-22). The student who has had only FOR
statements in BASIC, or DO statements in
FORTRAN, needs to understand how to simu-
late these in machine language. Two basic
types of loop are presented: the loop
starting with INX and ending with CPR and
BNE, and the loop ending with DEX and BNE.
(Other types will be presented later.)

357

(12) Offsets (Section 23) . This is
an often sadly neglected topic. By offsets
we mean the use of LDX J followed by LDA
T-1,X (rather than LDA T,X), for example,
to load T(J) when the first element of the
array T is T(1) (that is, men there is no
element T(0)); also LDX J followed by LDA
T+8,X (for example) to load T(J+8) (or
T(J+9) if T starts with T(1), thus combi-
ning this with the preceding technique).
Here the offsets are respectively -1 and
8. Offsets are indispensable; th s in mo-
ving an array U to an array V, with a loop
ending in DEX and BNE, it is necessary to
use LDA U-1,X and STA V -1,X rather than
LDA U,X and STA V,X (since the final value
of X is 1, in such a loop).

(13) Character codes (Section 24).
Pretty soon the student will want to put
messages (like ENTER THE FIRST NUMBER) in
programs, and this section, introducing
all the basic character code concepts on
the APPLE (normal, inverse and blinking
mode, double quotes and single quotes,
control characters, and so on) is put in
to anticipate the student's wishes.

(14) Input- output, subroutines, and
EQU (Section 25). Again: pretty soon the
student will want to do IjO, which, on
the APPLE, is done by means of monitor
subroutines. Just the basics are given
here: JSR (but not RTS, and nothing about
stacks yet); descriptions of each of three
common monitor subroutines (RDKEY, COUT,
and GETLNZ); and the use of EQU (which is
necessary in specifying where these sub-
routines are in memory). This is a good
way to sneak in an introduction to EQU,
which causes far more student confusion
than, one might assume.

(15) BYT and ASC (Section 26). A
very careful introduction to BYT is need-
ed, because students frequently tend to
confuse BYT with EQU.

(16) The program counter and rela-
tive addressing (Section 27). We introduce
the program counter relatively late in the
syllabus; our feeling is that only now
does the student have enough familiarity
with assembly language concepts to under-
scani it properly. Relative addressing,
which takes some getting used to, is also
introduced here (because its definition
involves the program'counter). It is ne-
cessary to understand this in ca-der to be
able to hand-translate assembly language
to machine language, which is coming up
quite soon.

(17) Sign status (section 28). This
section is mainly devoted to a ca::eful ex-
planat-f.on of why one cannot use the se-
quence LDA P / CMP Q / BMI ALPHA to test
for P < Q, whether P and Q are signed or
unsigned. This then leads to an explana-
tion of the use of BCC and BCS for this
purpose.

(18) Two-byte operations and shift-
ing (Sections 29-35). Covered here are

37_4'



www.manaraa.com

two-byte unsigned comparisons, increment,
decrement, complement, shifting left and
right by one bit, and arrays of two-byte
quantities, as well as ordinary 8-bit
shifting, multiplication and division by
powers of two, and multiplication by ten.
Also, the use of shifts and the carry flag
for processing of the bits in a byte is
discussed.

(19) Table lookup, space_ -time trade-
off (Sections 36-37). Here we have a phi-
losophical digression: is it more impor-
tant to save space, or to save time? As
usual in such digressions, we aim to show
that there is no simple answer, but rather
several complex answers. In order to dis-
cuss the subject intelligently, we need to,
know about table lookup, and how to do ti-
ming calculations; both of these are ex-
plained in detail.

(20) Multiplication, division, in-
put-output conversion (Sections 38-41).
Beginning with a discussion of the multi-
plication and division of general binary
numbers, we proceed to the consideration
of two very tightly optimized subroutines,
one for multiplication and one (already
reported in [4]) for division. We then
proceed to the use of two conversion rou-
tines, one for decimal input and one for
decimal output; these will be discussed
further later on, since they involve con-
cepts we have not had yet. RTS is also in-
troduced, but only as a return instruc-
tion; nothing is said yet about the stack
or return addresses.

(21) Running _programs on the compu-
ter (Sections 42-51). Only now is the stu-
dent deemed sufficiently prepared to be
able to write and run assembly language
programs. This complete discussion of the
subject includes hand assembly, desk
checking, walkthrougha, commands in LISA,
stepping, tracing, breakpoint debugging,
patching (at the assembly level), and com-
munication between LISA and BASIC. Along
the way, there is a thorough discussion of
intermixing errors (STA Q followed by Q
DFS 1, for example) and overwriting errors
(instruction codes being destroyed in the
course of running a program).

(22) Logical operations (Sections
52-55). There is one section each on AND,
ORA, XOR, and BIT. Several applications of
each of these are presented.

(23) Overflow status (Section 56).
This is introduced quite late. The reason
is that, compared to the other features of
the machine, it is not very useful; CMP
does not affect overflow, and signed com-
parisons, which use overflow, are trickier
than they seem (a complete discussion of
this point is given, with a sample pro-
gram) .

(24) Stacks (Sections 57-64). We may
note that data structures, in general, are
discussed in a later course; the student,
at this stage, has no conception of them,
and stacks are thus harder to understand

than they might seem. We start this dis-
cussion by covering a few topird that our
discussion of stacks will illuTzinate: saved
and restored variables, the concept of a
return address, and indirect jumps (no
other indirect addressing yet). We then in-
troduce stacks, first in the abstract and
then with specific reference to the 6502,
including PHA, PLA, TSX, TXS, and the ac-
tual operations of JSR and RTS, as well as
the stack pointer and the page-one stack
area. This is followed by a discussion of
stack techniques, first in general and then
with specific reference to the input-output
conversion programs which we mentioned ear-
lier; these are two programs which illus-
trate, between them, several advanced uses
of stacks. Finally there is a discussion of
why we use stacks (there are good reasons
that have nothing to do with recursion,
which is important because most programs do
not call themselves, either directly or in-
directly) .

(25) Decimal mode (Sections 65-66).
This includes the decimal mode flag, CLD
and SED, and routines to pack strings, un-
pack strings, and add two packed strings.

(26) The status register (Section
67). This section appears here because we
can now treat several of its applications,
such as saving decimal mode status in a
subroutine (using PHP and PLP) so that the
subroutine can use decimal mode, whether
its calling program does or not.

(27) Interrupts and input-output
(Sections 68-72). The section on the status
register naturally leads us into a discus-
sion of interrupt subrdutines and why they
must save the status register (and the fact
that this is done automatically on the
6502). This, in turn, naturally leads us
into a discussion of input, output, simul-
taneous input-output using queues and pol-
ling, and the speaker on the APPLE (al-
though we treat only the simplest applica-
tion here, namely the generation of a mu-
sical tone).

(28) Further string declarations in
LISA (Section 73), namely INV, BLK, DCI,
STR, and HEX.

(29) Page zero and indexed indirect
addressing (Sections 74-77). A major deci-
sion in this syllabus was to postpone the
treatment of page zero almost to the end.
It is seldom used on the APPLE by user
programs (because using it would overwrite
locations used by the monitor, LISA, and
BASIC). In turn, we cannot introduce in-
dexed indirect addressing until the stu-
dent knows about page zero. An important
application of post-indexed indirect ad-
dressing, namely the processing of arrays
having more than 256 elements, is given in
a section of its own.

(30) Modification of instruction
words (Sections 78-81). Most people shy
away from discussing this subject at all.
'peir feeling is that it is bad program-
ming practice anyway, and hence better

358

3 "f



www.manaraa.com

left out of the curriculum. The result,
however, is that progra,=Dr4 inevitably
discover it for themselves, like it, think
they've made a new discovery, and use it
in bad ways. We introduce it and cover se-
veral applications of it, being careful,
along the way, to show the difficulties.
Our hope is that programmers either give
up on it (which is what many people wanted
in the first place), or else learn to use
it responsibly. Modification of ordinary
addresses, of immediate data, and of rela-
tive addresses is covered.

(31) Arrays and sorting (Sections
82-87). This includes arrays of-strings,
arrays of hexadecimal digits, two-dimen-
sional arrays, and the process of sorting
and of searching a sorted array. The con-
nection between sorting alphabetic and
numeric data is shown (that is, the inter-
pretation of a sorted alphanumeric array
as being "alphabetized" in the usual
sense) .

(32) Two-byte signed numbers (Sec-
tion 88). So far we have considered signed
and unsigned 8-bit data, and unsigned 16-
bit data; here we complete the picture.
This also gives us an opportunity to prove
rigorously something we have assumed as
given -- namely that the same add and sub-
tract instructions work on both signed and
unsigned data.

(33) Loops ending in INX and ENE
(Section 89). Another type of loop combi-
ning advantages of speed and forward pro-
cessing, but a little more difficult to
work with, and with more restrictions.

(34) Tapes and disks (Sections 90-
92). This includes a discussion of tape
parity checking, the APPLE disk operating
system, and a number of further LISA
pseudo-operations (DCM, LST, NLS, PAG) and
commands (W, control-D), as well as two
more monitor subroutines (KEYIN and COUT1).

(35) Simulators, interpreters, as-
semblers, compilers (Sections 93-95). A
general philosophical discussion of these
is often given in a first course on BASIC
or FORTRAN, but this discussion should be
expanded now that the student knows assem-
bly language and machine language.

(36) Structured programming (Section
96). This section is mainly devoted to the
connections between structures programming
and assembly language, such as how a typi-
cal structured programming statement (DO-
WHILE, CASE) would be implemented in as-
sembly language.

(37) Real numbers (Sections 97-100).
There are no floating point instructions
on most microcomputers,(even the 16 -bit
variety), but many students have used
floatingpoint BASIC on the APPLE and are
curious about how this is done. We start
by discussing binary and hexadecimal frac-
tions, then floating point formats, then
floating point operations (including nor-
malization), and finally a discussion of
typeless processing (that is, keeping the

359

type of a variable in memory along with
its value, and interrogating the type be-
fore performing any operations).

The Appendix To The Syllabus

The syllabus is accompanied by an
appendix, including the following tables:
(1) an introduction to BASIC for those who
might know only FORTRAN or PL/I or PASCAL;
(2) number base conversion; (3) the 6502
instructions in alphabetical order, toge-
ther with their meanings and the status
flags they set; (4) the 6502 instructions
in alphabetical order, together with
their addressing modes and machine lan-
guage forms; (5) the 6502 instructions in
the numerical order of their machine lan-
guage forms; (6) the LISA pseudo- opera-
tions and extended (7) all spe-
cial characters used in LISA, :ogether
with their meanings; (8) all addressing
modes used in 6502 instructions, together
with their meanings; (9) character codes
or letters and digits in all modes; (10)
character codes for all characters other
than letters and digits, in all modes;
(11) all the APPLE monitor subroutines
used in this syllabus, together with their
actions (we actually use only a small num-
ber of the available monitor subroutines);
(12) all registers and flags and their ca-
pabilities (that is, which instructions
use them directly); (13) all the LISA com-
mands used in this syllabus, and their
meanings; (14) all the APPLE monitor com-
mands used in this syllabus, and their
meanings; (15) a table of the various
subcodes of the 8-bit operation code of
the 6502 and of the "families" of 6502 in-
structions (depending on the rightmost two
bits of the operation code).

We have found that one semester is
about right for the coverage of this ma-
terial. If advanced topics (Sections 49-
51, 65-66, 68-73, and 78-100) are omitted,
the material can be covered in a quarter,
for those schools on the quarter system.

References

1. Maurer, W. D., APPLE Assembly
Language, Computer Science Press, Rock-
ville, Md., September 1983.

2. Leventhal, L. A., 6502 Assembly
Language Programming, Osborne/McGraw-
Hill, Berkeley, Calif., 1979.

3. Osborne, A., An Introduction To
Microcomputers, Osborne/McGraw-Hill, Ber-
keley, Calif., 1976.

4. Maurer, W. D., An improvement
upon division program la Leventhal, Dr.
Dobb's s Journal 7, 3 (March 1982), pp. 20-
21.

* * * * * * * * *

376



www.manaraa.com

STUDENTDOWN SYSTEM DESIGN

Robert Geist

Department of 06?vuter Scienoe
Duke University, Durham, North Carolina

Abstract

A new method for the design of com
puter systems is put forth, which recog
nizes that an individual student's percep
tion of system performance may differ rad
ically from that of the system administra
tors. Recent analytical results from
application of the method to the design of
dual processor systems aro surveyed, and a
call is issued to the educational comput
ing community to undertake the empirical
research in psychopbyslcs that is neces
sary to complete a comprehensive methodol
ogy.

0. Introduation

One of the most painful problems in
educational computing today is the alloca
tion of the scarce (nonexistent?) school
dollar among the over increasing multitude
of available computer system configura
tions. Although it is easy to observe
that the explosive growth in alternative
systems has been accompanied by an equally
explosive growth, within the computer sci
ence community, of analytic design tools
intended to solve the configuration prob
lem (e.g. [1,5,8,11]), it is our conten
tion that such tools are inappropriate for
our use in educational computing.

After all, the classical approach to

analytic system design (including, until
recently, our own (5,6]) has been to

tacitly assume a goal of minimizing mean
system response time, or mean reciprocal
throughput, or system cost, subject to
some constraints. Yet, though each of
these measures may be held to champion the
cause of a particular group (the students,
the administration, Ia bursar), each must
be recognized as a surely external meas
ure, not directly available to, and hence
not directly measured by, the internally
situated users of the system.

Most of us would agree that or stu
dents gather system performance measures
which differ substantially from thong

"paper measures" seen by system adminis
trators. The issue is this: can we lend
quantification to the aeasures students
gather, and can we use such measures,
rather than the classical objective func
tions, in designing systems? It seems we
can.

1. ILIA IlcumdaiA MIER

In [7], Harvard's David Hemenway
offered an "alternative mean" as the
answer to an oftenposed student question,
"Why are my classes larger than the 'aver
age class size' printed in the school
catalogue?" Speoifioally, if M students
populate N classes of sizes

2 bl.

the alternative mean class size is

N

X 2 (3i /M)Eil

1=1

that is, the expected size of a glass con
taining a randomly selected student.
Hemenway provides convincing evidenoo that
this measure more accurately reflects the
information actually available to the stu
dents, who are unable, to view all classes
from "on high."

In [3], we showed that the natural
extension of this alternative mean to the
userperceived mean number of customers in
a queueing system turned ont to be

N s Bali
E[N]

where N is a random -,,ariable denoting
the number of customers in the system and
E is the ordinary expected value opera
tor. Now in classical analytic system
design, we regard the components of a com
putin3 system (CPU's, drums, disks, etc.)
as servers and jobs as customers, who
queue when the desired component is busy.
Thus we can represent an entire computing
system as a network of queues, and, as
night be anticipated, "studentdown"
design (wherbin the student moves to the
"top" position) is then that design metho
dology obtiined by replacing E[N] with N

360

37 -7



www.manaraa.com

wherever the former appears in the classi
cal queueing networkapproach. Perceived
mean response time, R , is then given, in
accordance with Little's formula (see

(67), by R = N /X, where X denotes the
mean arrival rate of jobs to the system.

The question at hand is now this: if
we were to design a system to minimize
perceived mean response time, R , rather
than ordinary mean response time,
E(R] = EINI/X, might we reach a substan
tially different conclusion? Indeed.
Even in elementary design problems, the
effects of this change are dramatic.

2. A SummaLy of Preliminary Results

We now present the results from thz,e
elementary problems on the design of
dual processor systems. The analytic
derivations of these results will eventu
ally appear in (3,4], and will not concern
us here. Our aim is merely to give the
reader the flavor of the new methodology.

A. SLould we have separate gueues or a

combined gueue?

Ir. figure 1 we show two possible con
figurations for a dualprocessor system.
The processors service jobs at a mean rate
of pi jobs/second, i=1,2, and jobs arrive
to either system at a mean rate of X
jobs/second, where necessarily 02 < pi,

for otherwise the queues grow without
bound. For this and all examples, the job
service times are assumed to be exponen
tially distributed and the arrival
processes are assumed to be Poisson; these
standard assumptions of system design are
based on both empirical evidence and
analytical tractability.

It is a relatively straightforward
aigument (3] to show that the mean
response time for the separate queue con
figuration of system 1, E(R1], is given by

E(R1] = 2/(2p1 X)

and that for the combined queue configura
tion of system 2 is given by

E(R2] = 4u2/(44 1`2)

If pi = p2 then clearly E(R2] ( E(R1], but
we usually incur additional management
costs associated with system 2, so that
Pi > TheThe point at which such addi
tional costs would cause us to choose sys
tem 1 can be determined quickly from the
expressions above:

E(R1] < E(R2] iff pi>12+(7/2)(1Xi(2p2))

In particular, if pl = p2 + X/2 then
E(R1] ( E(R2],] so we should choose system
1. But from (3], if we should also have
X < (1 + \II7)p2/4, then R: > 1121

Thus there setups to be a window of
parameter values in which customers would
prefer the combined queue configuration
over the separate queue configuration,
even though the ordinary mean response
time would not be as good.

B. Should we unplug a weak procpssor?

Consider again a combined queue,
dualprocessor configuration, such as sys
tem 2 of example A, but now suppose the
service rates of the two processors are
not necessarily identical. Let them be
given by pi, and p2 where µi = ap2 for
some a 1 1.

A classical result from system design
(12] states that if wa want to minimize
mean system response time, then there is
some disparity ratio a beyond which wo
should simply unplug the weaker processor.
For example, if X = .2 and p2 = .25, then
for pi > 2.82512, we should unplug the
weaker processor and run jobs solely on
the faster one.

Now consider the studentdown
approach: from (4], the perceived mean
response time of the combined system is

(1+a)p
2
+X

R (------ ]
c X (1+a)p

2
X

whereas that for the more powerful proses
sor standing alone is

361

ap +X
1 _a

IZta = --]
X (aµ2X

so that Rc ( Rs for all relevant

X, P2, and a, and we should always leave
the weaker processor plugged in.

C. How should .nompr be allocated between
212R/112r4?

Consider the system of example S, but
now suppose that we are free to choose
p
l

and p
2

subject to a budgetary con
straint of the form pl + 112 = IC, a con
stant. Classical analysis shows (4] that
mean system response time is minimized if



www.manaraa.com

WO choose

P2 + \114-(1l/k)

(and, of course, pi = Y a2). On the

other hand, when we incorporate student
perception we find (as in example B)

ge , 1 [Lill
Ac

which is independent of the allocation.

So allocation becomes, in effect, a

nonproblem. Perhaps a more important
observation is that this last formulation,
together with thst for Rs in example B,

suggests thst students perceive any dual
processor system as equivalent to a single
processor system having service rate equal
to the sum, pi n 2 ,

1. A Can Fkt BPIRIX111.1 LitlAikk

A major factor in the student down

methodology is still missing: R
no psychophysics. We must digress.

If f(a) is a physical scale and g(a)

a psychological scale, where "sumac," is
used in the measurement theoretics sense
(see Roberts [9]) then their relationship
0:

g(a) s 0(f(a))

is called the psychophysical function. In

Our case, f and g represent system
response time measurements, and, up to

this point, we have assumed 0 to be the
identity, that is to say, we have assumel
perfect perception of the information
available. The issue raised in the

preceding sections is that this available
information, and hence any conclusion
derived therefrom, depends heavily upon
the location of the perceiver, even if his
Akility to perceive is unimpaired.

To incorporate the ability of the

perceiver, we propose to follow the great
body of literature from the psychophysics
of prothetic continua (of which time dura
tion is one example) and assume the power

law, that is, P(x) 1. a x°,a ) 0. From
Ekman and Sjoberg [2] on prothetic con
tinua: "As an experimental fact, the power
law is established beyond any reasonable
doubt, possibly more firmly established
than anything else in psychology." Stevens
[10] provides evidence that for estimation
of time duration of white noise stimuli.

P 7, 1.1.

Now, for a certain collection of

problems, neither the precise form of

nor that of R as a function of N is

necessary. If we merely wish to compare
alternative systems on a basis of per
ceived mean response time, it suffices to
assume that each of 0 and R (or, more
generally, their composite) is monotone
nondecreasing, for system coparisons on

a basis of 0(R (N )) can then clearly be
made on a basis of N alone.

On the other hand, ve contend that
the most vital system design imperatives
e.re of the form, "Minimize system cost
sable's! to an upper bound constraint on
0(R (N ))." For such, a precise specifica
tion of 0 is mandatory.

To our knowledge, no attempt has been
made to establish a power law for time
duration-in the context of computer system
response. The results of any such attempt
would be invaluable to our own research,
snd we call upon the educational computing
community to undertake this important
study. Only in this way might we be able
to exchsnge our scarce dollars for the

maximum student satisfaction. ,

4. ggnAlusions

We have proposed a new "studentdown"
methodology for the configuration design
of computer systems. It is our basic
thesis that student evaluation of computer
system performance differs markedly from
administrative evaluation, and that it

depends heavily upon the student's loca
tion, which is necessarily internal to the
system itself. We contend that the per
ceived mean, originally introduced by
Hemenway [7], captures the effects of this
location.

Using the new methodology, we often
find that the optimal system design'
differs radically from that obtained
through classical analysis. Studentdown
designs are also usually easier to imple
ment.

The final (and yet unspecified) com
ponent of the new methodology, the psycho
physical function, is the subject of our
call to the educational computing commun
ity for extensive experimental research.,

This work was supported in part under NASA
Langley Research Center Grant #NAG1-70.

5. References

1. Chandy, Y., Hogarth, I., and Sauer,
C., "Selecting Capacities, in Computer

362 3,



www.manaraa.com

Communication Systems." mg Wilt.
Soft. Elm.. SE-3 (1977).

2. Ekman. O., and Sjoberg, L., "Scal
ing," Ana. Ray. Psvehol., 16 (1965).

3. Geist, R., "PerceptionBased Confi
guration'Design of Computer Systems,"
submitted to jnform lion Processing
Letters.

4. Geist, R., and Trivedi, K., "The
Integration of User Perception in the
Heterogeneous M/M/2 Queue," 11E21. of
PERFORMANCE '83, May, 1983.

5. Geist, R., and Trivedi, K., "Optimal
Design of Multilevel Storage Hierar
chies." IEEE Trans. on C2E2., C-31
(1982).

6. Geist. R., and Trivedi, K., "Queueing
Network Models in Computer System
Design," Mathematio" Magazine, 55
(1982).

7. Hemenway, D., "Why Your Classes are
Larger Than 'Average'," Mathematics
magazine. 55 (1982).

8. Ramamoorthy, C., and Chandy, R.,
"Optimization of Memory Hierarchies
in Multiprogrammed Systems," /ACM 17
(1970).

9. Roberts, F., Measurement Theory, Vol.
7, Encyclopedia of Mathematics and
Ids Application;, AddisonWesley,
1979.

10. Stevens, S., "On the Psychophystcal
Law," Pswe49.1. RAiiew, 64 (1957).

11. Trivedi, K., Wagner. R., and Sigmon,
T., "Optimal Selection of CPU Speed,
Device Capacities, and File Assign
ments," JACM, 27 (1980).

12. Trivedi, K., Probability and Statis
tics wiih Rejiability, Queueing, and
gAN2119A 3gl4A9A Appliations,
PrenticeHall, 1982.

363

System 1. Separate Queues

3 8

System 2, Combined Queue

FIGURE 1



www.manaraa.com

COURSEWARE DEVELOPMENT AND EVALUATION

L. Carl Leinbach
Barbara C. Garris

Ann Lathrop
John C. Miller

ABSTRACT: Computing Literacy and the Liberal Arts

L. Carl Leinbach, Chairman, Computing Studies,
Gettysburg College, Gettysburg, PA 17325

What is the role of Computer'Science in a
liberal arts college? This question and Gettysburg
College's definition of an answer to the question
are the subjects of this presentation.

Gettysburg College is a liberal arts college
with an enrollment of 1850 undergraduate students.
It is extremely proud of its liberal arts heritage
and offers a broad, diversified curriculum
consistent with its heritage. In 1976 the faculty

published an academic purposes document which
clearly defines the role of the curriculum within
the liberal arts. That purposes document states
that the curriculum must emphasize the following

elements:
1. Logical, precise thinking and clear use of

language.
2. Broad, diverse subject matter.
3. A rigorous introduction to the assumptions

and methods of a representative variety of
academic disciplines.

In 1979 the Academic Policy and Program
Committee of the faculty conducted a study of the
introduction of Computer Science into the
curriculum. Previously, computing courses had been
taught in the mathematics and business
administration departments. The study resulted in
the establishment of an interdisciplinary Computer
Studies Group which was given two charges':

1. To promote computing literacy on the
Gettysburg College campus.

2. To establish a curriculum consisting of not
more than four courses for those students
who desire to learn more about Computer
Science.

The Computer Studies Group developed its
curriculum during the 1981-82 academic year and
instituted its program in the fall of 1982. The

computing literacy course is taught in a new
microcomputer laboratory which has 18 Apple II+
microcomputers and 3 Epson MX-100 dot matrix
printers. Each microcomputer is equipped with 64K
of memory and two disk drives. The course itself
emphasizes the algorithmic approach and topdown
problem solving. The BASIC programming language is
used during the introductory portion of the course,
but the main portion of the course is taught using
Pascal.

The remainder of the Computer Studies
curriculum consists of: Introduction to
Algorithms; Data Structures; Design and Analysis
of Algorithms; and Computer Organization and
Assembly Language Programming. These courses are
taught using the Burroughs 6700 computer and the
language of choice is ALGOL. The mathematics
department supports this program with courses in
Discrete Mathematics and Numerical Analysis.

This presentation will focus on the
development of the curriculum in view of the
Acacemic Purposes of the College. A special
emphasis will be given to the development of the
Computing Literacy course, the recruitment of
faculty for the program from within the College,
and the decisions which led to the establishment of
the microcomputer laboratory.

ABSTRACT: Courseware Evaluation Techniques

Barbara C. Garris, Teachers College, Columbia
University, Box 27, New York, NY 10027

The Educational Product Information Exchange
(EPIE), established in 1966, has been a pioneer in
developing evaluation techniques for textbooks and
audiovisual materials and equipment which it
publishes through a series of subscription
publications.

With the advent of a microcomputer hardware
and courseware community, EPIE has adapted its
evaluation system to the rapidly evolving
technology of microcomputers. In partnership with
Consumer Union, EPIE hopes to raise the
consciousness of today's educators into an informal
consumeroriented Alliance for Quality in-
Educational Computing, pressuring courseware
producers to higher standards than are currently
the norm in the courseware mr,ket, and to make
possible 30day review copies of software similar
to those available for textbooks.

In the short presentation, EPIE will outline
(1) how we train groups of teachers to analyze
courseware using our own evaluation techniques, and
(2) how we evaluate courseware for publication as
PRO/FILES Courseware. The Evaluation Coordinator
will use slides and transparencies to illustrate
the detailed evaluation protocol and follow through
the workshop training process which any school
system can adapt to its own evaluation and
selection of microcomputer curriculum materials.
The session will be concluded with a
questionandanswcr period. Handout materials
will be provided.

364

33'



www.manaraa.com

ABSTRACT: The California Courseware Clearinghouse
Project

Ann Lathrop, San Mateo County Office of Education,
333 Main Street, Redwood City, CA 94063

The Teacher Education & Computers (TEC) Center
program divides California into 15 regions, each
with a TEC Center responsible for providing
inservice to teachers in the fields of science,
mathematics, and computer literacy. The
Microcomputer Center in the San Mateo County Office
of Education has been designated the software
library and evaluation center to provide support
services to the 15 TEC Centers for the period from
November 1, 1982, through June 30, 1983.

The Clearinghouse will have three major
responsiblities:

(1) the training of a cadre of software
evaluation specialists who will then
train teachers in their regions as
software evaluators;

(2) the construction of a threedimensional
subject/computer system/grade level
matrix of highly recommended software
that will be suggested for preview
throughout the state; and

(3) the develoment of subjectoriented
collections, each with 10 to 20 promising
new software packages, that will be
circulated to the TEC renters on a
rotating basis for preview and
evaluation.

Successful completion cf these three
responsibilities will widely expand the base of
trained evaluators throughout California, help them
to identify the best currently available software
for. previewing, and also provide interesting new
software for evaluation.

Plans are currently underway for a Software
Evaluation Institute to be held in San Mateo County
in January 1983, for the purpose of developing the
matrix of highly recommended software.
Representatives from successful software evaluation
projects at stae and regional levels will b:
invited to participate. It is our hope that this
group of educators, all experienced in software
evaluation at their individual sites, can agree
upon the software to be included and help to
establish its place in the matrix.

Other activities of the Clearinghouse include
the investigation of electronic dissemination of
the matrix and of software evaluations, contacts
with software publishers, publication and
dissemination of software reviews received from the
15 TEC Centers, and the development and
distribution of SOFTSWAP public domain programs.
There will be a second, smaller Institute held in
May 1983 to evaluate the work of the Clearinghouse
and to make recommendations for 1983-84.

365

ABSTRACT: Let's Write Usable Courseware: The City
College Algebra Project

Jon C. Miller, 110 Riverside Drive, Apt 14C, New
York, NY 10024

The City College of New York has an extensive
remedial mathematics program, enrolling almost 1000
students per term in one of two courses which cover
basic algebra. In an attempt to provide
individualized instruction and student invL'vement
and interaction not attainable in a conventional
classroom, the Mathematics Department is turning to
computer based instruction.

Existing programs seem not to exploit the full
potential of microcomputers in algebra instruction,
and the college is therefore developing a set of
materials more suited to the students' needs.

Many existing programs are limited to practice
problems on a limited range of topics, and are
usable only as a supplemenv to classroom
instruction. The City College system covers all
the topics needed for a comprehensive course of
basic algebra instruction.

Most existing programs do not fully exploit
microcomputer graphics capability. The City
College system uses graphics in a variety of ways.
The Apple II's high resolution graphics capability
is used to represent all algebraic expressions in
standard algebraic notation. The system represents
signed numbers as vectors in order to explicate the
rules for signed number operations. It allows
exploration of algebraic expressions by a
combination of evaluation and graphing.

Most existing programs restrict user input so
that, for example, if a fraction is "expected",
then only a fraction can be entered. The City
College system features a completely general
expression entry and display capability, with
simple control codes to produce exponents,
fractiols, radicals, absolute values, and
transcendental functions. Virtually any
syntactL'ally correct expression can be entered at
the keyboard and displayed in standard notation,
but a syntactically incorrect character produces an
immediate error message.

The City College algebra system allows
individualized flow from topic to topic. Excessive
errors result in immediate transfer to an
appropriate prerequisite topic. After
demonstrating mastery of a topic, the student i3
given o choice of topics to try next, and a choice
of whether to start from the beginning or to start
with a diagnostic quiz for possible exemption.
Assistance is always available by typing a question
mark.

Small scale preliminary testing of the earlier
portions of this system is in progress, and further
portions are being written. The project
presentation will include a demonstration of the
major features of the City College algebra
instructional system and a summary of the
preliminary results of students using the system.

382



www.manaraa.com

Request. C'or Equipment Proposals

Joseph Wolfsheimer
Division of Automated Services

District of Columbia Public School District
Washington, D.C. 20004

SPONSOR: SIGCAS

ABSTRACT
Numerous technical and procedural issues

confront education organizations seeking to
procure equipment. The nominal procurement
environment becomes more intricate as the
quantity of equipment increases.
Education's computer related efforts differ
in nature from earlier, pilot efforts.
They now tend to address large populations
of students throughout the educational
organization. The need to succeed in
providing them computer, related experiences
places further emphasis for success on the
procurement process.

This one and a half hour session
presents a case study of several
educational organizations which recently
procured large quantities of equipment to
address multiple educational requirements
on a universal basis. Prime emphasis is
placed on formulating technical
specifications for hardware as an intrinsic
portion of instructional planning for
computer related efforts.

It is noted that several approaches

366

exist to determining the content of
technical specifications. All encompassing
specifications are advocated. At the same
time, it is held that a generic approach to
identifying hardware and software
components provides advantages over
manufacture-based specifications in cases
not involving a large installed base.

An approach to proposal evaluation is
suggested. Empirical evaluation is

advocated. It is suggested that evaluation
techniques be a part of information
released to potential vendors in the
education organization's request for
proposals. A case study is mentioned with
a breakdown of advantages and shortcomings.

Finally, approaches to phased
procurement are discussed. These include
rent, buy, or lease decisions, discount
arrangements and open-ended contracts.
Budgetary issues are discussed in brief and
it is advocated that computational
equipment move from capital budgets to some
extent.

3S3



www.manaraa.com

Courseware on Social Issues of Computers

Ronald E. Anderson, Chair
University of Minnesota

ABSTRACT
New courseware from the Minnesota

Educational Computing Consortium and
Control Data Corporation offer assistance
to those instructors desiring to include
computer literacy material dealing with
social issues. Such issues include
privacy, computer crime, copyright
violation, employment, and economic

DISCUSSANTS

Hans Lee
Michigan State University

Beverly Hunter
HumPRO

PANELISTS

Thomas Heaney
Control Data Corporation

Catherine Dunnagan
Control Data Corporation

Richard Pollak
Nancy Kozen
Minnesota Educational Computing Consortium

SPONSOR
SIGCUE

impacts. Software and accompanying text
materials for both college and precollege
instruction will be demonstrated and
discussed. Special attention will be given
to techniques for integrating these
materials into variowi types of courses.
Consideration will be given to additional
needs and future developments.

. 367

384



www.manaraa.com

Word Processor in the Composition Classroom

Mary Dee Harris Fosberg
Department of Mathematical Sciences
Loyola University, New Orleans, LA

Donald Foss
Composition Programming English Department
University of Minnesota, Minneapolis, MN

SPONSOR: ACH

PAPERS:

"Writer's Workbench: Teaching Aid and Learning Aid"

Kathleen Kieffer and Charles Smith
Colorado State
Fort Collins, CO

"Aids to Organization"

Helen Schwartz
Oakland University
Rochester, MI

"Studying the Composing Process in the Computer Age"

Lillian Bridwell and Parker Johnson
University of Minnesota
Minneapolis, MN



www.manaraa.com

Interactive Computer Graphics and Computer Animated Films
in Education

Maria Mezzina, Chair
Teachers College, Columbia University

New York City, NY

ABSTRACT
The most important issues related to the use of computer graphics in education and the

production of computer graphics instructional material at different levels will be
presented. The speakers will discuss various applications of computer graphics to
education according to their major area of expertise and interest.

Current learning approaches, both with and without the computer, place a heavy emphasis
on verbal skills. But it has long been recognized by teachers that not all students have
such verbal skills. On the contrary, many students need visual information to aid them in
learning. Alfred Bork will illustrate the use of such visual information in computer
based learning using examples developed at the Educational Technology Center.

Patricia Harrison will discuss an example of an easy language to be used to design
computer graphics software: ZGRASS. Characteristics of the language will be explained.
Easy ways to generate graphics and animations for educational purposes will be illustrated
visually.

During the period from 1970 through 1977, the Topology Films Project, supported by the
National Science Foundation, produced a series of educational films explaining by visual
examples various concepts in topology. Nelson Max will show excerpts from the films, and
discuss how they were designed, programmed, filmed and edited.

Marial Mezzina will discuss the state of computer graphics in education, giving an
overview of systems, languages and experiences. The problem of portability will be
addressed. The role of computer graphics in the development of instructional software
including conditions for effective use and conditions for easy programming will be
addressed by illustrations and examples.

SPEAKERS:

Alfred Bork
University of California
Irvine, CA

Patricia Harrison
Electronic Visualization Laboratory
University of Illinois
Chicago, IL

Nelson Max
Lawrence Livermore National Laboratory
Livermore, CA

369

386



www.manaraa.com

Teaching Ada With Computers

George Poonen
Computer * Thought Corporation

Plano, TX 75075

ABSTRACT
Ada is the new programming language that

has been adopted as a standard by the
Department of Defense. It is expected that
Ada will be used for both systems
programming as well as large scale real
time applications. Consequently there has
been a burgeoning interest in the language
both in industry as well as academia. In
fact, recently, Ada was approved as an ANSI
standard.

Ada incorporates many of the important
PARTICIPANTS:

Lee Blaine
Computer * Thought Corporation
Plano, TX 75075

Peter Wegner
Brown University
Providence, RI 02912

Lt. Col. Vance Mall
AJPO
Arlington, VA 22203

Kenneth Bowles
TeleSoft
San Diego, CA 92121

370

developments in software methodology of the
last decade. Many of these features are
somewhat foreign even to many of todays
experienced programmers. As a result there
has been a great deal of concern expressed
about education in Ada.

This panel will cover a wide variety of
topics ranging from generic issues in
transferring complex technology to' specific
approaches using computers to aid in the
teaching of Ada.



www.manaraa.com

Electronic Mail and Computer Conferencing

Paul Heller, Chair
EDUCOM/EDUNET

ABSTRACT
This session will describe the

electronic mail services and systems that
are in use on numerous campuses. A variety
of applications will be described.
Fundamentally important differences between
electronic mail and computer based
conferencing will be explained in the
context of system features and their
effects on patterns of communication within
and between groups of participants.
Numerous examples will be presented based
on use of systems including EIES,
COM/PORTACOM, Telemaail, Stanford's
CONTACT/EMS, DREAMS, and VAXmail.

A special feature of the session is an

PRESENTERS:

Paul Heller
Daniel Oberst
EDUCOM/EDUNET

SPONSOR:
EDUCOM
EDUNET

371

introduction to the concept and operation
of Mailnet, a service which links local
(campus based) electronic mail systems to
each other. This service permits persons
using their own mail systems to exchange
messages and documents with colleagues on
other campuses. The mailnet service has
been designed to allow virtually any local
mail system to be connected with modest
investment of money and technical talent.
To design does not require acquisition of
new hardware nor any changes to local
operating systems. Typical costs for
message exchange using the ordinary
telephone network are 25 cents per typed
page.

388



www.manaraa.com

SEX DIFFERENCES IN MICROCOMPUTER LITERACv

Marlal,ue Lockheed

Educational feting Service
Princeton, New Jersey

Antonia Nielsen Meredith Stone

Princeton High School Educational Testing Service
Princeton, New Jersey Princeton, New Jersey

Abstract

In this paper, sex differences in computer
literacy, use of computers, attitudes towards
computers ard motivations toward using computers
were examined. Sex differences in observed gain in
computer literacy were correlated with computer
use, liking and motivation. Statistically signif-
icant sex differences were found for both use and
liking of computers, but not in expectations for
future utility. Liking and motivation were
unrelated to gain in computer literacy. Home
access to a computer was related to gain for girls
only, and after school Computer Center use was
related to gain for boys only.

Introduction

"In all of our sites we observed
differential use (of microcomputers)
according to sex, particularly at
the secondary level. This is not an
issue of access per se, since girls
are not systematically excluded from
using computers. At the elementary
level, each sex could and did use
the micro more or less equally. But,
starting in seventh grade, when the
micros moved out of classrooms and
hallways into math and business de-
partments, there was an overwhel-
mingly male representation among
students who used the micros"
(Sheingold, 1981).

In Tron, the 1982 Walt Disney computer
graphics fantasy about computers and computer
programming, the hero, his sidekick, and all other
major characters, including anthropomorphized
programs, the master control program and the Tron
program, are male. All characters, that is, except
a heroine-programmer whose procedure for laser-
beaming matter into electronic impulse is respon-
sible for starting the action, but who plays a

372

relatively minor role in the remainder of the
movie. There are no other females in the picture.

In the real world of computers and program-
ming, life mimics art: only 11.2% of doctorates
in computer science were awarded to women in 1980-
81 (Chronicle of Higher Education, October 6,
1982). Computers are a man's world. But why is

this the case? Are females less computer literate
than males? Don't females like computers? Don't
females recognize that computers will be used in
virtually every occupation by the year 2000? What
accounts for the numerous anecdotal reports, such
as Sheingold's cited above, that girls do not use
computers when they are made available in schools?
Since computer literacy is emerging as a major
educational concern of the present decade (Seidel,
Anderson, & Hunter, 1982) the purpose of the study
was to answer some of these questions.

Method

During the academic year 1981-82, all students
at a suburban, upper middle-class high school in
Central New Jersey who were enrolled either in
first or second year general mathematics, or in
first, second or third year college preparatory
mathematics were concurrently enrolled in a re-
quired 28-hour computer literacy course that sub-
stituted for every sixth mathematics class through-
out the year. Students were administered a 15-item
test of computer literacy at the first session of
the computer literacy course and at the final
session; at the penultimate session they were ad-
ministered a 37-item questionnaire regarding their
experience and attitudes towards computers.

1. Measures

Computer literacy pretest and posttest. The
same computer literacy instrument was used for
both the pretest and posttest. It contained 15
items, evenly divided between general computer
knowledge, vocabulary, and programming algorithms.
Several items were adapted from the computer lit-
eracy test developed by the Minnesota Educational
Computing Consortium (Klassen, Anderson, Hansen,
& Johnson, 1980).

Computer survey. The survey instrument con-
tained 37 questions regarding student access to
and use of computers, student attitudes towards
computers, and descriptive information such as
grade, sex and mathematics course.

30r,



www.manaraa.com

2. Computer Literacy Course

The goals of the computer literacy course were
to acquaint students with the potentials and appli-
cations of microcomputers, to introduce students to
the BASIC Programming language and to give students
practice in elementary scientific method. The
course was taught in the high school Computer
Center by the Computer Center director; the Center
itself contained 11 Apple microcomputers with disk
drives which students used during class. When
classes were not in session--before school for
approximately 25 minutes, during the day for two
hours and fifteen minutes and after school for
forty five minutes--students were also permitted to
use the microcomputers. Students were permitted to
reserve a computer for programming, but not for
games. MOst of the students who availed themselves
of the opportunity to use the Computer Center dur-
ing these times played games, although there were
some who used out of class time to go beyond the
classwork and to complete programs.

The general pattern of the classes consisted
of four steps. In each six-day cycle, the students
were introduced to new concepts by watching a
videotape made by the Computer Center Coordinator
which superimposed relevant Apple programs on her
video image, by a lecture or by a handout. The
introduction to new concepts was followed by a dis-
cussion in which student's questions were answered
and the classwork was explained. Using the new
concepts, tho students entered demonstration pro-
grams, ran them and made notes on their results.
The students were then asked to write programs
applying the concepts which had been presented.

Results

Usable data were obtained from 413 (87.1%) of
the returned surveys; pretest scores were available
for 345 (83.4%) of these respondents and posttest
scores were available for 383 (92.5%). Complete
pretest, posttest and survey data were available
for 114 females and 116 males. Of students with
complete records, 74% were ninth or tenth grade
students and 97% were enrolled in college prepara-
tory mathematics courses.

1. Sex Differences in Computer Literacy

The first question to be answered addressed
the issue of sex differences in computer literacy.
From the survey, we found that 62% of the males
and 56% of the females had used a computer prior to
the computer literacy course, a nonstatistically
significant difference. Moreover, no statistically
significant difference was found between the mean
pretest scores on the computer literacy test of
males (M = 3.49; S.D. = 2.21) and that of females
(M = 3.12; S.D. = 1.69). Even though high propor-
tions of both male and female students had been
exposed to computers before entering the course,
most students were quite computer illiterate, as we
measured computer literacy. The highest score on
the computer literacy pretest was 11; it was achi-
eved by one boy (one girl scored 10). The lowest
score was zero, which was achieved by seven boys
and three girls.

373

On the posttest a statistically significant
(t = 2.56; p <.01) difference between male (M =
7.68; S.D. = 3.04) and female (M = 6.92; S.D. =
2.74) scores was found. The highest score on the
posttest was 14, which was achieved by eight boys
and one girl. One girl scored zero on the posttest.

To verify that this difference was not due to
changes in the student sample between fall and
spring, a multiple regression was conducted to
assess sex differences in computer literacy gain.
In this analysis, which was conducted on data from
those respondents having both pretest and posttest
scores, the posttest score was the dependent vari-
able and the pretest score was the control variable;
gender was considered the independent variable. The
results of this analysis are presented in Table 1.
For the 318 students having both pretest and post-
test data, females gained approximately .75 points
(one-fourth of a standard deviation) less than
males, a difference that was statistically
significant.

2. Sex Differences in Student Computer Practice,
Attitudes, and Motivation

The second question to be answered addresses
the issue of sex differences in student use of or
practice with computers, student attitudes toward
computers and student motivation regarding
computers.

Practice. Nine questions regarding student
use of computers were included on the survey.
Statistically significant sex differences were
found in the responses to every question but one,
regarding prior use of a computer (Table 2). Males
reported greater access to computers outside of
school than females, greater extracurricular use of
the Computer Center, more frequent computer progr-
amming and more frequent computer game playing than
girls. The largest sex difference was found for
reported game playing: 82% of the boys, compared
with 48% of the girls, reported having played
either a computer game, video games or arcade games
at least three times.

Liking. Four questions related to student
liking of computers were included on the survey.
Statistically significant sex differences were
found in the responses to all four questions, with
boys reporting more favorable attitudes than girls
toward computers and programming. Fewer than half
the boys and a third of the girls reported that
they liked working with computers or programming,
however.

Motivation. Three questions relating to stu-
dent expectations for future computer use were in-
cluded on the survey. Sex differences were found
on only one of the three questions. Two thirds of
the boys compared with less than half the girls re-
ported that they expected to use computers the
following year, a difference that was statistically
significant. On the other hand, 80% of both boys
and girls thought that knowing how to use a compu-
ter would be important for them in the future.
While few boys or girls repotted that they planned
to take any other computer courses, there were sex

39



www.manaraa.com

differences in what types of courses boys and girls
planned to take (Table 3). Twice as many boys as
girls reported future plans to study programming
languages, while more girls than boys reported
future plans to study computer applicati2ns to
business, research or word processing (X (4) =
21.37, p< .001).

3. Factors Related to Computer Literacy Achieve-
ment Cain
In general, achievement gain in any subject

can be viewed as a function of practice, attitude,
and motivation factors, such as those discussed in
the previous section. To assess their effects on
achievement empirically, we related measures of
practice, attitude and motivation to gain in compu-
ter literacy.

Practice. The nine questions relating to
student use of computers were analyzed separately
using analysis of variance with adjusted gain* on
the computer literacy test as the dependent vari-
able and the question as the independent variable.
Four of the nine practice variables were related
to adjusted gain: (1) access to a computer out-
side of school (F = 7.314; p< .01); (2) coming to
the Computer Center at times other than class
(F = 5.042; p< .05); (3) coming to the Computer
Center after school (F = p<.05) and (4)
playing computer games, video games or arcade
games (F = 2.778; p<.05). In all cases, students
reporting more practice achieved greater gain.

Liking. The four questions relating to stu-
dent liking of computers were analyzed similarly;
none were related to adjusted gain in computer
literacy.

Motivation. The three questions relating to
student expectation for future computer use were
also analyzed through analysis of variance; none
were related to adjusted gain in computer literacy.

*Since simple gain scores (the difference be-
tween pretest and posttest scores) are relatively
unstable, we computed adjusted gain scores (the
difference between predicted posttest scores and
actual posttest scores) to estimate the signifi-
cance of these apparent differences in learning.
The predicted posttest scores was obtained from an
ordinary least squares regression of pretest on
posttest, which yielded the following prediction
equation:

Y' = 0.4610X + 5.926
where Y' is the predicted posttest score and X is
the pretest score. This equation was applied to
each student's pretest score to yield the predicted
posttest score. The student's predicted posttest
score was then subtracted from his or her actual
posttest score to yield an adjusted gain score:

G = Y - Y'
where G is the adjusted gain, Y is the students
actual posttest score and Y' is his or her
estimated posttest score.

374

4. Sex Differences in Factors Related to Computer
Literacy Gain

The four practice factors that we found were
related to adjusted gain in computer literacy were
reexamined for evidence of sex differences (Table
4). In all cases, males reported greater practice
with computers than females reported. One third of
the males compared to about one-fifth of the
females reported having access to computers outside
of school. Nearly 40% of the males reported coming
to the Computer Center at times other than class,
compared to fewer than eight percent of the females,
and over 20% of the males reported that they stayed
to use the Computer Center after school, compared
to fewer than three percent of the girls. Finally,
the majority of males (61.3%) played computer games
once a week or more, while the majority of females
(52.2%) had not played computer games more than
twice ever.

5. Sex Differences in Determinants of Computer
Literacy Gain

Having identified four practice-related vari-
ables that were related to gain in computer liter-
acy and for which sex differences were observed, we
examined the relationship between these variables
and gain in computer literacy, separately by gender.

In these analyses of variance, adjusted gain
was the dependent variable and the four practice
variables were the independent variables. Access
to a computer outside of school was modestly re-
lated to adjusted gain in computer literacy for
females (F = 5.178; p<.05) but not for males.
While use of the Computer Center after school was
modestly related to achievement gain for males
F = 4.311; p < .05), it was not related to achieve-

ment gain for females. Use of the Computer Center
at times other than class (that is, before school
or during free periods) and game playing were un-
related to computer literacy gains for either males
or females.

Summary

This paper has examined sex differences in
computer literacy among secondary school students.
Our findings may be summarized as follows:

1. No sex differences in initial levels of
computer literacy were found, but boys gained more
than girls on computer literacy from pretest to
posttest.

2. Males reported more frequent use of com-
puters than females and more positive attitudes
towards computers.

3. Although no sex differences in perceived
future utility of computers were found, more males
than females planned to take a computer course in
the future.

4. Access to computers outside of school was
significantly related to computer literacy gain for
girls, but not for boys.

391



www.manaraa.com

5. After school use of the Computer Center
was significantly related to computer literacy
gain for boys but not for girls.

6. Computer game-playing was unrelated to
computer literacy gain for both boys and girls.

REFERENCES

Klassen, D. L., Anderson, R. E., Hansen, T. P., &
Johnson, D. C. Study of computer use and
literacy in science education. St. Paul, MN:
Minnesota Educational Computing Consortium,

1980.

Seidel, R. J., Anderson, R. E., & Hunter, B.
Computer literacy. New York, NY: Academic

Press, 1982.

Scheingold, K. Issues related to the implementa-
tion ofcormlpi.1auterteclischools:A
cross sectional study. Paper presented at the
National Institute of Education Conference
on Issues Related to the Implementation of
Computer Technology in Schools, Washington,
DC, 1981.

Table 1

Pretest and Gender Determinants of Posttest Computer Literacy

Score for 318 9th, 10th, 11th and 12th Grade Studentsa

(1) (2)

Pretest .460*** .444***
(5.778) (5.605)

Gender -0.755**
(2.441)

Constant 5.926 6.346

R
2

.096 .112

.092 .107

Note. aThe numbers in the table are the unstandardized re-

gression coefficients, with their associated t-statistic

below in parentheses.

375

392



www.manaraa.com

Table 2

Sex Differences in Use of Computers. Liking of computers and Expectations for Future Computer Use

Response
Category

Male
(H206)

Female
(N*207)

Chi-
square

Use of Computers

Had you aver used any kind of computer before taking this course? 8 Yes 61.7 36.0 n.s

Do. you have amens to a computer outside of school? 8 Yes 33.3 22.2 6.14*

Did you case to the Computer Center this year only for class? 8 Yes 61.3 92.6 54.14***

Did you come to the Computer Center this year before school? 8 Yes 18.0 1.9 27.92***

Did you coma to the Computer Center this year after school? 8 Yes 21.5 2.4 33.67***

Did you come to the Computer Center this year during your free period(s)? 8 Yes 40.8 8.3 56.76***

Have you reserved n computer for programming after school? 8 Yes 23.8 15.1 11.01*

Row often have you programmed or used a computer for schoolwork outside of class? X Once or more 28.4 14.1 20.17***

How off:en have you played computer games, video games or arcade games? 8 3 times or mere 81.9 47.8 72.68***

Liking_of Comitors

Do you like playing computer games? 8 Yes 77.7 63.6 11.94**

Do you like working with computers? 8 Yes 49.5 35.0 13.73***

Do you I.Liii learning to Program? Z Yes 41.5 28.2 19.61***

Do you like writing computer program to solve problems? 8 Yes 27.2 17.6 8.43*

Expectations for Future Computer Um

Do you plan to take any other computer /programming courses? 8 Yes 20.2 14.8 n.s.

Do you think you will use computers mmt year? 8 Yee 68.4 46.3 16.64***

Do you think that knowing how to use a computer will be impertant for you in the future? 8 Yes 81.6 80.2 n.s.

*
p < .05

*5
p < .0/

*5*
p < .001

Table 3

Sex Differences in Future Plane for

Computer/Programming Courses

Table 4

Sex Differences in factors Related to

Computer Literacy Cain

Frequency of Response
Frequency of Response

Type of Course Male Female
Hale Female 22

Other programming language 29.3 11.2 Access to a computer
outside school

Word processing 9.0 19.2 Yes
No

33.72
66.3

22.22
77.8

6.14

Business/research applications 22.6 32.8
Use of Computer Center

Intermediate or advanced basic '0.1 21.6 only during class
Yes

61.3 92.6

Other s.1 15.2 No
38.7 7.4

Use of Computer Center
after school

Yes
21.5 2.4 33.6755

No
78.5 97.6

Frequency of playing games
Never

3.4 5.9 72.68664

Once or twice
14.7 46.3

About once a month 20.6 23.9

About once a week 31.4 16.6

Several times a week 29.9 7.3

376

p < .05

5p
< .01

oulut

p< .001

393



www.manaraa.com

COMPUTERS: LESS APPREHENSION, MORE ENTHUSIASM

Janet Parker
University of Louisville

Constance Widmer
Northern Kentucky University

Abstract

Although the number of microcomputers be-
ing purchased and placed in schools is rapidly
increasing, many teachers arc hesitant, even
frightened, by the thought of having to use
one. Careful consideration must be given by
inservice coordinators about the type of
initial computer experiences that should be
provided for these teachers, since these ex-
periences can make the difference between
acceptance or rejection of computers. This
paper will identify possible causes of appre-
hensions and fears about computers and present
specific suggestions for conducting effective
inservices to overcome such feelings.

Introduction

The message is clear. It is being broadly
stated by public media and professional jour-
nals: This is the Computer Age. These wonder-
ful machines have amazing capabilities that
can dramatically enhance the way we do our jobs,
run our homes, even educate our children. The
implication is strong: teachers "should"
understand and use computers.

Yet despite all the laudatory publicity
given microcomputers, indications are that not
all teachers are welcoming them with enthusiasm.
Although most teachers acknowledge the importance
of "computer literacy" for all students, some
teachers outrightly reject using computers;
many other teachers are apprehensive, anxious,
even panicked at the idea of being expected to
use computers. Why do these teachers feel this
way? Are their attitudes and fears real? What
causes them? What can and should be done to
meet the needs of these teachers and, ultimately,
their students? Based on the research and ex-
perience of the authors, this paper will document
the prevalence of computer anxiety among teachers,
identify the main fears and misconceptions caus-
ing the anxiety, and present specific suggestions
for conducting teacher inservices which overcome
and alleviate these fears.

Prevalence of Computer Anxiety Among Teachers

In 1976, Lichtman8 (1979) compared the
attitudes towards computers of educators to those

377

of the general public surveyed by Ahll (1976). He
found that, "in general, educators seemed less
enthusiastic about the computer's role in society
than did the general public" (p. 48). The teach-
ers were found to be less sure than the public
(64% vs 87%) that computers will improve educa-
tion; more were convinced that computers dehuman-
ize society (55% vs 37%), and that computers iso-
late people from social interaction (30% vs lg%).
About one third of the teachers reported feeling
computers are beyond the understanding of the
typical person and more than one fifth did not feel
that if one was in their classroom it would help
them be a better teacher. Though most (67%) did
not feel computers will take their jobs, a dis-
turbing number (16%) did feel this would happen.

Smeltzer13 (1981) also used Ahl's survey as
a basis instrument, but added additional state-
ments appropriate to media specialists. Perhaps
reflecting the AV training of the sample, his find-
ings are more encouraging. Only one-fourth of
those surveyed felt that computers dehumanize
society; most (86%) did not feel that computers are
beyond the understanding of the typical person;
and most (83%) feel that computers can improve
education. In interpreting these encouraging
findings, however, it must be kept in mind that
the sample size was small (N=29) and select
(active members of an educational teU'nology
association).

In a much larger, less restrictive study,
Stevens12 (1980) compared the knowledge about and
attitudes towards computers of teachers, teacher
eudcators and student teachers in Nebraska. Parker
and Hazuga10 (1982) replicated her study with
Kentucky educators. Both studies found that al-
though all the educator groups strongly supported
the concept that students should be taught about
computers, they themselves did not feel qualified
to do this teaching. They also found that many
educators are uncertain or doubtful that computers
can be useful in all instructional areas, and can
provide more advantages than disadvantages in the
classroom. On items related to computer anxiety,
both studies found that as many as one-fourth of
the educators were not comfortable around compu-
ters, Stevens finding teachers the more anxious
subgroup while Parker and Hazuga found it to be the
student teachers subgroup, despite the fact that
this subgroup had received more training on

394



www.manaraa.com

computers. As in the Lichtman and Smeltzer
studies, both these studies found that as many
as 25-30% of the educators are concerned with the

dehumanizing aspect of computers, expressing
agreement with the statement that, "Computers in
education almost always result in less personal
treatment of students" (Parker and Hazuga, p. 11).

In addition to such "hard" data, most
schools illustrate the phenomena of teacher appre-
hension towards computers. Some teachers will be

"users." They will make use of the computers any-
time they can get them into their classrooms.
They will come early and stay late to provide
extra computer time for their students- They

will spend weekends reading computer journals or
writing courseware. They will get together with
other teachers to share new findings and materials.
They will go to computer shows and workshops eager
to learn about tie latest technological develop-
ments. These are the "users". In the same

building there will be the "non-users." These

teachers will not make use of computers even
when available. Why?

As suggested by the surveys cited above,
many of them have fears, apprehensions, and/or
misconceptions about computers. These feelings

are very real to them and effectively act as
barriers to their using computers in their class-
rooms. A first step in overcoming these nega-
tive feelings is to identify them and perhaps
gain some insight into their causes.

In their work in schools beginning to
implement computers, the authors have noticed the
following attitudes and feelings among educators.
That these feelings are fairly common is suggest-
ed by articles expressing similar observations by
other inservice coordinators (e.g. Rosen, 1982).
What specifically are these feelings?

Fears and Misconceptions

For some teachers, the technology itself
of computers is intimidating. They perceive
computers as overwhelmingly complex, beyond the
understanding of ordinary people like themselves,
understandable only to geniuses who use the
mysterious jargon and master the intricate cir-
cuitry. Tbey are understandably reluctant to
use equipment they are convinced they cannot
understand. For some, this mind set is antago-
nized by associating computers with mathematics,
toward which they have deep-seated negative
feelings.

Also creating anxiety is sensationalist
reporting about computers which simulate intelli-
gent behavior, such as the use of anthropomorphic
imagery in some recent films. Some envision com-
puters as intelligent machines destined to replace
them as teachers. They feel threatened, and fear
a loss, or at least a drastic change, in their

jobs. They feel a loss of authority and control
over their classrooms, over their comfortable,
tried-and-true methods, and ultimately over their
role in the educational process. They fear that

378

computer companies, rather than teachers, will be
handed down to them to be used without question.
The computer is seen as a powerful tool for others

to exercise control over classroom practice, by-

passing the teacher entirely.

Many teachers have become alienated by per-
sonal experience with unfriendly programs and sys-

tems. They feel computers are sitting there to
embarrass them, and they worry about making mis-
takes and appearing foolishin front of peers and

students.

Some teachers associate computers with other
technological developments of the past which
failed to live up to promises of revolutionizing

education. Educational television, teaching
machines for programmed learning, fully equiped
language labs -- the list goes on. A lot of money

was spent, but now the machines collect dust be-

cause they never fully succeeded to meet expecta-

tions. Teachers see computers as just another
of these fads that, too, will pass, costing a lot
and producing little learning.

Another fear might be ealled the "1984 Syn-
drome", namely that computers will dehumanize
education, isolate students, cause them to lose
interest in human interaction, and lead to asocial

behavior. In the extreme, the vision is of a
situation in which people are treated like inter-
changeable parts of a huge machine.

Effective Inservices

Considering all of these fears which exist in
different degrees among a large number of teachers,
what can be done? Positive attitudes towards using
computers are essential to successful implementa-
tion of any school computer-based project. How can

negative attitudes and fears be overcome, and er
thusiasm toward computer usage be instilled?
Listed below are suggestions and caveats for in-
service coordinators and teacher-trainers in
planning those critical "first exposure" computer
workshops for teachers. These suggestions focus
on approaches as much as content, for experience
has shown that the key to success is to a large

extent attitudes: lessen apprehension and in-

crease enthusiasm.

1. Begin the inservice with a guaranteed

successful experience. As quickly as possible,
have the teachers sit at the computers and run a
"friendly" intriguing program with valid educa-

tional content. Using one of the Minnesota Educa-
tional Computing Consortium* disks with a simula-
tion such as Odell Lake or Oregon Trail has over-
come a dozen or more cases of computer pbobia. An

experience such as this establishes a relaxed

attitude. In the process the teachers find they

* Minnesota Educational Computing Consortium
(MECC), 2520 Broadway Drive, Saint Paul, MN

55113. "Odell Lake" is on the Elementary
Volume 4 disk, "Oregon Trail" on Elementary
Volume 6.

3Jj



www.manaraa.com

themselves can easily control the machine, and
that nothing is ruined by pressing the wrong key.
They begin to feel in control, finding that they
can control the machine and are not being con-
trolled by it. This hands-on experience does
much to dispell the mystique a computer holds for
many teachers. There will be time later, after
confidence is built, to discuss RAM's, ROMTT,ind
CPU's. Avoid technical jargon during this first
experience.

2. Have the teachers work in twos or
threes at the machines. They are comfortable with
asking each other questions, whereas they may be
hesitant to ask an unfamiliar instructor. Work-
ing in small teams is very effective. Besides
helping to catch each other's errors, the team
approach lessens the tension which may be ex-
perienced when first sitting at a computer. Sy
himself at a computer, an adult may be so tense
that he cannot assimilate the simplest directions,
and will sit motionless, staring at a screen
direction such as, "Press return to continue."

3. If computers are to actually be imple-
mented in classrooms, the teachers must be con-
vinced of their relative advantage over the
methods and materials they are durrently comfor-
table using. The key is to spark their interest
by getting them to see the potential of a compu-
ter in their classroom. That is, the computer
must beTierceived as being relevant to high
priority items that they wish to achieve with
their students, and as being better than what it
replaces, not just a nice aid that can be re-
placed or done without. It must be compatible
with the existing curriculum, fitting the estab-
lished goals, values and needs. One way to show
this relevance is to identify a familiar topic
the teachers feel is difficult to teach, and
illustrate a computer program that can help them
teach it. Then actually provide them with the
lesson plan and the materials. Ready to go, the
computer-based lesson is more likely to be tried,
and making that first try is an important step.

4, Also necessary to getting teachers to
use and teach with computers is helping them with
the classroom management aspects of computer use.
The computer will present an atmosphere of dis-
covery and innovation that is unfamiliar to some
teachers who use a traditional textbook/lecture
approach. Computers will require a certain
flexibility, including perhaps a role change in
which the student knows more about computers than
the teacher. To help teachers with this, pro-
vide models of different classroom management
systems during the inservice, including total
group instruction using one computer with a large
monitor, and small group work in a lab mode. Also,
during the presentation, do not hesitate to admit
it if something happens you, the presentor, cannot
explain. It is a rare inservice using computers
in which this opportunity does not occur. Admit-
ting we do not know everything, but use computers
anyway, does much to build confidence.

5. As documented above, many teachers fear

379

being replaced by computers. Do not avoid this
issue; address it directly. After all, the compu-
ter was invented by man to relieve man of some of
the things he was having to do. In the same way,
it can do some of the things teachers are now ex-
pected to do. If it could not, there would be
justification for having it in the school.
Holmes° (1982) identifies the heart of the issue
with two questions: "First, does the teacher need
to perform all the teaching functions?" and,
". . . Can machines perform all, or even most, of
the teacher's functions?" (p. 9) To address the
first, show the teachers a well done gradebook or
other recordkeeping program, and emphasize how
the computer can be used to do recordkeeping and
other repetitive paper work, freeing them to do
the more creative parts of teaching. Then have a
frank discussion among the inservice participants
listing the kinds of things that teachers do that
computers will never be able to do. This will do
much to alleviate their fears.

6. In choosing the content for computer in-
services, remember that not all teachers need all
levels of computer expertise. Do not overwhelm.
For example, although most teachers should ex-
perience programming in order to understand what
a program is and how it controls the computer,
they do not need to become proficient programmers.
The myth that to use a computer a teacher must be
a computer programmer has turned off more than
one teacher. The vast majority of teachers will
use computers with pre-programmed materials, For
them, computer literacy is being able to use the
computer with appropriate materials, not being
able to write computer programs. This is analo-
gous to most of us with language literacy: we
can use books, but most of us do not write them.

7. Also in planning inservices, keep in mind
that different people react in different ways to
computers. The inservice should provide a variety
of activities and approaches. If the session fo-
cuses on only one approach, such as programming,
only some of the teachers will begin to feel com-
fortable with computers. At the end of the ses-
sion, have the participants discuss which of the
variety of activities they liked best and why.
This will help them understand their own reactions
to computers in comparison to others, and will
help them when dealing with the various reactions
that will surface among their students. As we
know, some students will become computer addicts,
others will not. Teachers need to be made aware
of this.

These are only some of the possible sugges-
tions for implementing effective computer in-
services that focus on providing not just the con-
tent needed by teachers but also the attitude
needed to implement computers in the schools. Yes,
we need more funding; yes, we need more quality
software; yes, we need more research data on the
effects of computers in the teaching/learning
process. But these will come. Right now, in the
schools, we need less apprehension and more com-
puter enthusiasts.

396



www.manaraa.com

References

1. Ahl, D. H. Survey of Public Attitudes
Toward Computers in Society, in David H. Ahl (Ed.),

The Best of Creative Computing, Volume 1. Morris-

town, New Jersey: Creative Computing Press, 1976,

pp. 77-79.

2. Bork, A. Computer Literacy for Teachers.
In R. J. Seidel, R. E. Anderson and B. Hunter
(Eds.), Computer Literacy: Issues, and Directions

for 1985. New York: Academic Press, 1982, 91-98.

3. Bruwelheide, J. H. Teacher Competencies
for Microcomputer Use in the Classroom: A Litera-

ture Review. Educational Technology, 1982, 22(10),

29-31.

4. Diem, R. A. Developing Computer Educa-

tion Skill: An Inservice Training Program. Edu-

cational Technology, February, 1981, 21, 30-32.

5. Forman, D. Search of the Literature.
The Computing Teacher, 1982, 9(5), 37-51.

6. Holmes, G. Computer-Assisted Instruc-

tion: A Discussion of Some of the Issues for

Would-Be Implementors. Educational Technology,

1982, 22, 7-13.

7. Lazarus, M. So Complicated, They're

Simple: A reassuring Word on Classroom Compu-

ters. Principal, 1982, 62(2), 39-41.

8. Lichtman, D. Survey of Educator's

Attitudes Toward Computers. Creative Computing,

1979, 5, 48-50.

9. Martellaro, H. C. Why Don't They

Adopt Us? Creative Computing, 1980, 6(9),

104-105.

10. Parker, J. and Hazuga, M. Educators'

Attitudes and Knowledge of Computers in
Jefferson County. Unpublished paper, University

of Louisville, 1982.

11. Rose, N. R. Barriers to the Use of
Educational Technologies and Recommendations to
Promote and Increase Their Use. Educational

Technology, 1982, 12(12), 12-15.

12. Stevens, D. J. How Educators Perceive
Computers in the Classroom. AEDS Journal, Spring,

1980, 221-232.

13. Smeltzer, D. K. The Media Specialist

and the Computer: An Analysis of a Profession's
Attitude Towards a New Technology. T.H.E. Journal,

1981, 8(1), 50-53.

14. Watt, D. H. Education for Citizenship

in a Computer-Based Society. In R. J. Seidel,

R. E. Anderson and B. Hunter (Eds.), Computer
Literacy: Issues and Directions for 1985. New

York: Academic Press, 1982, 53-68.

380

3J 7



www.manaraa.com

THE MICROCOMPUTER AS A TOOL IN

EDUCATIONAL RESEARCH: A CASE IN POINT*

by Scott W. Brown and Daniel B. Kaye

Department of Educational Psychology, University of Connecticut

Department of Psychology, University of California, Los Angeles

Abstract

Microcomputers have had a major impact in the
area of educational research. The present paper
discusses some of the major advantages of using
microcomputers in cognitive research and presents
several examples of our own research programs uti-
lizing the microcomputer. The discussion touches
upon the specific hardware configuration, the soft-
ware, the task demands of the experiments and the
transfer and analysis of the data. Conclusions
focus on the rationale for the use of microcomput-
ers in educational research discussing such factors
as accuracy, reliability and flexitlity of the
hardware and software.

Introduction

The use of microcomputers for educational and
psychological research has become prevalent in re-
cent years. No longer are computers relegated to
the statisticians of each research group to crunch
and massage data for analysis purposes. With the
introduction of smaller and cheaper computers,
first the minicomputers and then the micros, many
researchers saw an opportunity to use these ma-
chines as stimulus presenters and response record-
ers, in short, as research tools. From a research-
er's point of view, what could be more efficient
than collecting the data on a computer that may
also analyze the data, or at least minimize data
loss, by eliminating the procedures for having
assistants punch data intothe computers for later
analyses?

Recently, Johnson has discussed some of the
important implications of microcomputers in re-
search]. The discussion can be summarized by list-
ing the advantages and disadvantages of this posi-
tion. The advantages of the use of microcomputers
for research are: replication and extension, pro-
grammatic research, measurement, experimental con-
trol, administration and experimental economy. The
disadvantages include the time and the level of
training necessary to develop a functional program,

Portions of this research were supported by a
grant from the University of Connecticut Research
Foundation, grant. No. 1171-000-22-0401-35-899
awarded to the first author.

381

and the availability of a number of micros to con-
duct a study involving a large number of subjects.

With the stage set, we would now like to pre-
sent a program of research that has been (and
still is being) devoted to investigating various
types of cognitive processing using microcomputers
as research instruments. This discussion will
touch upon the hardware and software, program
development, experimental administration, data
collection, data transfer and statistical ,analyses
relevant to this research program.

The research has been conducted cooperatively
at two different sites; the University of Connec-
ticut and the University of California, Los Ange-
les. Each site has been equipped with the identi-
cal microcomputer equipment; thus the same experi-
ments can be conducted simultaneously at both
sites without concerns for differences in computer
programs.

The purpose of our program of research is to
examine the cognitive processes of children and
adults, specifically, the acquisition and use of a
variety of automatic and controlled information
processes related to intellectual development in
general and reading skill development in particu-
lar. Tasks were developed requiring letter
searches within different letter configurations
and arrays, lexical decisions (making a word/non-
word decision based on the presentation of a let-
ter array), and case judgements (upper case versus
lower case) -- typical experimental tasks used by
cognitive psychologists, and until very recently
involving the use of slide projectors and tachis-
toscopes.

The microcomputer hardware used in this re-
search program consists of:

1. A North Star Horizon microcomputer equip-
ped with 64K of RAM memory, dual single-
sided double density 5 1/4 inch floppy
disk drives (180K capacity each);

2. A Televideo 950 black and white video
monitor;

3. A Mountain Hardware 100,000 day clock,
accurate to within one-tenth of one
millisecond;

398



www.manaraa.com

4. A Livermore Star modem;

5. An Epson MX-80 F/T printer.

This hardware configuration was selected as the
most cost effective system available on the market.
In our opinion, the speed, power, storage capacity,
expandability and software compatability of the
system surpassed its' competition.

The software consisted of North Star Basic
CP/M, Pascal/M and two programs to interface the
North Star with an IBM for data transfer through
the modem (one for the North Star Basic programs
and one purchased for the Pascal programs using
CP/M). All other software, i.e., task programs and

stimulus lists, were written and developed in our
labs in North Star Basic or Pascal/M.

The Research

The following is a discussion of four experi-
mental paradigms that have been developed in our
labs. These paradigms have been used to investi-
gate reading skill acquisition (experiments 1-3)
and the relationship of intelligence to reaction
time (experiment 4). These experiments have been
conducted succes ;fully with children as young as
the second-grade and up through college. All para-

digms involved the use of microcomputers to present
stimuli and record responses. All forms of coun-
terbalancing, timing, and sequencing of events
were programmed and under the control of the North

Star.

Experiment #1

The first program that we would like to dis-
cuss was used to investigate the effects of con-
textual facilitation in children and adults. We

used a dual task of lexical decision and letter
search with words and pseudowords presented on the
screen of the Televideo 950. The subjects were
required to respond to the letter search or lexical
decision by manually pressing one of two predesig-
nated response buttons as rapidly and accurately as
possible. The program stored the condition (which
of four tasks), the stimuli, the trial number, the
reaction time, the subject number and whether the
response was correct or not.

This experiment was conducted in two loca-

tions. One research site was the laboratory school
associated with the University of California, Los
Angeles. The other research site was a rural
school district near the University of Connecticut.
This experiment used students in grades 3 and 6 as

subjects. Subjects from each of these grades were

included at each research site. In addition, to

the data collected on the children, college sub-
jects were tested at each university site. A total

of 12 subjects from each grade were included in the

study. During the experimental sessions more than
300 reaction times and responses were collected on

each subject.

Once the data collection process had been com-
pleted for all subjects, the data were transferred
to an IBM mainframe computer via a microcomputer
interface program and a modem. Upon completion of

the transfer, the data were inspected for trans-

mission errors. After the data were "cleaned up"
the data were analyzed utilizing a major statisti-
cal package on the IBM system. The mainframe was
used for the analysis because of the large amount
of data and the number of disks involved. In addi-

tion, transferring the data to the mainframe freed
the microcomputer for continued data collection and
program development.

Experiment #2

The procedures for experiment 2 are very
similar to those of experiment 1, except for the
locations. Data were collected at both Yale Univ-
ersity and University of California, Los Angeles.
This experiment examined the development of auto-
matic word recognition in children and adults.
Subjects were presented with a configuration of
words/pseudowords and upper case/lower case. Sub-

jects were requested to make a binary decision re-
garding different rules for response using these
two dimensions of the stimuli. Subjects were re-

quested to make their responses as rapidly and ac-
curately as possible.

Data were collected on both children and adults
and transferred to a mainframe for analysis using
the same procedures, as those described in experi-
ment 1.

The data collected and analyzed from the first
two experiments were collated into a study of read-
ing skill development and contextual facilitation
in early and skilled readers.2

Experiment #3

Experiment 3 was funded under a grant to the
first author by the University of Connecticut Re-
search Foundation to investigate several of the
components of reading skill development in child-
ren3. This experiment is actually a combination of
three experiments utilizing the equipment describ-
ed above and a single program. The three experi-
ments involved a microcomputer and a paradigm deve-
loped by the first author3,4. The paradigm, a
primed lexical decision task, requires amicrocom-
puter to present a prime stimulus very rapidly on
the screen within a two degree visual angle (the
window) of a fixation bar and then present target
stimuli in the center of the screen above the bar.
The subject is to make a lexical decision (a word/
nonword decision) on the target stimuli as rapidly
and accurately as possible. The experiments used
semantic, phonological or orthographic primes in
three separate experiments. The study involved 20
subjects from each of grades 2 through 4 and col-
lege subjects for each of the three experimental
conditions.

The reaction times, response, stimuli, condi-
tion (type of prime) and trial were recorded for
each subject. Subjects were presented with 256
trials broken into 8 blocks of 32 trials each.
Subjects were encouraged to rest between each block
to reduce any fatigue effect. The subjects were

able to initiate the task once they had completed
the rest period by pressing any button. As an

added safety feature, if a subject's fingers drift-
ed off Of the response keys and onto any of the

382

3 9j



www.manaraa.com

r.

other keys, the bell (built into the keyboard) was
sounded to alert the subject and the experimenter.
Also, instructions were printed instructing the
subject that his/her fingers were no longer on the
correct response keys and the subject was request-
ed to realign them. The trial that was presented
during this process was scored as incorrect and not
included in the statistical analysis. Through
these procedures the experiment was under near com-
plete control by the North Star.

All data were transmitted to the IBM mainframe
and analyzed using similar procedures to those des-
cribed previously.

Although this data are still in the process of
being analyzed, we are very hopeful that through
the use of this specific paradigm and the accuracy
provided by the microcomputer and the hardware
clock, the subtle patterns in reaction times re-
sulting from the differential use of the primes in
processing the targets may be delineated and pro-
vide information regarding the development of auto-
matic semantic, phonological and orthographic pro-
cessing in children.

Experiment #4

This experiment involved the investigation of
the relationship between the speed at which a sub-
ject may process some very elementary information
and scores they may receive on portions of an in-
telligence test. Recently, this topic has been
discussed by Arthur Jensen utilizing fairly simple
equipment5. Our purpose was to examine some of the
hypotheses presented by Jensen and utilize a micro-
computer to display and record the stimuli.

The study involved college and elementary
school children as subjects and utilized two simi-
lar tasks. One task was a simple reaction task in
which the subject was instructed to press a single
button as soon as he/she saw anything on the
screen. The second task required the subject to
watch the screen and press one button if an "X"
appeared and a different button if an "0" appeared.
The reaction time from the onset of the stimulus to
the manual response by the subject was recorded for
each trial. Each subject was presented with 200
trials of each task.

In order to facilitate recognition of the
stimulus when it was presented on the screen, a box
was drawn prior to each trial. Subjects were in-
structed that they were to watch the box because
the stimulus was to be presented only within that
box, thereby drawing the subject's attention to the
proper location. The box occupied the center of
the screen and comprised approximately the central
25 percent of the screen.

The stimuli were presented in a predetermined
order for the second task because complete randomi-
zation would have resulted in an unequal number of
X's and 0's over the 200 trials. However, a random
number generator was used to determine the inter-
trial duration, since in both tasks anticipation of
the stimuli could enhance responses. Through this
process each intertrial duration was independent
of the others and the effects of anticipation of

383

stimuli was eliminated.

The results of this experiment indicated that
as the amount of cognitive processing increases,
the relationship between intelligence and reaction
time does not increase6. Our results seem to in-
dicate that the relationship is fairly constant
across these two tasks. Our next experiment in
this area will involve the use of a more difficult
task involving taxcnomic or categorical judgements
and will use a hybrid of the program developed for
the simple and choice reaction time tasks.

Summary

Four experimental paradigms utilizing microcom-
puters to present stimuli and record data have been
presented and discussed. The advantages of using
micros as research tools as discussed by Johnson
are certainly truel. We have found that through
the use of this equipment we have been able to ef-
fectively conduct a number of studies within a re-
latively short amount of time and make a signifi-
cant contribution to the field of cognitive psych-
ology. Without this equipment we would still have
been able to conduct similar studies but the use of
this equipment has certainly facilitated the deve-
lopment of our research programs and allowed for
collaborative efforts to flourish over 3,000 miles.

As a final note we would like to comment on the
two disadvantages of using micros as research tools
highlighted by Johnson. The first concerns the
amount of time and skill involved in program deve-
lopment. While many of these tasks discussed may
appear to be very simple, the initial development
whether in Basic or Pascal requires a substantial
amount of sophistication in programming as well as
the requirements of the tasks, i.e., the types of
data required to store, speed of stimulus presenta-
tion, placement of targets. This is not to imply
that one must be a computer wizard to use a micro
as a research tool, but some programming experience
is important on a research team. However, the ul-
timate payoff is worth the effort. For example,
with our hardware and software configuration we are
able to present stimuli within milliseconds of one
another and to record responses accurate to within
one millisecond.

The second issue regards the limited number of
subjects that may be included in a study if you
only have one or very few micros. Both of us have
only one North Star at our disposal at each site,
yet we each have been able to gather a substantial
amount of data from a relatively large number of
subjects. The series of three experiments discuss-
ed under experiment #3 examined over 320 subjects
in grade 2 through college.

In summary, the use of the microcomputer as a
research tool may revolutionize educational and
psychological research. By using computer pro-
grams research may be replicated precisely and ex-
tended with minor software modifications. Program-
matic research is facilitated through the develop-
ment of a master program from which hybrid programs
may be developed by altering such things as inter-
trial stimulus duration, sequencing of events, or

4UU



www.manaraa.com

instructions. The accuracy of the measurment of
such things as reaction time has certainly been in-
creased through the utilization of sophisticated
hardware and software. Experimental control is
certainly optimized through the use of the micro
as a stimulus presenter and data recorder. The use
of the micro to administer a task, present identi-
cal instructions, and control most aspects of ex-
perimental administration is without parallel.
Once the computer program has been written the use
of the micro is extremely economical. In conclu-
sion, the use of a microcomputer as a research
tool can be extremely advantageous to anyone in-
terested in developing programmatic research in a
variety of fields.

References

1
Johnson, C. W. Microcomputer-administered

Research: What it Means for Educational
Researchers, Educational Researcher, 1982, 11,
3, 12-16.

2Kaye, D. B. & Brown, S. W. Contextual Facilita-
tion in Early and Skilled Readers. Submitted

for publication, 1983.

3
Brown, S. W. Reading Skill Development: A Ques-
tion of Component Processing. A Research Grant
submitted and funded by the University of Con-
necticut Research Foundation, 1981.

4
Brown, S. W. A Developmental Examination of a
Primed Lexical Decision Task, Unpublished Doc-
toral Dissertation, Syracuse University, 1980.

5
Jensen, A. 'g': Outmoded Theory or An Uncon-

quered Frontier? Invited address presented at
the Annual Convention of the American Psycho-
logical Association, Toronto, Ontario, Canada,
1978.

6
Brown, S. W. & Boretz, H. Cognitive Processing
and the Speed of Processing Information in
Simple and Choice Reaction Tasks. Paper pre-
sented to the National Association of School
Psychologists Conference, 1983.

384



www.manaraa.com

STRATEGIC CONCERNS IN ESTABLISHING
AN ELEME7PARY SCHOOL MICROCOMPUTER INSTRUCTIONAL SYSTEM

Abstract

by Ronald Bearwald and Theodore Bargmann

School District 74
Lincolnwood, Illinois

best captured in the words of renowned psysicist
and computer science educator Alfred Bork: "At

the present time we see the formation of another
great wave that involves the use of the computer
in learning. The computer promises to revolu-
tionize education more than any other develop-
ment of our time."2

The microcomputer has become a most viable
instructional device. There can be no doubt
that it can enhance and facilitate learning.
However, we dare not lose sight of .our educa-
tional purposes as we become enamored with the
captivating characteristics of the microcanpu
er. Planning and foresight are essential to
insuring the successful contribution it can
make to education. This article highlights the
strategic concerns of prior planning that lead
to effective use of the microcomputer in an
elementary school setting. (1) Adopt a devel-
opmental approach. (2) Have a broad base of
participation in planning. (3) Assess and so-
licit Board support early. (4) Activate com-
munity support. (5) Build your program on a
curriculum. (6) Begin with computer literacy.
(7) Designate adequate personnel. (8) Provide
for a broad base of student participation.
(9) Establish a multilingual program.

It is clear that a vast number of private
and public, elementary and secondary schools
throughout the country are currently investi-
gating or using microcomputers. A recent study
conducted by the U.S. Department of Education's
National Center for Education Statistics indi-
cates that the number of microcomputers used
for instruction in public schools has tripled
between 1980 and spring of 1982. The amount of
microcomputers now in schools, which is approx-
imately 96,000, is expected continue to grow
rapidly.'

To be sure, technology has assumed an in-
creasingly more legitimate role in teaching
and learning during the past two decades.
Taken in this context, the application of mi-
crocomputers to education is perhaps an under-
standable phenomenon. In fact, never before
has new technology created such a rapid and
profound impact upon the educational communi-
ty.' Never before has an instructional inno-
vation received such widespread support from
teachers, administrators, students, and parents.
Never before have these groups been so unani-
mous in their resounding surety of the value
of a technological system to the educative
process. Perhaps the current sentiment is

As one assesses the value of microcomputer -
based instruction, a healthy perspective is to
view the vast potential and promise as well as
the possibility of failure. The enormity of the
immediate impact of the microcomputer can be ex-
plained in part by its many intrinsic qualities.
It has the capacity to provide immediate rein-
forcement of response even beyond wildest Skin-
nerian expectations. It can allow a relatively
naive learner to perform complex learning opera-
tions with a few simple commands. Furthermore,
it uses its memory of pre-programed information
to engage any student in logical reasoning re-
gardless of ability. Finally, there is no draw-
back in that it has the capacity to generally be
colorful, noisy and just plain fun. These and
other inherent qualities have caused us to be-
come hnmediately enamored with and receptive to
the potential of the microcomputer.

Despite many characteristics which have
encouraged many to jump on the microcomputer
"band wagon," caution should be exercised. Re-
meMber, afterall, that microcomputers are only a
delivery system and even the most rudimentary
student of the art is familiar with the GIGC,
garbage-in, garbage out credo. As has been
noted, the. microcomputer can be viewed as a
"double-edged sword which can cut both ways.
While improving the human condition, the micro-
computer can create problems and mistakes."3
Without appropriate planning and/or support,
the value of microcomputers may, indeed, be il-
lusionary and transitory. To coin and at the
same time reverse a familiar phrase, without
a thorough and thoughtful approach microcomput-
ers used in education could become the "silk
purse" that turns into a "sow's ear."

At this time, the Lincolnwood School sys-
tem is operating a successful microcomputer
instructional program. The following were key
considerations in establishing this program.

ADOPT A DEVELOPMENTAL APPROACH

That is to say, allow for growth of your

385 40 2



www.manaraa.com

program in stages or phases. The value of view-
ing the innovative process in this manner was
clearly stated by Everett Rogers who described
stages in the adoption of innovations as (1) a-
wareness, (2) interest, (3) evaluation, (4) trial,
and (5) adoption.4 This approach provides two
important aspects of developing a successful
program foundation:

1. A conscious recognition which real-
izes that the gestation period of an
effective microcomputer program is
months if not years. This view
should prompt an appropriate, long-
term commitment from those involved.

2. Phases or stages which can be as-
sessed and enjoyed as milestones of
success along the way. This in it-
self can be a motivating force since
it provides a basis for progress
that is both incremental and contin-
uous.

Our experience has shown these phaes to be es-
sential:

PLANNING

This phase allowsfor the gathering, ana-
lysis, and synthesis of data from a va-
riety of sources such as readings, con-
sultants, teachers, and the community.
Site visitations to assess on-going pro-
gram are also a valuable source of in-
formation. The planning not only pro-
vides a format for gathering informa-
tion and formulating goals, but also
serves as an in-service training compo-
nent for the planning body.

PROPOSING

During this phase we should seek to in-
form and motivate the ultimate decision
making authority, which in educational
settings is often the Board of Education.
Broad program parameters should be clar-
ified and feedback solicited.

INITIATING

This is equivalent to a trial stage
wherein the innovation is presented and
used on a small scale to determine its
usefulness when the program is fully
implemented. In our situation, this
involved providing a structured in-
service orientation program as well as
placing single microcomputer bySLeMS in
each school building for teacher and
selected student use. Testing a proto-
type and engaging in preliminary eval-
uation has proven to be invaluable to
introducing microcomputers into the ed-
ucational environment.5

IMPLEMENTING

This stage places your program into full
opczation. Teaching and hopefully
learning begins. Of course, this as-
sumes that these prerequisite tasks have
concluded: (1) Board of Education ap-
proval of your plan, (2) hardware and
software purchased and in place, (3) ap-
propriate personnel appointed, (4) cur-
riculum developed, (5) students grouped
and scheduling arranged, (6) profession-
al staff oriented and receptive.

ASSESSING

This phase is on-going and absolutely
essential to make your program a "sys-
tem." Your efforts here will provide
valuable data for continuation, expan-
sion or re-direction of your use of
microcomputers. Care should be exer-
cised to develop a model which will
assess both the cognitive and affect-
ive impact upon students as well as
the attitudes of faculty.

HAVE A BROAD BASE OF PARTICIPATION IN PLANNING

Whenever possible, use the comnittee ap-
proach which enables a high degree of teacher in-
volvement. It should be taken as good advice
that "we must rely very heavily on the intuition
of good teachers" in order to determine how "to
best proceed and as to where the computer will be
most effective in the learning process."6 In

assembling a committee, insure that representa-
tion includes broad general areas (reading, math,
science) as well as more specialized teaching
operations (gifted, library/learning resources,
special education). It is also advantageous to
include the sophisticated as well as the naive
in terms of each person's prerequisite knowledge
of computers. As an example, our committee con-
sisted of the following representation:

- administration
- mathematics
- science
- primary teaching (grades K-2)
- intermediate teaching (grades 3-5)
- upper grade teaching (grades 6-8)
- library/learning resources
- reading
- gifted education
- special education

In providing for such broad-based represen-
tation, you encourage dialogue and broaden per-
spective about possible applications. At the
same time, you are establishing a cadre of edu-
cators that have initial ownership and invest-
ment in the program and will, no doubt, provide
a base of on-going and future support.

ASSESS AND SOLICIT BOARD SUPPORT EARLY.

There's no need to keep any secrets from
your Board of Education which will ultimately

386

It) 21



www.manaraa.com

take action that will either launch or doom your
intended program. Don't wait for THE FINAL RE-
PORT OF THE MICRCOOMPUM COMMITTEE. Keep them
informed along the way by taking interim reports
and encouraging dialogue. "Yes, we believe mi-
crocomputers have potential for our instruction-
al program." "Yes, we are currently investigat-
ing this in a systematic manner." "Yes, we will
be asking you to support the impending microcom-
puter instructional program with both hardware
and software purchases."

By approaching information sharing in a
straightforward manner as this, expectations
and support are clear while hidden agendas are
kept to a minimum.

ACTIVATE COMMUNTTY SUPPORT.

An important compliment to Board interest
is that of community support. In attempAng to
amalgamate support from the citizenry it is es-
sential to consider both the focus and timing of
your efforts. In targeting one's energies, one
must realize that community support may come from
a number of sources:

- parents with children now in vour schools.
- parents whose children once did but no

longer attend your schools.
- residents who do not or never have had

children in your schools.
- former students now in high school or

college.
- other public institutions or bodies
who are directly or indirectly connect-
ed with your schools (parent /teacher
associations, public libraries, etc.)

- civic organizations (Chamber of COm-
merce, Rotary, etc.)

- the business community.

All of these "publics" would have a differ-
ent vested interest in either supporting or not
supporting your microcomputer program. Of course,
parents of children currently in your schools
will be the greatest single source of support for
your program once they realize the potential of
microcomputers to increase their children's
learning. However, it is important to remember
that parents of school children are often far
outnumbered by residents who have no direct con-
nection with schools. As an example, in our
community, households without children in attend-
ance at school currently outnumber homes with
school children by a five-to-one margin. Under
these circumstances, it becomes clear that the
tendency of the community in general to support
a microcomputer program increases proportionately
as citizens perceive uses for the microcomputer
beyond the school.. itself. During initial phases,
the school must provide for community input in
planning as well as for participation in orien-
tation. As the initiation and implementation
phases begin, opportunities which personalize
microcomputer use must be sought by offering
evening and weekend workshops as well as in-
stances to utilize the microcomputers on an in-

387

dividual basis.

The same opportunities for involvement in
both planning and utilization should be directed
at other public bodies and/or institutions and
civic organizations. Library boards, school
boards, village boards, zoning boards, chambers
of commerce, etc. often provide an interfaced
networking of people whose support is crucial.
When you can work in concert with these groups
to establish common goals and utilization pat-
terns, your efforts can be complimentary if not
advantageous.

In our situation, we were able to obtain
financial support from our local business com-
munity by demonstrating a viable instructional
plan for using microcomputers. This type of
enterprise has been effeCtive in numerous situ-
ations throughout the country. However, will-
ingness of the community to contribute seems to
hinge on their awareness of the relevance of
microcomputers to the curriculum.?

BUILD YOUR PROGRAM ON A CURRICULUM.

The ultimate success of your program will
hinge upon how educationally sound it is and/or
whether or not learning occurs. Many micro-
computer programs are often doomed to failure
from the start as a result of not being firmly
based Oh a curricular plan. We must never for-
get that "the major problem with oomputer-based
learning is not a hardware problem, but a learn-
ing problem. To focus on the hardware is an
error, drawing attention away from the major
issues that should .be considered."8

Initially, when the microcomputer hardware
is in place, the tendency is often to use com-
mercially prepared software as the main frame-
work of the instructional program. This ap-
proach can be dangerous on a number of counts.
First, there is a substantial belief that the
majority of electronic courseware is "intellect-
ually bankrupt" and, indeed, "mental chewing gum
instead of protein."9 Using commercially pre-
pared software as an expedient way to get people
to use computers is at best a weak rationale.
In doing so, we merely allow ourselves to con-
tinually sidestep crucial curricular issues by
adopting selected software in a wholesale manner
without judging its value of applicability to
our situation. In fact, evaluation and selection
of microcomputer software should always be done
with a =Oman of teacher involvement who base
their decisions on an accented set of criteria
and an established curriculum.1°

To be successful any instructional system
using microcomputers must be based upon a cur-
riculum - a sequenced set of learning objectives
and activities. Tb be sure, the curriculum doc-
ument provides a plan for learning. However,
it also addresses cost effectiveness and serves
as a strategic management tool.11 Microcomput-
ers obtained with a considerable expenditure of
capital outlay should not lie dormant nor be

404



www.manaraa.com

subjected to capricious and haphazard use.
While some random and exploratory use by stu-
dents should be allowed, the core instructional
program should be constructed in order to maxi-
mize microcomputer use while insuring that
every minute of student participation is produc-
t ive.

After expending considerable money to pur-
chase microcomputers, it makes little sense to
be parsimonious in establishing a curriculum.
While curriculum development may be initially
time consuming and even costly, it will not only
provide direction but a necessary framework for
assessing the success of microcomputer-based in-
struction.

BEGIN WITH COMPUTER LITERACY.

Essentially there are two broad uses for
microcomputers in an educational setting:

1. to supplant or supplement instruc-
tion through application of comput-
er-managed or computer-assisted
instruction.

2. to teach the elements of computer
literacy including programming.

Both uses, of course, have merit so it is not
suggested that deciding how to apply microcon-
puters be looked upon as an either/or issue.
However, when beginning, it is important to
nrA.row the focus of one's energies in order to
eralance the possibility of success. Ultimate-
ly, the question becomes not "which approach ?"
but "which approach first?"

It is, of course, easier to begin a pro-
gram by relying upon a CAI (computer-assisted
instruction) approach using prepared software
as its basis. Often this results in purchas-
ing and "plugging in" commercially prepared
software either adopting them in total or
adapting them as needed. The idea of using
commercially prepared software is not in it-
self abhorant. However, we must never lose
sight of the fact that CAI should never be an
end, but merely a means to an end. The most
legitimate rationale for adopting a CAI approach
should be to improve ;earning within the context
of the curriculum. Consequently, such an ap-
proach should be implemented only after consid-
ering such key questions as "In what way can
microcomputers teach something better than we
are currently doing it?" In this manner, care
will be exercised in integrating CAI into the
accepted framework of curriculum.

In our judgment, initiating a program on
the basis of a sequential curriculum of com-
puter literacy skills provides a viable be-
ginning as well as a lasting foundation. The
reasons are numerous. Using microcomputers to
teach computer literacy skills:

1. forces us to specify our goals and

388

activities and deal with (rather than
avoid) other important curricular is-
sues.

2. provides a basis for uniformity and
continuity of instruction.

3. insures mastery of basic computer and
reasoning skills which have universal
application to all areas of learning.

4. presents an instructional program
which is accountable to varying skills
of students.

5. prompts teacher orientation, accept-
ance, involvement and interest.

Definitions of computer literacy remain
varied. Some choose to think of it in terms of
two major components: (1) computer awareness
and (2) oanputer programmimg.IX A consensus re-
view seems to include these cannon components:
(1) how computers are used, (2) what a computer
can and cannot do, (3) what a program can and
cannot do, (4) how computers work, (5) how to
use a computer, (6) the impact of computers on
society, (7) how computers can develop skills
of decision making and coping with change and,
(8) an introduction to or awareness of pro-
gramming.13 The Lincolnwood Schools have adopt-
ed the following broad curriculum goal: "To

develop computer literacy by teaching important
computer related concepts, increasing awareness
of the values and applications of computers in
our world, and providing opportunities to attain
a certain level of competency in perforting
fundamental computer operations."

Regardless of the operational definition
of computer literacy to which you adhere, one
could not disagree with the position of Daniel
Watt, Director of the Conputer Resource Center,
Cambridge, Massachusetts who argues the impor-
tance of computer literacy. States Dr. Watt,
"Universal computer literacy is a basic skill
of the 1980's and deserves a major role in the
school curriculum."14 Maxine Greene of the
Teachers College, Columbia University, sees
literacy as a way "to learn how to think con-
ceptually, to structure experience, to look
through wider and wore diverse perspectives at
the lived world."1- Furthermore, Dr. Greene re-
minds teachers that "literacy ought to be con-
ceived as an opening, a becoming, never a fixed
end."16

Perhaps this is the most useful perspect-
ive of all. For, if teachers can grasp the
universality of computer skills to learning
without feeling they are about to be replaced
by a machine, they are more likely to engage in
training, evaluation of software, development
of courseware and curricular integration of
software - all a prerequisite to success in any
computer-managed or assisted approach. When one
views literacy, as Dr. Greene does, in terms of an

4 u5



www.manaraa.com

"opening," the case for beginning with computer
literacy becomes quite clear. After all, what
better place to begin than at the beginning.

DESIGNATE ADEQUATE PERSONNEL.

In considering what resources are necessary
to implementing a microcomputer program, school
systems must never underestimate the value of
providing adequate human resources. Serious con-
sideration should be given to the appointment of
an individual who can coordinate the microcomput-
er instructional program on a full-time basis.
Someone must provide continuous impetus to the
program, especially during its early stages and
to focus efforts to integrate microcomputers
into the educedonal setting.

In addition, this person will need to be a
trainer, curriculum developer and teacher. All
of these activities will not only benefit the
program, but also will enable this person to re-
main in touch with the substantive issues of mil-
crocanputer learning thereby enhancing his/her
credibility in the coordinator role. It goes
without saying that this person will also need
to be a program advocate, ombudsman, promoter
and overall Iiampion of the micromaguter cause.

When selecting a coordinator, emphasis
should be given to appointing an educator rather
than a technician or programmer. Someone who
approaches the task with a clear understanding
of the educative process will not only enable
your learning objectives to be achieved, but will
also have a better chance to be perceived by col-
leagues as a credible leader and therefore ac-
cepted. It is even more desirable to designate,
whenever possible, someone who is currently em-
ployed in the local school system, as their cre-
dentials as an educator will have been establish-
ed.

PAN= FOR A BROAD BASE OF STUDIENT PARTICIPA-
TION.

The tendency of many schools has often been
to approach the initiation of microcomputer in-
struction in a piecemeal fashion. The idea is
often to get a "foot in the door" by obtaining
one or two microcomputers and place them where
it can be presumed they will be accepted and
successfully applied. By building a showcase
program with gifted students or perhaps in math
or science, it is hoped that we can trigger a
catalytic reaction from which the program will
grow and expand. This premise as a beginning
is really not all that bad. The problem is
that many programs never get beyond this point.
What is thought of as a beginning becomes per-
petuated as a series of unrelated and often
isolated programs with no common thread of con-
tinuity or curriculum holding than together or
providing direction.

If a microcomputer instructional program
is to be successful over time, it must be com-
mitted to provide learning for all students.
Assuming that microcomputers are worthy of in-

389

corporation into the educational program, then
all students should have access to than and the
related skills that they teach. After all, if
acquisition of computer literacy has the capa-
city to improve learning in all areas, then ac-
cess to this skill improvement should not be ex-
clusive. Approaching the initiation of such a
program as based upon broad student involvement
serves to underscore the magnitude of one's com-
mitment to the belief that microcomputer litera-
cy skills are a valuable component of the curric-
ulum and important to each student's learning.

In our situation, once we agreed that the
teaching of computer literacy had a legitimate
place in our curriculum, we proposed to provide
relevant learning experiences to heterogeneous
groups of students at the primary; intermediate
and upper grade levels. In doing so we hope to:

1. encourage and obtain a serious initial
commitment from the local Board of
Education rather than expanding the
program with a series of add-on pro-
posals.

2. provide computer skills access to all
students thereby engendering a wide-
spread feeling of ownership and in-
volvement by all students and subse-
quently their teachers and parents.

3. create a substantial hardware base
and mainstream instructional program
from which additional specialized
programs and microcomputer uses
would derive and evolve.

ESTABLISH A MULTILINGUAL INSTRUCTIONAL PLAN.

By this we mean, make a serious commitment
to expose students to more than one computer
language. Commonly, students have been intro-
duced to microcomputer programming through the
BASIC language. Though this may be the most
universally used language throughout elementary
schools, it may not be the most appropriate for
the young learner.

Before we proceed perhaps it would be ad-
visable to reiterate our belief regarding the
importance of programing experiences at the
elementary level. To be sure, elementary stu-
dents should engage in programming as part of
their computer literacy' instruction. Too muCh
is to be gained to ignore the potential of this
type of learning. As indicated by Seymour
Papert,"The child programs the =muter and in
doing so, both acquires a sense of mastery over
a piece of the most modern and powerful technol-
ogy and establishes an intimate contact with
some of the deepest ideas from science, mathe-
matics,and the art of intellectual model build,

Furthermore, Alfred Bork notes that when
we allow students to engage in programming,
"we are giving the student an important in-
tellectual tool, an increasingly critical mode

406



www.manaraa.com

for all areas of the future." 18

After reaching consensus regarding our in-
tent to include programming in the computer
literacy unit, we determined there would be a
great deal of merit in providing a development-
al approach which would introduce students to
more than one computer language. Logo, for
example, and its "turtle" graphics component is
highly motivating, does much to eliminate syn-
tax errors and allows primary age students to
engage in programming with a minimum of train-
ing.I9 The use of such child- appropriate lang-
uages as Logo, can enable children to learn to
control a microcomputer in tiw same manner that
they learn to read or write. Users of the
programming language PILOT have praised its
simplicity and clarity which allows the student
with no prior computer experience to interact
with the machine in a human way. It provides an
alternative to algebraic languages and is com-
posed of powerful and nearly syntax-free conver-
sation-processing instructions. '1 We chose to
couple these two languages with the widely used
BASIC to create the following microcomputer
language sequence used in our computer literacy
instruction:

Grade Level

Primary (1-2)
Intermediate (3-5)

Upper Elementary
(6-8)

Computer Lang'

Introduce: Logo
Review: Logo
Introduce: PILOT
Review: PILOT
Introduce: BASIC

CONCLUSION

The application of both formal and informal
procedures to effect change will, of course, vary
in accordance with the attitudes and resources
present in the situation. Each school or school
system must approach the introduction and adop-
tion of new technology in a manner which is
suitable to the local educational setting. The
introduction of microcomputers for learning may
require that we give attention to a unique set

of considerations. We have attempted to focus
issues which were important. to the integration
of microcomputers into the educational program

of the Lincolnwood Schools. The relevance of
any innovative procedures which you choose will
be tested in light of the impact that microcomput-
ers make upon the system at large - in fact,
upon learning.

"A computer system does not exist in a

vacuum. It is always a part of a larger human

A computer system should never be an

end in itself. Its success or failure is meas-
ured by the success it effects in the situation
in which it is used. Therefore, if computer
systems are to serve people's needs, they must
be carefully integrated into the human and pro-
cedural domain they are intended to improve.,,22

390

REFERENCES

1. "CPR News Briefs," Curriculum Product Review,
December 1982, pp. 6-7.

2. Alfred Bork, Learning With Computers (Bedford,
Mass.: Dijital Press, 1981), p.3.

3. H. Dominic Covvey and Neil H. McAlister,
Computer Consciousness: Surviving the Auto-
mated 80s (Menlo Park; California: Addison"*
Wesley, 1980), p. 6.

4. Everett M. Rogers, Diffusion of Innovations
(New York: The Free Press, 1962), p. 81.

5. William H. Pritchard, "Introducing Instruc-
tional Computing into the Educational En-
vironment," Electronic Learning, September
1981, p. 24.

6. Bork, p. 7.
7. Robert Neumann, "Doing Business with Busi-

ness: How to Raise Money in Your Commu-
nity," Electronic Learning, September
1982, p. 43.

8. Alfred Bork, Learning-Not Hardware-is the
Issue," Electronic Learning, September
1982, p. 13.

9. Epiegram, May 1982, p. 3 .

10. J. D. Gawronski and Charlene E. West,
"Computer Literacy," ASCD Curriculum Up-
date, October 1982, p. 6.

11. FenwiCk W. English and Betty E. Steffey,
"Curriculum as a Strategic Management
Tool," Educational Leadership, p. 277.

12. Gary G. Bitter, "The Road to Computer
Literacy: A Scope and Sequence Model,"
Electronic Learning, September 1982,

p. 60.
13. Gawronski and West, p. 3.
14. Daniel H. Watt, "Computer Literacy: What

should schools do about it?" Instructor,
October 1981, p. 87.

15. Maxine Greene, "Literacy for What?" Phi
Delta Kappan, January 1982, p. 329

16. Greene, p. 326.
17. Seymour Papert, Mindstorms (New York:

Basic Books, 1980)
18. Bork, p. 6.
19. Molly Watt, "What is Logo?" Creative Clan-

puting, October 1982, pp. 112-113.
20. Watt, p. 86.
21. Rita May Liff and Keith Vann, "PILOT: A

Programming Language for Beginners,"
Interface Age, September 1978, pp. 64-67.

22. Covvey and McAlister, p. 12.

4 u



www.manaraa.com

EVALUATION OF MICROCOMPUTER SOFTWARE: HOW VALID ARE THE CRITERIA AND PROCEDURES?

Robert M. Caldwell, Ph.D.

The University of Texas Health Science Center at Dallas
Department of Allied Health Education

Dallas, Texas 75235

This paper presents three major issues related to the
evaluation of educational software. The first relates
to the nature of criteria used to evaluate software.
Few of the criteria used to evaluate software have
been validated through research and experimentation;
instead, they often find their basis in speculation and
intuition only. Criteria for evaluation are frequently
highly inferential in nature which, of course, makes
them highly subjective. Subsequently, subjectivity
can only serve to lower reliability among separate
ratings.

A second problem related to the evaluation of
software is the qualifications of the individual raters
themselves. Recent studies have demonstrated wide
vatiances among ratings by individual raters.

A third problem in evaluating software stems
from a general lack of knowledge about how com-
puters should be used in instruction. Many
school districts are acquiring micros without first
designing classroom models for instruction. There-
fore, much software is purchased without regard to
how its objectives fit into existing curricula and the
overall goals of the school.

INTRODUCTION
In the past several years there has been a prolifera-

tion of software developed to be used with microcomput-
ers in elementary and secondary schools. Unfortunately,
much of this software varies greatly in its quality and
scope. In an effort to distinguish quality software from
"overnight" or "instant" software programs, journals
devoted to this new field of "electronic education" have
initiated columns where software is reviewed. These
reviews typically describe the purpose of the software,
summarize its content, and usually review its perceived
effectiveness as a teaching medium. These reviews can
serve an important purpose in helping set standards of
quality in software development but can also have the
deleterious effect of condeming a product that might be
useful in certain contexts.

If the product is terrible, then it certainly deserves
criticism. Terrible software is usually easy to evaluate.
It contains inaccuracies in spelling, content, and struc-
ture; is a victim of ineffective lesson design, and suffers
from poor screen display and appearance. This type of
software, however, represents only a small portion of all
the programs available. The major problem with eval-
uating software programs beyond those which are deafly
"terrible" is that it becomes difficult to discriminate be-
tween the effective and ineffective ones. Programs that

391

are loaded with graphics and flashy screen displays might
not be as effective as those that are quite simple in
appearance and presentation.

In short, the problems inherent in evaluating educa-
tional software can be traced to three major issues.
The first relates to the nature of the criteria used to
evaluate software. Few of the criteria used to evaluate
software have been validated through research and ex-
perimentation; instead, they often have their basis in
speculation and intuition only. Criteria for evaluation
are frequently highly inferential in nature which, of
course, makes them highly subjective. Subsequently, sub-
jectivity can only serve to lower reliability among sep-
arate ratings.

A second problem related to the evaluation of soft-
ware is the qualifications of the individual raters them-
selves. In a recent study by Blum (1982) wide variance
was found in ratings of software by three or more re-
viewers. This variance was attributed to

A. Error in scoring due toinadeuqate training or
background of the reviewers.

B. Subjective judgments of the evaluators on items
that were highly inferential.

A third problem in evaluating software stems from
a general lack of knowledge about how computers should
be used in instruction. The emergence of the inexpen-
sive microcomputer has prompted many school districts
to purchase them. Unfortunately, many of these districts
are acquiring these micros without first designing class-
room models for instruction. The result is that much of
the software is used and therefore reviewed within con+
texts that might be inappropriat e. In addition, most
software is purchased Without ard.to how its objec-
tivities fit into existing curricula and the overall goals
of the school.

These issues, therefore, seem critical to the estab-
lishment of valid criteria and procedures for determining
effective use of computer-based instruction. In the
following paper each of the issues cited above is dis-
cussed and recommendations for developing more effect-
ive criteria and methods are offered.

Evaluating Evaluation Guidelines
As more software programs become available,

the number of individuals and organizations who-recom-
mend guidelines for evaluating software seems to in-
crease proportionately. As Chairman of the National
Council of Teachers of English Committee on Instruct-
ional Technology, I have been currently involved in
developing a set of criteria for evaluating computer-
based materials for the English language arts. In the
process, the Committee has examined at least ten (10)
separate sets of criteria. In all these sets of criteria,

408



www.manaraa.com

three basic problems seem to emerge. The first problem
is that many of the criteria on the evaluation instru-
ments are presented as if they are absolute indicators of
program effectiveness when in fact they are based more
on conjecture and intuition than on evidence of instruct-
ional effectiveness. Few, if any, of these criteria offer
any support to show that they are the result of a re-
search effort to establish a relationship between a spe-
cific feature of a program and its effect on the achieve-
ment of the learner.

Another problem with the criteria we examined was
that they invariably represent each separate criterion as
having equal weight in the evaluation of a particular
piece of software. None of the guidelines seem to
acknowledge that certain features of program design
might contribute more to the overall effectiveness of
the program than some lesser features.

A final problem was that none of the evaluation
guidelines took into account variations in teaching
strategy. Instead the criteria were offered to be ap-
plied to all software materials regardless if they used
a simulation, drill/practice, tutorial, or game format.
Logically, one might reason that each of these strate-
gies would utilize the capabilities of the computer in a
slightly different way and therefore certain criteria
would be less important or not important at all in an
evaluation of that strategy.

In short, there are many problems with these
guidelines that require more thinking and certainly
more research. Taken separately, each of the problems
mentioned above might be examined and alternative
procedures recommended:
1. Validity of the Criteria

Probably the most significant problem plaguing the
development of evlauation criteria is that, for the most
part, few if any of the criteria have been validated in
any sort of well conducted research study. We do know
from research that some features of an instructional
program can affect learner performance, but these are
few and are often poorly documented. Most of the
criteria included on evaluation guidelines are based on
what the developer THINKS contributes to an effective
program. This same problem was inherent in most
teacher education research until correlational studies
began to establish clear relationships between specific
teaching behaviors and student achievement. Until these
same methods are applied to instruction delivered
through a computer-based medium, the problem of valid-
ity of criteria will remain a significant. one.

One need not look far to find examples to illustrate
this point. One criteria which invariably appears on
evaluation guidelines is, "Is the program interactive,"
or "Does the program provide interactions." Few educa-
tors would argue that interaction is a valuable charac-
teristic of ANY form of instruction, but It is particular-
ly important when using the full power of the computer-
based system. Unfortunately, however, there is wide
variability in the definition of interaction. In a program
I evaluated recently the designer posed the question, "In
what year was Texas admitted to the Union?" As my
response, I was supposed to enter a date. So as an ex-
periment I entered "2,000,000 B.C." The feedback in-
formed me, "No, Try Again." I then entered,
"4,000,456 A.D." The feedback urged me to "Try Again."
Finally, I got serious and entered, "1843." The computer
told me, "No. Try. Again." For some time I really tried
to get the right answer; in fact, at one point I just be-
gan entering numbers consecutively, "1846," then, "1847,"

392

then, "1848," and so on. Each time my effort was re-
warded with, "No. Try Again."

Now, this program is certainly "interactive" and by
the definition implied ir+ most of the evaluation guide-
lines I have seen, it would receive a positive evaluation
on that basis. However, the program is clearly terrible
in that it provides the learners with absolutely no inform-
ation to help find the correct answer. Instead, it only
serves to increase frustration, inhibit cr :ativity, and
stifle the learner.

The validity of other criteria is less subtle. One
author offers this criterion, "Does the program offer
paging (not scrolling)?" In my opinion, a frame present-
ed in a page format is much more appealing visually than
text scrolling up from the bottom of a CRT. But
whether that feature contributes more to the effective-
ness of a segment of instruction than scrolling does is
dubious. But it is this exact type of criteria that is
offered on evaluation guidelines as absolute standards
of excellence. As individuals interested in developing
and encouraging the development of good software, we
must look carefully at these criteria and encourage more
validation and research. This can only be accomplished
by finding positive correlations between various features
of programs and learner achievement.
2.. Weighting of Criteria

A second problem which seems to reoccur on eval-
uation guidelines is that in almost all cases criteria are
given equal weight in the evaluation process. That is,,
each criterion is given equal importance in evaluating
the software. Obviously, not all features of a piece of
software contribute equally to the effectiveness of the
total program. With this in mind, it would seem logical
that evaluation guidelines be structured so that a com-
posite rating put more emphasis on a feature such as,
"interactiveness" than on something like, "Feedback is
personalized." Evaluative criteria, therefore, not only
need validation, they need to be categorized into
a hierarchy which will reflect the degree of contribu-
tion each criterion makes to the effectiveness of the
overall program.

3. Variation in Teaching Strategy
A final problem seen quite often in evalutive guide-

lines is that criteria are usually designed to be applied
to all software programs regardless of the teaching
strategy used to deliver the content. Classroom teach-
ing is very often evaluated without regard for the con-
text of the objectives taught in the lesson. Few educa-
tors would argue, however, that very different skills
are needed to make individual strategies such as inquiry,
lecture, drill, and group discussion effective independent-
ly. It would seem to follow, then, that the same criteria
applied to evaluating a drill/practice software program
might be inappropriate when applying them to evaluate
the effectiveness of a computer-based simulation.

Qualifications of Reviewers
In the Blum (1982) study a wide variance in ratings

of software were found when a single piece of software
was reviewed by three or more raters. Blum attributed
this variance to two major factors:

1. Subjective judgments of the evaluators on items
that were highly inferential, e.g. "the presentation was
boring."

This conclusion only serves to verify the need for
objective criteria .which are validated empirically
through correlational research models. Blum writes,

`BUJ



www.manaraa.com

"There is basically little that can be done to reduce vari-
ance in evaluation studies when judgements have to be
made as they are based on personal opinion and retrain-
ing would not alleviate the problem." (p. 27) To a great
extent, personal bias will never be eliminated from any
evaluation process. However, if we can find and vali-
date objective criteria which rely on low inference (e.g.
"Feedback helped shape behavior in the direction of the
desired learning outcome.") rather than high inference
(e.g. "The program provides adequate feedback."), much
of the bias in evaluation that Blum found might be re-
duced.

2. Error in scoring due to inadequate training or
background of the reviewers themselves.

In the Blum study, an evaluation instrument was dev-
eloped which systematically analyzed software in terms
of its intent, contents, methodology and means of evalua-
tion. Unlike many others, this instrument also evaluated
the software in terms of the strategy it used.

Blum found that what often occurred was that one
rater would respond to the software from the per-
spective of his/her backgrou nd while the other would
respond from a different background. A mathematics
teacher, for example, would look carefully at content in
his/her evaluation whereas a rater with instructional
design expertise would assess the software from that
perspective. Blum's conclusion was the "There is no way
to ensure that training and retraining will acount for
varying background factors so that this (variance) can be
reduced." (p. 26)

The solution to this problem seems so obvious that I
feel that I have perhaps missed the significance of Blum's
conclusion. It would seem that one way to achieve
greater reliability among raters would be to have raters
from similar backgrounds evaluate the courseware.
That is, allow three reviewers who have designed soft-
ware for the English language arts or for mathematics
or for whatever each evaluate the same program. This
might provide a certain degree of reliability that is
currently lacking.

Another solution to this problem would be to choose
raters who had actually designed software so that they
had that experience in common as well. Individuals who
have tried the laborious and frustrating experience of
actually creating software often have a deeper appre-
ciation of what an author or designer was attempting
in the program. A final solution might be to have each
software program rated by three individuals and then
report the composite rating rather than let the review
fall on the shoulders of just one reviewer.

Lack of Instructional Models
A final problem in evaluating software stems from

a general lack of knowledge about how software should
be used in a classroom. As students we have had the
benefit of hundreds of hours of instruction. Each lesson
was in itself a model of how (or how not) to teach a
lesson. As teachers we emulated the models we found
most useful. In using computer-based education, how-
ever, few such models exist. Few of us have ever ex-
perienced a computer-based course so have little insight
into potential problems. As a result, we often evaluate
a software program on the basis of the diskette or
computer component itself instead of looking at it as
a total pystem which includes print materials or other
media integrated into the system.

These issues, therefore, seem critical to the
establishment of valid criteria for evaluating education-

393

al software. Tens of thousands of dollars are being in-
vested in software development. It is important that
the production of that software is guided by character-
istics which have a relationship to learner achievement
so that the consum ers of that software can make
reasoned choices about the software programs they buy.

REFERENCES

Blum, B.L. "Evaluation of Educational Softward for
Microcomputers: An ANalytical Approach," Paper
presented at the American Educational Research
Association Annuual Meeting, New York, 1982.

41



www.manaraa.com

MICRO-NETWORKING: SOME PRACTICAL APPLICATIONS

By David R. Rieger

Department of Spacial Education/Related Services

Johnson County Public Schools, Buffalo and Kaycee, Wyoming

ABSTRACT

This paper deals with the practical aspects of
using a networking system for microcomputers. Ad-

vantages and disadvantages of networking as well as

the author's reasons for selecting a disk-sharing
system over the standard floppy disk format for

school use are delt with. The Corvus Omninet
Networking System is described at length and the
positive aspects of hard disk technology are

discussed.

INTRODUCTION

For today's educators, the use of a disk shar-
ing system for microcomputers can be both conveni-

ent and cost efficient. Some advantages and disad-

vantages have been identified by Fisher (1982).

Advantages include:
* The use of disk sharing can save the educator
time and energy. Since all data is located on one

disk, management becomes very simple.
* The teacher has more control. With some systems,

one can restrict access to parts of the memory.

This allows the educator to manage program or file

usage.
* A great deal of money can be saved. Instead of

providing memory devices (or disk drives) for each
microcomputer station, a central drive is shared.
Also, other peripherals can be shared.
Disadvantages include:
* Disk sharing systems are not portable. The mi-

crocomputer stations have to be wired into the sys-

tem.

* Not all systems restrict access to memory.
Some students might cause damage to files or com-
pletely destroy some data.
* Some disk sharing systems are not easy to use.
Additional training to allow teachers to learn how
the system works would have to be provided.

* Technical limitations might cause considerable
problems. Some systems allow only one student ac-
cess to a file at a time. Other systems have dif-

ferent limitations.

In this paper, two aspects of disk sharing

will be discussed: the first part will deal with

how a hard disk network works. In this study,
careful attention will be given the Corvus Hard

Disk Network System. A complete overview of the

system will be presented and explanation will be

given on how it differs from a standard floppy

disk system connected to just one microcomputer.
The second part will deal with some of the appli-
cation problemsthat were encountered in setting up
such a system. A detailed account will be given
to the process of acquiring software for a network

system.

The Corvus Hard Disk Network System is only
one of several disk sharing systems on the market
at this time. For the purposes of this paper only
the Corvus Omninet System will be discussed. This

results from the author's opinion that the Corvus
is a superior product and from the author's belief
that the Corvus Hard Disk Network System has the
best practical application of disk sharing for pub-

lic education, Grades K-12. (Note: The Apple II+
was selected as the type of microcomputer for use
due to the large amount of software available for
it. The Corvus Hard Disk Network System and Apple

Microcomputers are completely compatible.)

The author's experience with disk sharing
stems from the use of a Corvus Hard Disk Networking

System. The system was purchased for a Title IV-C
Study to investigate the effect of computer assist-
ed instruction (CAI) on the learning achievement of
handicapped students, Grades 1-5. A method was
needed that would allow special education teachers
to have access to a vast number of computer pro-
grams. The standard method of individual floppy
disk drives and floppy disks for use with each
microcomputer was found to be less than desirable

for several reasons:
* The teachers would have to share the programs on
floppy disks so that only one program could be used
by one microcomputer at a time.
* More teacher control would have to be used to
insure that the disks would not be managed by the
handicapped students.
* The goal of having handicapped students control
a great portion of their own education could not be

reached due to the increased teacher control of the

software.

394

The desirable aspects of using a disk sharing

system include;
* All programs would be available to every compu-

ter on the network.
* Teachers would not have to act as policemen to
safeguard the floppy disks.
* Students could access programs by themselves.

* The general availability of a vast library of

software on the network would allow the teachers



www.manaraa.com

and students much greater latitude in using the
computer.

For the purpose of this paper, the author
assumes that the reader has little or no experi-
ence with networking systems and has therefore pre-
sented the workings of the Corvus Omninet System in
detail.

HOW A NETWORK SYSTEM WORKS

The normal configuration of a microcomputer
station (Figure 1) includes the microcomputer
(which also includes such parts as the central pro-
cessing unit - CPU, read only memory chips - ROM,
random access memory chips - RAM, and support cir-
cuitry) a monitor, and memory storage - such as a
floppy disk drive. The basic difference between
this normal configuration and the use of a network
is the memory storage; the network uses a shared
memory device. Rather than access memory on sep-
arate devices, the network uses a single memory
device. In the case of the Corvus Omninet System,
a hard disk is used (Figure 2). All of the inde-
pendent microcomputers are wired together on a
common network (Figure 3).

The Corvus Omninet System is controlled by
a device called the disk server (Figure 4). Each
computer is linked to the disk server by wires.
Software on the hard disk allows each computer to
call into the network via a user name and.,password.
The disk server acts like a traffic controller in
that it allows each user access to oily certain
parts of the hard disk and to use those parts in
either read, write, or read/write modes. If more
than one computer calls for access to the hard
disk at one time, the disk server will serve the
first user while the rest wait. When the shared
wires are free, the next user is served. Although
this might seem to take a long time, the hard disk
works so fast that all users can be served very
quickly. The disk server also remembers the loca-
tion from the "scratch" if another user logs on to
the system. Therefore, each system user seems to
have private use of the hard disk.

The wiring, mentioned above, is very simple
to install and is very inexpensive. Unlike the
multi-strand cables that have been used in the
past to connect computers, the Omninet System uses
a simple twisted pair of wires. All the wiring is
configured in a line with each computer tied in
at whatever point is chosen. The total distance
the system can serve is 4000 feet - 2000 feet on
each side of the disk server and hard disk. This
distance is most adequate for most K-12 schools.

Each computer has a "tap" off of the main
wire with a "tapbox" (Figure 5). The tap box con-
tains small wire clamps that allows for the easy
installation of "tap cables" (Figure 6). These
are the wires that connect the computers to the
main wire.

For use with Apple II+ Microcomputers, a
"transporter card" (Figure 7) - shown here (on the
top) with a standard Apple Disk II Controller Card
- is installed in slot #6 of the Apple (Figure 8).

395

This slot is accessed automatically when the Apple
is turned on, so the user is booted into the dmni-
net system by simply turning everything on. (This
assumes that the hard disk is already on and ready
to receive data.)

The network asks for a user name and password
before a user can have access to any part of the
hard disk. With different names and passwords,
some security is provided. With an application of
the network system in an elementary school, a sim-
ple user name/password was developed that allowed
the user "read access" to most everything on the
hard disk. This name/password was "work/go".

With the basic network system by Corvus now
explained, an explanation of some of the practical
applications, problems, and positive uses will
follow.

MICRO-NETWORKING: SOME PROS AND CONS

Negative Items

A variety of problems developed with the in-
stallation of the Corvus Hard Disk System. Other
problems developed in securing software to place
on the hard disk.

One of the problems that took a great deal of
time to solve was faulty hardware. Over a period
of a month and with much hair pulling and with un-
necessary trips to computer dealers and with many
telephone calls across the country it was finally
found out why several Apple II+ Microcomputer-i,
would not work with the Omninet System, yet would
work perfectly well with floppy disk drives. The
Apple Computer Company has a habit of improving
their hardware during the actual production of the
product. The changes in the hardware do not effect
he compatability of the Apple components. But
in this case, newer Apple Microcomputers would not
work with Corvus Transporter Cards. The resolution
of this problem came with an up-grading of the
transporter cards. The problem was very simple to
solve, but sales people at local computer suppliers
(where the equipment was purchased) provided little
if any help.

Another major problem was the time it took to
learn how the system worked. As the system man-
ager, or trouble-shooter, I spend many hours to
become familiar with the hard/software of the net-
work. The manuals were not very helpful in provi-
ding this help and most skills were gained through
trial and error. Again, with little or no support,
the process of setting up a network can be diffi-
cult.

The most difficult problem with the system
developed through the manner in which the system
was to be used. The Title IV-B project called for
the system to use commerically available software.
I found out that most software producers are very
new to the business and what I was asking them to
do had never entered their minds. The Corvus Om-
ninet System must have uncopy-locked software in
order for it to be placed on the hard disk. This
is due to the fact that a copy must be made of the

412



www.manaraa.com

Figure 1. Normal Configuration of a Microcomputer

Figure 2. Corvus Hard Disk

396

4 1

- . ,4f .444.11.



www.manaraa.com

MONITOR

1

COMPUTER

MONITOR

COMPUTER

MONITOR

COMPUTER

MONITOR

_L

COMPUTER

UP TO

64 STATIONS

COMPUTER

MONITOR

COMPUTER

MONITOR

DISK

SERVER

HARD

DISK

COMPUTER

MONITOR

riwArp Shnued Memory Vie. Corso, thrmitmt Ard Dint. NotHOrk

Figure 4. Disk Server

397

414

COMPUTER

MONITOR



www.manaraa.com

Figure 5. Tap Box

Figure 6. Open Tap Box Showingeonnections

398

4 1 5



www.manaraa.com

Figure 7. Transporter Card (on top) with Apple II+ Disk Controller Card.

Figure S. Transporter Card in Slot *6 Inside Apple II+ Microcomputer

399

416



www.manaraa.com

program from a floppy disk to a volume on the hard
disk. Most producers are very concerned that
their software might be stolen by unscrupulous
computer users so that to them my need was almost
heresy. I prepared a form that stated my needs
and my intentions to preserve the copyright of
their material. This seemed to help some software
producers in allowing me to purchase their mater-
ials, but their prices ranged from standard list
price to twice the list price. But whatever the
price, I was allowed to place a copy of a partic-
ular program on ONE hard disk system at ONE loca-
tion.

Another disadvantage of the networking system
is the limitation of space on the hard disk. Al-
though the unit I was using had a capacity of 20
million bytes (approximately 134 - 5 1/4" floppy
diskettes worth), the space is not interchangeable.
A floppy disk drive allows for unlimited use of
different software. The user simply places dif-
ferent floppy disks in the drive. With a hard
disk, the actual disk is captive and cannot be ex-
changed or replaced with another. Data has to be
coried to the hard disk. When it is recorded to
the hard disk, this data is more or less permanent.
It can be removed or replaced, but this again is a
permanent change. I found that 20 MB is not all
that much space. The Corvus Hard Dick Units allow
for up to 4 - 20 MB units to be "daisy chained"
together, thereby creating up to 80 MB of storage
space on a hard disk network.

I found the difference between a hard disk and
a floppy disk system to be much like the difference
between a record player and a juke box! A juke box
has a limited number of records that are installed
in the device. A user can very easily "call up"
any record. They are kept neat and clean. But
the user has a limited number of "selections" for
use at any one time. On the other hand, the re-
cord player does not keep the records neat and
clean. The user has to handle the records and keep
them someplace and in some sort of order. But
there are unlimited numbers of "selections" that
can be made by the user; one has only to change
them.

The hard disk system works just like this
juke box. The user is limited in what he or she
may access from the system, but the data on the
system is extremely easy to get at and use. In

order to replace data on the hard disk, quite a
bit of work has to be performed.

Positive Items

The advantages of the hard disk network in-
clude all of the positive working features of the
Winchester-Type Hard Disk, as opposed to a standard
hard disk. These features are especially good for
several reasons: the Winchester Hard Disk is seal-
ed from the atmosphere and is not affected by dirt,
dust, or damage from handling; the Winchester Hard
Disk accesses information from and to the disk
very quickly (as fast as 500,00 bytes per second
can be up or down loaded); the Winchester Hard

400

Disk has few moving parts and normal servicing is
rated in years of continuous operation rather than
in hours, weeks, or months; and the Winchester
Hard Disk does not wear the surface of the disk:
the head floats just above the surface on a cushion
of air thereby extending the life of the disk in-
definitely. Let us look at each of these features
in greater depth.

Sealed Disk (Figure 9) - The entire disk/head
assembly of the Winchester Hard Disk is sealed in
a plastic case that has a super-clean atmosphere.
The disk assembly turns inside the case and the
heads reach out over and under the disks by a ser-
vo arm. This assembly is also enclosed inside the
case. With the use of the sealed assembly one of
the major problems of floppy disks is eliminated:
dirt and grime on the disk.

Fast Access Speed - Since the networking sys-
tem is based on sharing the memory device, high
speed is very important. The fast access time of
the Winchester Hard Disk is also a characteristic
of all hard disks. The hard disk operates some-
where in the neighborhood of 4 to 6 times the
speed of a floppy disk drive.

Few Moving,Parts - Since the only moving
parts are the disks and the heads, great care is
taken to make these extremely reliable. With such
few parts to go bad, many Corvus Hard Disk users
simply leave the unit on all of the time.

No Disk Wear - Each of the heads that read
and write information to the surface of the hard
disk does not actually touch the surface as in a
floppy disk drive. An air cushion under or over
the head floats the head about one micron off the
surface: a distance close enough to transfer data
but far enough to eliminate wear to the surface
of the hard disk.

One of the major reasons that attracted me to
the hard disk networking system is still very vi-
able: teachers who want to access a particular pro-
gram can have almost instant access to it. Since
all of the programs are contained on the hard disk
and since all the microcomputers on the network
have access to the hard disk; each microcomputer
can have a catalog of over 130 volumes.

This feature is especially useful if there is
a "core of instructional and/or management programs
that all users would need to use. Programs for the
K-12 setting might include attendance, inventory,
student records, etc. for management; while those
that support the curriculum by a relationship to a
school-wide text book or basic skills program.

One last positive feature of the network sys-
tem is the ability to expand the system to include
many computers (up to 63 total). In Figure 10 we
can see what a network configuration for a single
school could look like. There is just one memory
storage device that is connected to all of the
computer stations. In addition, peripherals such
as printers could also be shared. One or two



www.manaraa.com

Figure 9. Corvus Hard Disk Drive F:-.owing Sealed Disk Case at Top

HARD DI SK

DI SK SERVER

A
INDIVIDUAL

MICROCOMPUTER

STATION

SHARED

PR INTER

STATION

In. 11,1 v:r rI ..... elo f rr. s !yr.{ csI School

401

41S



www.manaraa.com

printers could serve a whole school. The hard disk
serves as a buffer and can store data to be print-
ed. If several items are to be printed at the
same time, the first item is printed while the rest
are ordered and held in the buffer. As each item
is printed, the buffer allows successive items to
be printed.

CONCLUSION

Although there are many different types of
disk sharing systems (Fisher, 1982), the Corvus
Omninet Hard Disk System has many positive features
that make it very usable in a public school,
grades K-12. Micro-networking has some negative
features, such as the difficulity of obtaining un-
copy-locked software; but these are more than amply
offset by such positive features as providing a
large library of software to all microcomputer sta-
tions at all times, expandability at low cost, and
extremely good reliability of the hardware.

REFERENCE

Fisher, Glenn. Disk Sharing: How To Make One Disk
Go "Round. "Electronic Learning", 1982, 1, 46-51.

LIST OF FIGURES

Figure 1. Normal Configuration of a Microcomputer
Figure 2. Corvus Hard Disk
Figure 3. Shared Memory Via Corvus Omninet Hard

Disk Network
Figure 4. Disk Server
Figure 5. Tap Box
Figure 6. Open Tap Box Showing Connetions
Figure 7. Transporter Card (on top) with Apple

II+ Disk Controller Card
Figure 8. Transporter Card in Slot #6 Inside

Apple II+ Microcomputer
Figure 9. Corvus Hard Disk Drive Showing Sealed

Disk Case at Top
Figure 10. Network Configuration for a Typical

School

402 4 1



www.manaraa.com

Computers in the Elementary and Secondary Mathematics Education

Sheldon P. Gordon
Suffolk County Community College

ABSTRACT
This session will focus on the uses of

computers in elementary and secondary
mathematics education with emphasis on
developing and implementing such usage.

The University of Delaware has developed
extensive programs to work with elementary
and secondary schools in enhancing the use
of computers throughout the curriculum with
special focus on mathematics. As part of
the present session, a report on one phases
of these efforts involving a project to
provide computer literacy for preservice
elementary education majors will be
described. In this project, each student
is given the opportunity. to become familiar
with the PLATO computer system and a

variety of microcomputers. The
presentation will consist of program
description and sample lessons developed
for the Apple II computer.

In New York City, the high schools have
developed a variety of curricula in
computer literacy and computer mathematics.
The variety of curricula will be reviewed

PARTICIPANTS:

William B. Moody
University of Delaware

by looking intensively at the structures
designed and successfully implemented in
several different schools.

In one school, the entire 9-11
Mathematics curriculum has been
restructured to allow infusion of computer
probl4q, solving and computer programming in
BASIC '.,roughout the ., Students
are introduced to o-,,,ous ,:ogram-ming
techniques as needed tc solve the problems
encountered in the traditional curriculum.
The philosophy behind this approach is that
the school should teach mathematics and
problem solving, not computer programming.

A second school, operating under the
same basic philosophy, has approached
curriculum development in another way. The
faculty chose to .keep programming entirely
separate from the traditional mathematics
curriculum. Their programming courses,
however, are still mathematics courses.
Instruction is in the mathematical concepts
with computer solutions growing out of the
mathematical solutions.

Neal Ehrenberg
New York City Board of Education
Project Director for Computers, Technology and Research

403

42u



www.manaraa.com

Adams, J. Mack 342
Adamson, Carl 55
Alexander, David 225
Anderson, Cheryl 290
Anderson, Ronald 267, 367
Arons, Arnold 308

Badger, Elizabeth 132
Baker, Herbert 12
Bargmann, Theodore 385
Bearwald, Ronald 181, 385
Beidler, John 320
Bell, Spicer 90
Berztiss, A. T. 258
Bigliani, Raymond 224
Blank, Deborah 138
Bolick, Jerry 330
Bonar, Jeffrey 239
Bork, Alfred 308
Bray, David 326
Bregar, William 231
Brown, Scott 381
Brown, Warren 32
Bryant, S. 224
Bull, G. 141
Burger, W. 294
Burk, Laurena 35
Burtis, Eric 316

Caldwell, Robert 391
Caviness, Jane 2
Chars, Sylvia 189
Cheyer, John 108
Christensen, Margaret 180
Christopherson, Jon 227
Church, Marilyn 272
Clark, Carol L. 252
Clark, James 149
Connelly, Frank 112
Cornelius, Richard 91
Cossey, David 194
Coulson, Helen 184
Crist, Mary 317
Crowther, Sandra 255.
Czejdo, Bogdan 220

Daiute, C. 22
Dalphin, John 3
Davidson, P. 141
Davies, Joan 110
Dayton, C. Mitchell 336
DeBoer, Mary 144
Denenberg, Stewart 253
Derringer, Dorothy 229
Dietz, Henry 279
Dove, L. 224
Durnin, Robin 283

Edwards, H. 224
Eltschinger, Michel 255
Entwistle, John 186
Epes, Mary 249
Esty, Edward 111

AUTHOR INDEX

404

Evans, H. 141
Evans, Richard 144

Feibel, Werner 152
Fisher, Glenn 147
Fletcher, Lincoln 192
Fordham, Malcolm 91
Forman, Kenneth 4
Fosberg, Mary Dee Harris 368
Frank, Ronald 122
Friske, Joyce 180

Garcia, Linda 148
Garland, Stephen 1
Garris, Barbara C. 364
Geist, Robert 360
Giangrande, Ernest 231
Gibson, Bobbie 141
Gilbert, Steven 270
Gordon, Sheldon 109, 345, 403
Gottlieb, James 341
Gregory, Carl 68

Harrow, Keith 64
Healy, Nancy 311
Heller, Paul 371
Henkins, Robert 225
Hilberg, Barbara 142
Horan, Rita 32
Horn, Carin 109
Hostetler, Terry 244
Hughes, Charles 68, 103
Hunter, Beverly 191, 316
Hyler, Linda 255

Icenhour, James 0. 330
Ince, Darrel 146

Jackson, Robert 90
Jawitz, W. 22
Johnson, Dale 255
Jones, Ken 99
Jones, Nancy 33.
Juels, Ronald 279

Kaye, Daniel 381
Kelly, Pat 143
Kendell, K. 224
Khailany, Asad 48
King, M. 141
Kirkpitrick, Carolyn 249
Klenovj, Carol 31
Kurshan, Barbara 311

LaFrance, Jacques 126
Landis, Marvin 342
Lathrop, Ann 365
Leahy, Ellen 250
Legenhausen, Elizabeth 252
Leinbach, L. Carl 364
Levin, James 302
Levy, C. Michael 386
Lewis, David 181

427



www.manaraa.com

Liao, Thomas 273
Liff, S. 22
Lindahl, Ronald 7
Little, Joyce Currie 183,
Little, Joyce Currie 230
Lockheed, Marlaine 372
Loper, Ann 183
Luehrmann, Arthur 316
Lundstrom, David 266

Markuson, Carolyn 141
Maron, M.J. 42
Matheson, W.S. 146
Maurer, Stephen 263
Maurer, W. D. 355
Mazur, S. 22
McGinnis, Richard 318
McLaughlin, Brian 157
Mezzina, Maria 369
Mikiten, Terry 85
Miller, Clarence 54
Miller, Jon C. 365
Mitchell, William 56
Moore, M. 294
Moshell, Michael 68, 103
Moshell, Mitchell 68
Moxley, Roy 141
Muntner, J. 92
Murdach, Richard 143
Muscara, Carol 186

Naditchi
Nielsen,
Nielsen,

Murray 80
Antonia 372
P. 224

O'Brien, P. 22
Olivo, Richard 174
Oviedo, Enrique 115

Parker, Janet 377
Pelham, William 163
Peters, Alonzo 90
Petitto, Andrea 302
Piper, Karen 18
Pollock, Marilyn 253
Poonen, George 370
Ppancella, John 186
Pritchard, William 180
Pyka, Ronald 85

Saltz, Martin 141
Saluti, Dean 200
Sands, William 12

230 Schafer, William 336
Schloss, Patrick 13
Schubiner, Marc 48
Schwartz, T. 141
Sennett, Mary 143
Shields, A. 22
Shimsak, Daniel 200
Sieben, J. Kenneth 249
Siegel, Martha 261
Simms, Dennis 99
Smaldino, Sharon 33
Soloway, Elliot 239
southwell, Michael 249
Spicer, Donald 180
Spoeri, Randall 91
Spraycar, Rudy 27, 321
Starling, Greg 350
Starnes, W. 92
Steinhoff, Carl 4
Stone, Meridith 372
Strang, Harold 183
Streibel, Michael 214
Swensson, Rochelle 142

Rafacz, Bernard 12
Ralston, Anthony 115, 208,
Rampy, Leah 142
Rieger, David 394
Roblyer, M. D. 226
Rogers, Jean 268
Rose, Shelley 31
Ross, David 368
Rossien, David 225
Royster, Linda 90
Russo, Mary 33

Taylor, Harriet 255
Taylor, S. 141
Thompson, Carla 180, 255
Thompson, John T. 193
Tipps, S. 141
Tobias, Joyce 141
Trauth, Eileen 204
Trowbridge, David 283, 308

Updegrove, Daniel 270

VanderMolen, A.M. 48
Verth, Patricia Van 208

Wagner, William 107
Walker, S. 141
Wall, Robert 183
White, G. 224
Wholeben, Brent 7, 298
Widmer, Constance 377
Wiersba, R. X. 250
Wilcox, David 167
Williams, Joyce 311
Winner, Alice Ann 184

256 Wittenberg, Lee 68
Wolf, Melvin 188
Wolfsheimer, Joseph 366
Wright, June 272
Wright, Muriel 184
Wright, P. 22

Zeidman, Edward 187
Zgliczynski, Susan 254
Zuckerman, Dan 75.


